

PTFA260451E

Thermally-Enhanced High Power RF LDMOS FET 45 W, 2.62 – 2.68 GHz

Description

The PTFA260451E is a thermally-enhanced 45-watt, internallymatched *GOLDMOS®* FET intended for CDMA2000, Super3G (3GPP TSG RAN), and WiMAX applications from 2.62 to 2.68 GHz. Thermallyenhanced packaging provide the coolest operation available. Full gold metallization ensures excellent device lifetime and reliability.

PTFA260451E Package H-30265-2

Features

- Lead-free, RoHS-compliant and thermallyenhanced packaging
- Internal matching for wideband performance
- Typical three-carrier CDMA2000 performance - Average output power = 10 W
 - Gain = 14 dB
 - Efficiency = 24%
 - ACPR = -52 dBc
- Typical CW performance
 - Output power at P–1dB = 50 W - Efficiency = 46%
- Integrated ESD protection: Human Body Model, Class 2 (minimum)
- Excellent thermal stability
- Low HCI Drift
- Capable of handling 10:1 VSWR @ 28 V, 45 W (CW) output power

RF Performance

CDMA Measurements (not subject to production test—verified by design/characterization in Infineon test fixture) $V_{DD} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{OUT} = 10 \text{ W AVG}, f = 2680 \text{ MHz}$

Characteristic	Symbol	Min	Тур	Max	Unit
Adjacent Channel Power Ratio	ACPR	_	-45	_	dBc
Gain	G _{ps}	_	14	_	dB
Drain Efficiency	η_D	_	24	_	%

All published data at T_{CASE} = 25°C unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

RF Performance (cont.)

Two-tone Measurements (tested in Infineon test fixture)

 V_{DD} = 28 V, I_{DQ} = 500 mA, P_{OUT} = 45 W PEP, f = 2680 MHz, tone spacing = 1 MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	14.0	15	—	dB
Drain Efficiency	η_D	36	37	—	%
Intermodulation Distortion	IMD	_	-30	-28	dBc

DC Characteristics

Characteristic Conditions		Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{D} = 10 mA$	V _{(BR)DSS}	65		_	V
Drain Leakage Current	$V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	—	1.0	μA
	$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_		10.0	μA
On-State Resistance	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.16	_	Ω
Operating Gate Voltage $V_{DS} = 28 \text{ V}, I_{DQ} = 500 \text{ mA}$		V _{GS}	2.0	2.5	3	V
$\label{eq:Gate Leakage Current} V_{GS} = 10 \ V, \ V_{DS} = 0 \ V$		I _{GSS}	_	_	1.0	μA

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	65	V
Gate-Source Voltage	V _{GS}	-0.5 to +12	V
Junction Temperature	ТJ	200	°C
Total Device Dissipation	PD	199	W
Above 25°C derate by		1.14	W/°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 45 W CW)	$R_{\theta JC}$	0.88	°C/W

Ordering Information

Type and Version	Package Outline	Package Description	Marking
PTFA260451E V1	H-30265-2	Thermally-enhanced slotted flange, single-ended	PTFA260451E

Typical Performance (data taken in production test fixture)

Typical Performance (cont.)

4 of 10

– 0.09 A ◘— 0.28 A

- 0.70 A

- 1.39 A

-2.09 A 2.78 A

– 3.48 A

— 4.17 A

-0

~

100

80

× 0.46 A

Typical WiMAX Performance

Broadband Circuit Impedance

Frequency	Z Source W		equency Z Source W Z		Z Loa	ad W
MHz	R	jХ	R	jХ		
2600	19.5	-1.5	7.5	-0.7		
2620	17.0	-2.1	7.3	-0.5		
2650	18.6	0.8	7.0	-0.3		
2680	19.0	-0.8	6.8	0.1		
2700	18.0	-3.0	6.7	0.2		

See next page for reference circuit information

Reference Circuit

Reference circuit schematic for f = 2680 MHz

Circuit Assembly Information					
DUT	PTFA260451E	LDMOS Transistor			
PCB	0.76 mm [.030"] thick, $\epsilon_{r} = 4.5$	Rogers TMM4	2 oz. copper		

