INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995

HEF4514B MSI

DESCRIPTION

The HEF4514B is a 1-of-16 decoder/demultiplexer, having four binary weighted address inputs (A₀ to A₃), a latch enable input (EL), and an active LOW enable input (\overline{E}). The 16 outputs (O₀ to O₁₅) are mutually exclusive active HIGH. When EL is HIGH, the selected output is determined by the data on A_n. When EL goes LOW, the

last data present at A_n are stored in the latches and the outputs remain stable. When \overline{E} is LOW, the selected output, determined by the contents of the latch, is HIGH. At \overline{E} HIGH, all outputs are LOW. The enable input (\overline{E}) does not affect the state of the latch. When the HEF4514B is used as a demultiplexer, \overline{E} is the data input and A₀ to A₃ are the address inputs.

$V_{DD} = A_3 A_2 O_{10} O_{11} O_8 O_9 O_{14} O_{15} O_{12} O_{13}$ HEF4514B							
$EL A_0 A_1 O_7 O_6 O_5 O_4 O_3 O_1 O_2 O_0 V_{SS}$							
1 2 3 4 5 6 7 8 9 10 11 12 7269512.1							
Fig.2 Pinning diagram.							

PINNING

A ₀ to A ₃	address inputs
Ē	enable input (active LOW)
EL	latch enable input
O_0 to O_{15}	outputs (active HIGH)

HEF4514BP(N):	24-lead DIL; plastic					
	(SOT101-1)					
HEF4514BD(F):	24-lead DIL; ceramic (cerdip)					
	(SOT94)					
HEF4514BT(D):	24-lead SO; plastic					
	(SOT137-1)					
(): Package Designator North America						

APPLICATION INFORMATION

Some examples of applications for the HEF4514B are:

- Digital multiplexing.
- Address decoding.
- Hexadecimal/BCD decoding.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4514B MSI

HEF4514B MSI

TRUTH TABLE

	IN	IPUT	S		OUTPUTS															
Ē	A ₀	A ₁	A ₂	A ₃	O ₀	O ₁	O ₂	O ₃	O ₄	O ₅	O ₆	07	O ₈	O 9	O ₁₀	O ₁₁	O ₁₂	O ₁₃	O ₁₄	O ₁₅
Н	Х	Х	Х	Х	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	L	L	н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	Н	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L
L	L	н	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L	L
L	Н	н	L	L	L	L	L	н	L	L	L	L	L	L	L	L	L	L	L	L
L	L	L	Н	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L	L
L	Н	L	Н	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L	L
L	L	н	Н	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L	L
L	Н	н	Н	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L	L
L	L	L	L	Н	L	L	L	L	L	L	L	L	Н	L	L	L	L	L	L	L
L	Н	L	L	Н	L	L	L	L	L	L	L	L	L	н	L	L	L	L	L	L
L	L	н	L	Н	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L	L
L	Н	н	L	Н	L	L	L	L	L	L	L	L	L	L	L	Н	L	L	L	L
L	L	L	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L	L
L	Н	L	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L	L
L	L	Н	Н	н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н	L
L	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	Н

Notes

EL = HIGH; H = HIGH state (the more positive voltage);
L = LOW state (the less positive voltage); X = state is immaterial

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$A_n,EL\to O_n$	5		260	520	ns	233 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	95	190	ns	84 ns + (0,23 ns/pF) C _L
	15		65	130	ns	57 ns + (0,16 ns/pF) C _L
	5		270	550	ns	243 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	95	190	ns	84 ns + (0,23 ns/pF) C _L
	15		65	130	ns	57 ns + (0,16 ns/pF) C _L
$\overline{E} \rightarrow O_n$	5		175	350	ns	148 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	65	130	ns	54 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns + (0,16 ns/pF) C _L
	5		200	400	ns	173 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	70	140	ns	59 ns + (0,23 ns/pF) C _L
	15		50	100	ns	42 ns + (0,16 ns/pF) C _L

HEF4514B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA	
Output transition	5			90	180	ns	40 ns + (1,0 ns/pF) C _L	
times	10	t _{THL}		35	65	ns	14 ns + (0,42 ns/pF) C _L	
HIGH to LOW	15			25	50	ns	11 ns + (0,28 ns/pF) C _L	
	5			85	170	ns	35 ns + (1,0 ns/pF) C _L	
LOW to HIGH	10	t _{TLH}		35	70	ns	14 ns + (0,42 ns/pF) C _L	
	15			25	50	ns	11 ns + (0,28 ns/pF) C _L	
Set-up time	5		120	60		ns		
$A_n \to EL$	10	t _{su}	40	20		ns		
	15		30	15		ns		
Hold time	5		0	60		ns		
$A_n \rightarrow EL$	10	t _{hold}	0	20		ns	see also waveforms Fig.5	
	15		0	15		ns	1 19.5	
Minimum EL pulse	5		120	60		ns		
width; HIGH	10	t _{WELH}	40	20		ns		
	15		30	15		ns		

	V _{DD} V	TYPICAL FORMULA FOR P (μ W)	
Dynamic power	5	1100 f _i + Σ (f _o C _L) × V _{DD} ²	where
dissipation per	10	5500 f _i + Σ (f _o C _L) × V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	16 000 f _i + Σ (f _o C _L) × V _{DD} ²	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			Σ (f _o C _L) = sum of outputs
			V _{DD} = supply voltage (V)

HEF4514B MSI

