2-Mbit (128K x 16) Static RAM #### Features - Very high speed - 55 ns - Temperature Ranges - Industrial: 40°C to + 85°C - Automotive: 40°C to + 125°C - Pin-compatible with the CY62137V - · Ultra-low active power - Typical active current: 1.5 mA @ f = 1 MHz - Typical active current: 7 mA @ f = f_{Max} (55 ns speed) - Low and ultra-low standby power - · Easy memory expansion with CE and OE features - · Automatic power-down when deselected - CMOS for optimum speed/power - Available in Pb-free and non Pb-free 48-ball FBGA package #### Functional Description^[1] The CY62137CV30/33 and CY62137CV are high-performance CMOS static RAMs organized as 128K words by 16 bits. These devices feature advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life $^{\rm TM}$ (MoBL $^{\tiny (M)}$) in portable applications such as cellular telephones. The devices also has an automatic power-down feature that significantly reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by more than 99% when deselected (CE HIGH or both BLE and BHE are HIGH). The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW). Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$). Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes. Note: 1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com. [+] Feedback #### **Product Portfolio** | | | | | | | Power Dissipation | | | | | | | |---------------|------------|----------------|----------------------------|------|---------------|----------------------------|----------|----------------------------|----------------------|----------------------------|-----------------------------------|--| | | | | | | | 0 | perating | , I _{CC} (m/ | 4) | Otan dha L | | | | | | V _C | _C Range | (V) | Smood | f = 1 MHz | | f = 1 | f = f _{Max} | | Standby, I _{SB2}
(μA) | | | Product | Range | Min. | Typ. ^[2] | Max. | Speed
(ns) | Typ. ^[2] | Max. | Typ. ^[2] | Max. | Typ. ^[2] | Max. | | | CY62137CV30LL | Industrial | 2.7 | 3.0 | 3.3 | 55 | 1.5 | 3 | 7 | 15 | 2 | 10 | | | | | | | | 70 | 1.5 | 3 | 5.5 | 12 | | | | | CY62137CV30LL | Automotive | 2.7 | 3.0 | 3.3 | 70 | 1.5 | 3 | 5.5 | 15 | 2 | 15 | | | CY62137CV33LL | Industrial | 3.0 | 3.3 | 3.6 | 55 | 1.5 | 3 | 7 | 15 | 5 | 15 | | | CY62137CVSL | Industrial | 2.7 | 3.3 | 3.6 | 70 | 1.5 | 3 | 5.5 | 12 | 1 | 5 | | #### Pin Configuration^[3, 4] - Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. NC pins are not connected to the die. E3 (DNU) pin have to be left floating or tied to V_{SS} to ensure proper operation. # CY62137CV30/33 MoBL[®] CY62137CV MoBL[®] #### **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage to Ground Potential -0.5V to $V_{CC(max)}$ + 0.5V DC Voltage Applied to Outputs in High-Z State^[5]-0.5V to V_{CC} + 0.3V DC Input Voltage^[5]-0.5V to V_{CC} + 0.3V Output Current into Outputs (LOW)20 mA | Static Discharge Voltage | > 2001V | |--------------------------------|----------| | (per MIL-STD-883, Method 3015) | | | Latch-up Current | > 200 mA | #### **Operating Range** | Device | Range | Ambient