Microstrip	Electrical Characteristics at 2680 MHz ¹	Dimensions: L x W (mm)	Dimensions: L x W (in.)
<i>l</i> 1	0.130 λ, 50.0 Ω	7.87 x 1.47	0.310 x 0.058
<i>l</i> 2	0.061 λ, 44.0 Ω	3.68 x 1.83	0.145 x 0.072
<i>l</i> 3	0.065 λ, 44.0 Ω	3.91 x 1.83	0.154 x 0.072
<i>l</i> 4	0.299 λ, 62.0 Ω	18.44 x 1.02	0.726 x 0.040
ℓ5	0.018 λ, 44.0 Ω	1.09 x 1.83	0.043 x 0.072
<i>l</i> 6	0.029 λ, 15.0 Ω	1.65 x 7.62	0.065 x 0.300
ℓ7	0.077 λ, 12.5 Ω	4.32 x 9.45	0.170 x 0.372
<i>l</i> 8	0.234 λ, 55.0 Ω	14.33 x 1.27	0.564 x 0.050
<i>l</i> 9	0.218 λ, 55.0 Ω	13.36 x 1.27	0.526 x 0.050
<i>ℓ</i> 10	0.050 λ, 6.6 Ω	2.74 x 19.10	0.108 x 0.752
ℓ 11 (taper)	0.080 λ, 6.6 Ω / 50.0 Ω	4.90 x 19.10 / 1.32	0.193 x 0.752 / 0.052
ℓ12	0.053 λ, 50.0 Ω	3.25 x 1.32	0.128 x 0.052
ℓ13	0.133 λ, 50.0 Ω	8.13 x 1.32	0.320 x 0.052
ℓ14	0.070 λ, 50.0 Ω	4.27 x 1.32	0.168 x 0.052

¹Electrical characteristics are rounded.

Reference Circuit (cont.)

Reference circuit assembly diagram* (not to scale)

Component	Description	Suggested Manufacturer	P/N or Comment
C1, C2, C3	Capacitor, 0.001 µF	Digi-Key	PCC1772CT-ND
C4	Tantalum capacitor, 10 µF, 35 V	Digi-Key	PCS6106TR-ND
C5, C11, C15	Capacitor, 0.1 µF	Digi-Key	PCC104BCT-ND
C6, C7, C9, C13, C19	Ceramic capacitor, 4.7 pF	ATC	100B 4R7
C8, C18	Ceramic capacitor, 1.2 pF	ATC	100B 1R2
C10, C14	Capacitor, 1 µF	ATC	920C105KW
C12, C16	Tantalum capacitor, 10 µF, 50 V	Garrett Electronics	TPSE106K050R0400
C17	Ceramic capacitor, 0.4 pF	ATC	100B 0R4
Q1	Transistor	Infineon Technologies	BCP56
QQ1	Voltage regulator	National Semiconductor	LM7805
R1	Chip resistor, 1.3 k-ohms	Digi-Key	P1.3KGCT-ND
R2	Chip resistor, 1.2 k-ohms	Digi-Key	P1.2KGCT-ND
R3	Chip resistor, 2 k-ohms	Digi-Key	P2.0KECT-ND
R4	Potentiometer, 2 k-ohms	Digi-Key	3224W-202ETR-ND
R5, R7	Chip resistor, 1 k-ohms	Digi-Key	P1.0KECT-ND
R6, R8	Chip resistor, 10 ohms	Digi-Key	P10ECT-ND
L1, L2	Ferrite	Philips	BDS46/3.8.8-452

*Gerber Files for this circuit available on request

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page *http://www.infineon.com/rfpower*

PTFA260451E

Revision H	listory: 2008-03-04	Data Sheet
Previous v	version: 2006-07-05, Data Sheet	
Page	Subjects (major changes since last revision)	
All	Remove references to alternate products.	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

highpowerRF@infineon.com

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International

\rightarrow	
/	

GOLDMOS[®] is a registered trademark of Infineon Technologies AG.

Edition 2008-03-04 Published by Infineon Technologies AG 81726 Munich, Germany © 2004 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.