8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter # with LSTTL-Compatible Inputs The MC74LVX259 is an 8-bit Addressable Latch fabricated with silicon gate CMOS technology. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The LVX259 is designed for general purpose storage applications in digital systems. The device has four modes of operation as shown in the mode selection table. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non–addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one–of–eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode, all outputs are LOW and unaffected by the address and data inputs. When operating the LVX259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The MC74LVX259 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74LVX259 to be used to interface 5.0 V circuits to 3.0 V circuits. #### **Features** - High Speed: $t_{PD} = 7.0 \text{ ns}$ (Typ) at $V_{CC} = 3.3 \text{ V}$ - Low Power Dissipation: $I_{CC} = 2 \mu A \text{ (Max)}$ at $T_A = 25 \text{°C}$ - High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ - CMOS–Compatible Outputs: $V_{OH} > 0.8 V_{CC}$; $V_{OL} < 0.1 V_{CC}$ @Load - Power Down Protection Provided on Inputs and Outputs - Balanced Propagation Delays - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V • Pb-Free Packages are Available* http://onsemi.com MARKING DIAGRAMS SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F SOEIAJ-16 M SUFFIX CASE 966 A = Assembly Location WL or L = Wafer Lot Y = Year WW or W = Work Week #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. Figure 1. Pin Assignment Figure 2. Logic Diagram Figure 3. IEC Logic Symbol #### **MODE SELECTION TABLE** | Reset | Mode | |-------|----------------------| | Н | Addressable Latch | | Н | Memory | | L | 8-Line Demultiplexer | | L | Reset | | | Н | #### **LATCH SELECTION TABLE** | Addr | ess Ir | nputs | Latch | |------|--------|-------|-----------| | С | В | Α | Addressed | | L | L | L | Q0 | | L | L | Н | Q1 | | L | Н | L | Q2 | | L | Н | Н | Q3 | | Н | L | L | Q4 | | Н | L | Н | Q5 | | Н | Н | L | Q6 | | Н | Н | Н | Q7 | Figure 4. Expanded Logic Diagram # **MAXIMUM RATINGS** | Symbol | Para | ameter | Value | Unit | |----------------------|---|--|------------------------------|------| | V _{CC} | Positive DC Supply Voltage | | -0.5 to +7.0 | V | | V _{IN} | Digital Input Voltage | | -0.5 to +7.0 | V | | V _{OUT} | DC Output Voltage | | -0.5 to V _{CC} +0.5 | V | | I _{IK} | Input Diode Current | | -20 | mA | | I _{OK} | Output Diode Current | | ±20 | mA | | I _{OUT} | DC Output Current, per Pin | | ± 25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | | ±75 | mA | | P _D | Power Dissipation in Still Air | SOIC Package
TSSOP | 200
180 | mW | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 1)
Machine Model (Note 2)
Charged Device Model (Note 3) | >2000
>200
>2000 | V | | I _{LATCHUP} | Latchup Performance | Above V _{CC} and Below GND at 125°C (Note 4) | ± 300 | mA | | θ_{JA} | Thermal Resistance, Junction-to-Ambient | SOIC Package
TSSOP | 143
164 | °C/W | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. - 1. Tested to EIA/JESD22-A114-A - Tested to EIA/JESD22-A115-A Tested to JESD22-C101-A - 4. Tested to EIA/JESD78 # **RECOMMENDED OPERATING CONDITIONS** | Symbol | Characteristics | Min | Max | Unit | |---------------------------------|--|-----|-----------------|------| | V _{CC} | DC Supply Voltage | 2.0 | 3.6 | V | | V _{IN} | DC Input Voltage | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage | 0 | V _{CC} | V | | T _A | Operating Temperature Range, all Package Types | -40 | 85 | °C | | t _r , t _f | Input Rise or Fall Time $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 0 | 100 | ns/V | # DC CHARACTERISTICS (Voltages Referenced to GND) | | | | V _{CC} | T, | T _A = 25°C | | -40°C ≤ 1 | Γ _A ≤ 85°C | | |-----------------|--|--------------------------------|-------------------|--|-----------------------|--|--|--|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level