Temperature T _A | V _{CC} | |-------------|------------|---------------------------------------|-----------------| | CY62137CV30 | Industrial | -40°C to +85°C | 2.7V to 3.3V | | CY62137CV33 | | | 3.0V to 3.6V | | CY62137CV | | | 2.7V to 3.6V | | CY62137CV30 | Automotive | -40°C to +125°C | 2.7V to 3.3V | #### **Electrical Characteristics** Over the Operating Range | | | | | | CY62137CV30-55 | | | CY62 | 137CV3 | 80-70 | | |------------------|---|--|---------------------------------------|-------|----------------|----------------------------|-------------------------|------|----------------------------|-------------------------|------| | Parameter | Description | Test C | onditions | | Min. | Typ. ^[2] | Max. | Min. | Typ. ^[2] | Max. | Unit | | V _{OH} | Output HIGH Voltage | I _{OH} = -1.0 mA | V _{CC} = 2.7V | | 2.4 | | | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 2.1 mA | V _{CC} = 2.7V | | | | 0.4 | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | , | | | | V _{CC}
+0.3 | 2.2 | | V _{CC}
+0.3 | V | | V _{IL} | Input LOW Voltage | | | | | | 0.8 | -0.3 | | 0.8 | V | | I _{IX} | Input Leakage | $GND \le V_1 \le V_{CC}$ | | Ind'l | -1 | | +1 | -1 | | +1 | μΑ | | | Current | | | Auto | | | | -2 | | +2 | | | l _{OZ} | Output Leakage | | | Ind'l | -1 | | +1 | -1 | | +1 | μА | | | Current | Output Disabled | | Auto | | | | -2 | | +2 | | | I _{CC} | | $f = f_{Max} = 1/t_{RC}$ | $V_{CC} = 3.3V$ | Ind'l | | 7 15 5.5 | 5.5 | 12 | mA | | | | | Supply Current | | I _{OUT} = 0mA
CMOS Levels | Auto | | | | | 5.5 | 15 | | | | | f = 1 MHz | | Ind'l | | 1.5 | 3 | | 1.5 | 3 | | | | | | | Auto | | | | | 1.5 | 3 | | | I _{SB1} | Automatic CE
Power-down
Current — CMOS Inputs | $\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{f} = \text{f}_{\text{Max}} \text{ (Address a)}$ | | Ind'I | | 2 | 10 | | 2 | 10 | μА | | | | f=0 (OE, WE, BHI | E and BLE) | Auto | | | | | 2 | 15 | | | I _{SB2} | Automatic CE
Power-down | $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$ | | Ind'I | | 2 | 10 | | 2 | 10 | μΑ | | | Current — CMOS Inputs | | | Auto | | | | | 2 | 15 | | #### Note: Document #: 38-05201 Rev. *G Page 3 of 13 ^{5.} $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns. # CY62137CV30/33 MoBL[®] CY62137CV MoBL[®] ## Electrical Characteristics Over the Operating Range (continued) | | | | | CY62137CV33-55 | | | CY62137CV-70 | | | | |------------------|--|--|--|----------------|----------------------------|------|--------------|----------------------------|------|------| | Parameter | Description | Test Co | nditions | Min. | Typ. ^[2] | Max. | Min. | Typ. ^[2] | Max. | Unit | | V _{OH} | Output HIGH Voltage | I _{OH} = -1.0 mA | $V_{CC} = 3.0V$ | 2.4 | | | 2.4 | | | ٧ | | | | | V _{CC} = 2.7V | | | | 2.4 | | | V | | V _{OL} | Output LOW Voltage | I _{OL} = 2.1 mA | $V_{CC} = 3.0V$ | | | 0.4 | | | 0.4 | ٧ | | | | | V _{CC} = 2.7V | | | | | | 0.4 | V | | V _{IH} | Input HIGH Voltage | | 2.2 | | V _{CC} + 0.3 | 2.2 | | V _{CC} +0.3 | V | | | V _{IL} | Input LOW Voltage | | | | | 0.8 | -0.3 | | 0.8 | V | | I _{IX} | Input Leakage Current | $GND \le V_1 \le V_{CC}$ | $GND \le V_1 \le V_{CC}$ | | | +1 | -1 | | +1 | μΑ | | I _{OZ} | Output Leakage Current | GND ≤ V _O ≤ V _{CO}
Disabled | , Output | -1 | | +1 | -1 | | +1 | μА | | I _{CC} | V _{CC} Operating | $f = f_{Max} = 1/t_{RC}$ | $V_{CC} = 3.6V$ | | 7 | 15 | | 5.5 | 12 | mA | | | Supply Current | f = 1 MHz | I _{OUT} = 0 mA
CMOS Levels | | 1.5 | 3 | | 1.5 | 3 | | | I _{SB1} | Automatic CE
Power-down
Current —CMOS Inputs | $\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2\text{V}$ $\text{f} = \text{f}_{\text{Max}} \text{(Address)}$ f=0 (OE, WE, BH) | | 5 | 15 | | 5 | 15 | μА | | | I _{SB2} | Automatic CE
Power-down | $\overline{CE} \ge V_{CC} - 0.2V$ | LL LL | | 5 | 15 | | 5 | 15 | μΑ | | | Current —CMOS Inputs | $V_{IN} \ge V_{CC} - 0.2 \ V_{IN} \le 0.2 \ V_{f} = 0, \ V_{f} = 0.2 V_{f$ | V _{CC} =3.6V SL | | 5 | 15 | | 1 | 5 | | ### Capacitance^[6] | Parameter | Description | ription Test Conditions | | Unit | |------------------|--------------------|---|---|------| | C _{IN} | Input Capacitance | $T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ.)}$ | 6 | pF | | C _{OUT} | Output Capacitance | | 8 | pF | #### Thermal Resistance^[6] | Parameter | Description | Description Test Conditions | | Unit | | |-----------------|--|--|----|------|--| | Θ_{JA} | Thermal Resistance (Junction to Ambient) | Still Air, soldered on a 3 x 4.5 inch, 2-layer printed circuit board | 55 | °C/W | | | Θ _{JC} | Thermal Resistance (Junction to Case) | | 16 | °C/W | | #### Note Document #: 38-05201 Rev. *G Page 4 of 13 ^{6.} Tested initially and after any design or process changes that may affect these parameters. #### **AC Test Loads and Waveforms** | Parameters | 3.0V | 3.3V | Unit | |-----------------|------|------|------| | R1 | 1105 | 1216 | Ω | | R2 | 1550 | 1374 | Ω | | R _{TH} | 645 | 645 | Ω | | V _{TH} | 1.75 | 1.75 | V | #### Data Retention Characteristics (Over the Operating Range) | Parameter | Description | Conditions | | Min. | Typ. ^[4] | Max. | Unit | | |---------------------------------|--------------------------------------|---|----|-------|----------------------------|------|----------------------|----| | V_{DR} | V _{CC} for Data Retention | | | | 1.5 | | V _{cc(max)} | V | | I _{CCDR} | Data Retention Current | $\frac{V_{CC}}{1.5V}$ | LL | Ind'l | | 1 | 6 | | | | | $\begin{split} & \frac{V_{CC}}{CE} = 1.5V \\ & CE \ge V_{CC} - 0.2V, \\ & V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V \end{split}$ | LL | Auto | | | 8 | μΑ | | | | 114 00 114 | SL | Ind'l | | | 4 | | | t _{CDR} ^[6] | Chip Deselect to Data Retention Time | | | | 0 | | | ns | | t _R ^[7] | Operation Recovery Time | | | | t _{RC} | | | ns | #### Data Retention Waveform^[8] Full-device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 100 μs or stable at V_{CC(min.)} > 100 μs. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE. #### Switching Characteristics Over the Operating Range^[9] | | | 55 | ns | 70 | ns | | | |-----------------------------------|--|------|------|------|------|------|--| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | | Read Cycle | | 1 | • | • | • | | | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | | t _{ACE} | CE LOW to Data Valid | | 55 | | 70 | ns | | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | | t _{LZOE} | OE LOW to Low-Z ^[10] | 5 | | 5 | | ns | | | t _{HZOE} | OE HIGH to High-Z ^[10, 12] | | 20 | | 25 | ns | | | t _{LZCE} | CE LOW to Low-Z ^[10] | 10 | | 10 | | ns | | | t _{HZCE} | CE HIGH to High-Z ^[10, 12] | | 20 | | 25 | ns | | | t _{PU} | CE LOW to Power-up | 0 | | 0 | | ns | | | t _{PD} | CE HIGH to Power-down | | 55 | | 70 | ns | | | t _{DBE} | BHE/BLE LOW to Data Valid | | 55 | | 70 | ns | | | t _{LZBE} ^[11] | BHE/BLE LOW to Low-Z ^[10] | 5 | | 5 | | ns | | | t _{HZBE} | BHE/BLE HIGH to High-Z ^[10, 12] | | 20 | | 25 | ns | | | Write Cycle ^[13] | | 1 | • | • | • | | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | | t _{SCE} | CE LOW to Write End | 45 | | 60 | | ns | | | t _{AW} | Address Set-up to Write End | 45 | | 60 | | ns | | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | | t _{SA} | Address Set-up to Write Start | 0 | | 0 | | ns | | | t _{PWE} | WE Pulse Width | 40 | | 45 | | ns | | | t _{BW} | BHE/BLE Pulse Width | 50 | | 60 | | ns | | | t _{SD} | Data Set-up to Write End | 25 | | 30 | | ns | | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | | t _{HZWE} | WE LOW to High-Z ^[10, 12] | | 20 | | 25 | ns | | | t _{LZWE} | WE HIGH to Low-Z ^[10] | 10 | | 10 | | ns | | #### Notes: Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} for any civing device. given device. ^{11.} If both byte enables are toggled together this value is 10 ns. ^{12.} t_{HZOE}, t_{HZOE}, t_{HZEE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter <u>a high</u> impedance state. 13. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write. #### **Switching Waveforms** Read Cycle No. 1 (Address Transition Controlled)^[14, 15] #### Read Cycle No. 2 (OE Controlled)[15, 16] - 14. <u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}, <u>BHE</u>, <u>BLE</u> = V_{IL}. 15. <u>WE</u> is HIGH for read cycle. - 16. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} transition LOW. #### Switching Waveforms (continued) Write Cycle No. 1 (WE Controlled)[13, 17, 18] #### Write Cycle No. 2 (CE Controlled)[13, 17, 18] #### Notes: - 17. Data I/O is high-impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$. 18. If $\overline{\text{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. 19. During this period, the I/Os are in output state and input signals should not be applied. ## Switching Waveforms (continued) Write Cycle No. 3 (WE Controlled, OE LOW)[18] #### Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[18] # CY62137CV30/33 MoBL[®] CY62137CV MoBL[®] #### **Truth Table** | CE | WE | OE | BHE | BLE | Inputs/Outputs | Mode | Power | |----|----|----|-----|-----|--|--|----------------------------| | Н | Х | Χ | Χ | Х | High-Z Deselect/Power-down | | Standby (I _{SB}) | | Х | Х | Х | Н | Н | High-Z | Deselect/Power-down | Standby (I _{SB}) | | L | Н | L | L | L | Data Out (I/O ₀ -I/O ₁₅) | Read | Active (I _{CC}) | | L | Н | L | Н | L | High Z (I/O ₈ –I/O ₁₅);
Data Out (I/O ₀ –I/O ₇) | (I/O ₈ -I/O ₁₅); Read A | | | L | Н | L | L | Н | Data Out (I/O ₈ –I/O ₁₅);
High Z (I/O ₀ –I/O ₇) | | | | L | L | Х | L | L | Data In (I/O ₀ -I/O ₁₅) | Write | Active (I _{CC}) | | L | L | Х | Н | L | High Z (I/O ₈ -I/O ₁₅);
Data In (I/O ₀ -I/O ₇) | Write | Active (I _{CC}) | | L | L | Х | L | Н | Data in (I/O ₈ –I/O ₁₅);