Input Voltage | | 2.0
3.0
3.6 | 0.75 V _{CC}
0.7 V _{CC}
0.7 V _{CC} | -
-
- | -
-
- | 0.75 V _{CC}
0.7 V _{CC}
0.7 V _{CC} | | V | | V _{IL} | Maximum Low–Level Input Voltage | | 2.0
3.0
3.6 | -
-
- | -
-
- | 0.25 V _{CC}
0.3 V _{CC}
0.3 V _{CC} | -
-
- | 0.25 V _{CC}
0.3 V _{CC}
0.3 V _{CC} | V | | V _{OH} | High-Level Output | I _{OH} = -50 μA | 2.0 | 1.9 | 2.0 | - | 1.9 | - | V | | | Voltage | I _{OH} = -50 μA | 3.0 | 2.9 | 3.0 | - | 2.9 | - | | | | | $I_{OH} = -4 \text{ mA}$ | 3.0 | 2.58 | - | - | 2.48 | - | | | V _{OL} | Low-Level Output | I _{OL} = 50 μA | 2.0 | - | 0.0 | 0.1 | - | 0.1 | V | | | Voltage | I _{OL} = 50 μA | 3.0 | - | 0.0 | 0.1 | - | 0.1 | | | | | I _{OL} = 4 mA | 3.0 | - | _ | 0.36 | - | 0.44 | | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or GND | 0 to 3.6 | - | _ | ±0.1 | - | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent
Supply Current
(per package) | $V_{IN} = V_{CC}$ or GND | 3.6 | 1.0 | 1.0 | 2.0 | - | - | μΑ | # AC ELECTRICAL CHARACTERISTICS Input $t_f = t_f = 3.0 \text{ ns}$ | | | | | | T _A = 25°C | ; | -40°C ≤ | T _A ≤ 85°C | | |--|---|--|------------------------------|-----|-----------------------|-------------|-------------------------|-----------------------|------| | Symbol | Parameter | Test Conditi | ons | Min | Тур | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Data to Output | V _{CC} = 2.7 V | $C_L = 15pF$
$C_L = 50pF$ | - | 6.3
9.0 | 9.0
14.0 | 1.0
1.0 | 12.0
15.0 | ns | | | (Figures 5 and 9) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.6
8.0 | 8.0
12.0 | 1.0
1.0 | 11.0
14.0 | | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Address Select | V _{CC} = 2.7 V | $C_L = 15pF$
$C_L = 50pF$ | | 6.3
9.0 | 9.0
14.0 | 1.0
1.0 | 12.0
15.0 | ns | | | to Output
(Figures 6 and 9) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | - 1 | 5.6
8.0 | 8.0
12.0 | 1.0
1.0 | 11.0
14.0 | | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Enable to Output | V _{CC} = 2.7 V | $C_L = 15pF$
$C_L = 50pF$ | - | 6.3
9.0 | 9.0
14.0 | 1.0
1.0 | 12.0
15.0 | ns | | | (Figures 7 and 9) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | - | 5.6
8.0 | 9.0
12.0 | 1.0
1.0 | 11.0
14.0 | | | t _{PHL} | Maximum Propogation Delay, Reset to Output | V _{CC} = 2.7 V | $C_L = 15pF$
$C_L = 50pF$ | - | 6.3
9.0 | 9.0
14.0 | 1.0
1.0 | 12.0
15.0 | ns | | | (Figures 7 and 9) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | $C_L = 15pF$
$C_L = 50pF$ | | 5.6
8.0 | 9.0
12.0 | 1.0
1.0 | 11.0
14.0 | | | C _{IN} | Maximum Input
Capacitance | | | - | 6 | 10 | _ | 10 | pF | | | | | | | Typical | @ 25°C, \ | V _{CC} = 3.3 V | | | | C_{PD} | Power Dissipation Capac | itance (Note 5) | | | | 30 | | | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$. **TIMING REQUIREMENTS** Input $t_r = t_f = 3.0 \text{ ns}$ | | | | 1 | Γ _A = 25°C | ; | T _A = ≤ | 85°C | | |--------------------------------|---|--|-----|-----------------------|-----|---------------------------|------|------| | Symbol | Parameter | Test Conditions | Min | Тур | Max | Min | Max | Unit | | t _w | Minimum Pulse Width, Reset or Enable | V _{CC} = 2.7 V | 4.5 | _ | - | 5.0 | - | ns | | | (Figure 8) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 4.5 | _ | - | 5.0 | - | | | t _{su} | Minimum Setup Time, Address or Data to Enable | V _{CC} = 2.7 V | 4.0 | _ | - | 4.0 | - | ns | | | (Figure 8) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 3.0 | _ | _ | 3.0 | - | | | t _h | Minimum Hold Time, Enable to Address or Data | V _{CC} = 2.7 V | 2.0 | _ | _ | 2.0 | - | ns | | | (Figure 7 or 8) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2.0 | _ | - | 2.0 | - | | | t _{r,} t _f | Maximum Input, Rise and Fall Times | V _{CC} = 2.7 V | - | _ | 400 | - | 300 | ns | | | (Figure 5) | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | - | - | 300 | - | 300 | | Figure 5. Switching Waveform Figure 6. Switching Waveform Figure 7. Switching Waveform Figure 8. Switching Waveform Figure 9. Switching Waveform *Includes all probe and jig capacitance Figure 10. Test Circuit #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|------------------------|-----------------------| | MC74LVX259D | SOIC-16 | 48 Units / Rail | | MC74LVX259DG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC74LVX259DR2 | SOIC-16 | 2500 Tape & Reel | | MC74LVX259DR2G | SOIC-16
(Pb-Free) | 2500 Tape & Reel | | MC74LVX259DT | TSSOP-16* | 96 Units / Rail | | MC74LVX259DTR2 | TSSOP-16* | 2500 Tape & Reel | | MC74LVX259M | SOEIAJ-16 | 50 Units / Rail | | MC74LVX259MG | SOEIAJ-16
(Pb-Free) | 50 Units / Rail | | MC74LVX259MEL | SOEIAJ-16 | 2000 Tape & Reel | | MC74LVX259MELG | SOEIAJ-16
(Pb-Free) | 2000 Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb–Free. # EMBOSSED CARRIER DIMENSIONS (See Notes 6 and 7) | Tape
Size | B ₁
Max | D | D ₁ | E | F | К | Р | P ₀ | P ₂ | R | т | w | |--------------|-----------------------|------------------------------------|---------------------------|---------------------------------------|--|----------------------------|--|--------------------------------------|--------------------------------------|------------------|-------------------|---------------------------------------| | 8 mm | 4.35 mm
(0.179") | 1.5 mm
+ 0.1
-0.0
(0.059" | 1.0 mm
Min
(0.179") | 1.75 mm
±0.1
(0.069
±0.004") | 3.5 mm
±0.5
(1.38
±0.002") | 2.4 mm
Max
(0.094") | 4.0 mm
±0.10
(0.157
±0.004") | 4.0 mm
±0.1
(0.157
±0.004") | 2.0 mm
±0.1
(0.079
±0.004") | 25 mm
(0.98") | 0.6 mm
(0.024) | 8.3 mm
(0.327) | | 12 mm | 8.2 mm
(0.323") | +0.004
-0.0) | 1.5 mm
Min
(0.060) | | 5.5 mm
±0.5
(0.217
±0.002") | 6.4 mm
Max
(0.252") | 4.0 mm
±0.10
(0.157
±0.004")
8.0 mm
±0.10
(0.315
±0.004") | | | 30 mm
(1.18") | | 12.0 mm
±0.3
(0.470
±0.012") | | 16 mm | 12.1 mm
(0.476") | | | | 7.5 mm
±0.10
(0.295
±0.004") | 7.9 mm
Max
(0.311") | 4.0 mm
±0.10
(0.157
±0.004")
8.0 mm
±0.10
(0.315
±0.004")
12.0 mm
±0.10
(0.472
±0.004") | | | | | 16.3 mm
(0.642) | | 24 mm | 20.1 mm
(0.791") | | | | 11.5 mm
±0.10
(0.453
±0.004") | 11.9 mm
Max
(0.468") | 16.0 mm
±0.10
(0.63
±0.004") | | | | | 24.3 mm
(0.957) | ^{6.} Metric Dimensions Govern–English are in parentheses for reference only. ^{7.} A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity #### PACKAGE DIMENSIONS ### SOIC-16 **D SUFFIX** CASE 751B-05 **ISSUE J** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0 ° | 7° | 0° | 7° | | P | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | ## TSSOP-16 **DT SUFFIX** CASE 948F-01 **ISSUE A** #### NOTES: - JIES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT - EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE - DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | BSC | 0.252 | BSC | | | М | 0° | 8° | 0° | 8 ° | | # SOEIAJ-16 **M SUFFIX** CASE 966-01 ISSUE O #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. - PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIN | IETERS | INC | HES | |----------------|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | | 0.081 | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | С | 0.18 | 0.27 | 0.007 | 0.011 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | Е | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 | BSC | 0.050 | BSC | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | L | 0.50 | 0.85 | 0.020 | 0.033 | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10 ° | 0 ° | 10° | | Q_1 | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 0.78 | | 0.031 | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability, arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free LISA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.