High Z (I/O ₀ –I/O ₇) | Write | Active (I _{CC}) | | L | Н | Н | L | L | High-Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | High-Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | L | Н | High-Z | Output Disabled | Active (I _{CC}) | ### **Ordering Information** | Speed (ns) | Ordering Code | Package
Diagram | Package Type | Operating
Range | |------------|----------------------|--------------------|---|--------------------| | 55 | CY62137CV30LL-55BVI | 51-85150 | 48-ball FBGA (6 x 8 x 1 mm) | Industrial | | | CY62137CV30LL-55BVXI | | 48-ball FBGA (6 x 8 x 1 mm) (Pb-free) | | | | CY62137CV33LL-55BVI | | 48-ball FBGA (6 x 8 x 1 mm) | | | 70 | CY62137CV30LL-70BAI | 51-85096 | 48-ball FBGA (7 x 7 x 1.2 mm) | Industrial | | | CY62137CV30LL-70BVI | 51-85150 | 48-ball FBGA (6 x 8 x 1 mm) | | | | CY62137CVSL-70BAI | 51-85096 | 48-ball FBGA (7 x 7 x 1.2 mm) | | | | CY62137CVSL-70BAXI | | 48-ball FBGA (7 x 7 x 1.2 mm) (Pb-free) | | | | CY62137CV30LL-70BAE | 51-85096 | 48-ball FBGA (7 x 7 x 1.2 mm) | Automotive | | | CY62137CV30LL-70BVE | 51-85150 | 48-ball FBGA (6 x 8 x 1 mm) | | | | CY62137CV30LL-70BVXE | | 48-ball FBGA (6 x 8 x 1 mm) (Pb-free) | | Please contact your local Cypress sales representative for availability of these parts Page 10 of 13 #### **Package Diagrams** #### 48-ball FBGA (7 x 7 x 1.2 mm) (51-85096) 51-85096-*F #### Package Diagrams (continued) #### 48-ball VFBGA (6 x 8 x 1 mm) (51-85150) TOP VIEW MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders. #### **Document History Page** | Document Title: CY62137CV30/33 MoBL [®] and CY62137CV MoBL [®] 2-Mbit (128K x 16) Static RAM Document Number: 38-05201 | | | | | |--|---------|------------|--------------------|---| | REV. | ECN NO. | Issue Date | Orig. of
Change | Description of Change | | ** | 112393 | 02/19/02 | GAV | New Data Sheet (advance information) | | *A | 114015 | 04/25/02 | JUI | Added BV package diagram Changed from Advance Information to Preliminary | | *B | 117064 | 07/12/02 | MGN | Changed from Preliminary to Final | | *C | 118122 | 09/10/02 | MGN | Added new part number: CY62137CV with wider voltage (2.7V $-$ 3.6V) Added new SL power bin for new part number For $T_{AA} = 55$ ns, improved t_{PWE} min. from 45 ns to 40 ns For $T_{AA} = 70$ ns, improved t_{PWE} min. from 50 ns to 45 ns For $T_{AA} = 70$ ns, improved t_{LZWE} min. from 5 ns to 10 ns | | *D | 118761 | 09/23/02 | MGN | Improved Typ. I_{CC} spec to 7 mA (for 55 ns) and 5.5 mA (for 70 ns) Improved Max I_{CC} spec to 15 mA (for 55 ns) and 12 mA (for 70 ns) For T_{AA} = 55 ns, improved t_{LZWE} min. from 5 ns to 10 ns Changed upper spec. for Supply Voltage to Ground Potential to $V_{CC(max)}$ + 0.5V Changed upper spec. for DC Voltage Applied to Outputs in High-Z State and DC Input Voltage to V_{CC} + 0.3V | | *E | 343877 | See ECN | PCI | Added Automotive Information in Operating Range, DC and Ordering Information Table | | *F | 419237 | See ECN | ZSD | Changed the address of Cypress Semiconductor Corporation on Page #1 from "3901 North First Street" to "198 Champion Court" Updated the ordering information table and replaced the Package name column with Package diagram | | *G | 486789 | See ECN | VKN | Removed part number CY62137CV25 from the product offering Updated the ordering information table |