

Compliance Engineering Ireland Ltd

CLONROSS, DUNSHAUGHLIN, CO. MEATH, IRELAND Tel: +353 1 8017000 Fax: +353 1 8256733

Page 1 of 38

Confidential Report

Client:	Test of:
VOX Power,	Nevo+600M/ Nevo+600ML
Vox Power Ltd	Nevo+600S/ Nevo+600SL
Unit 2	Power Supply Unit
Red Cow interchange estate	
Ballymount	
Dublin 22	To parts of:
	EN 55011: 2009 + A1: 2010
	EN 60601-1-2: 2007 (3 rd Edition)
	EN 60601-1-2: 2014 (4 th Edition)
	EN 61000-6-2: 2005,
	EN 61000-3-2: 2014 &
Attention: Mr. Brian Mc Donald	EN 61000-3-3: 2013

COPIES TO: Files

REPORT REF: 07E2138-4	TESTED BY: C Fee / G Monahan
DATE RECEIVED: March 2007	REPORT BY: C Fee / Monahan

ISSUE DATE: January 2017

SIGNATURE: John Mr. Anley

This report 07E2138-4 supersedes 07E2138-3.

Compliance Engineering Ireland Ltd Terms and Conditions

- 1. All quotations are submitted, orders are accepted and services supplied by Compliance Engineering Ireland Limited ("CEIL") subject to and upon the following express Terms and Conditions and all other Conditions, warranties and representations express or implied and statutory or otherwise are hereby excluded insofar as it is lawful to do so. No addition thereto or variation therefrom, contained or referred to in the Customers order form or otherwise effected shall apply unless specifically agreed in writing by a duly Authorised Officer of CEIL.
- 2. All orders including any based on a quotation previously submitted by CEIL are subject to acceptance in writing bv CEIL
- 3.(a) The prices set out in any quotation are based upon current costs and if there is any variation in the said costs between the date of the order or Contract and delivery of the final report CEIL shall be entitled to adjust prices to reflect such variations.
 - In the event of any suspension or variation of work arising from the Customer's instructions or lack of b) instructions the price set out in any quotation may be increased to cover any extra expense incurred by CEIL. All prices quoted are strictly NET. The customer shall where applicable, in addition to the relevant price, pay a
 - C) sum equal to the VAT chargeable in respect of the supply of services.
 - d) Accounts must be paid in full in advance or by way of an irrevocable letter of credit opened with a Bank approved by CEIL unless credit terms have been agreed by CEIL in which event accounts must be paid in full within 1 month from the date of the invoice. Time for payment is of the essence and the customer shall be liable to pay any outstanding amount from its due date until the date of payment at a rate of 2% per month or part thereof.
- 4. Any times quoted for the performance of services are to be treated as estimates only. CEIL shall not be liable in any manner whatsoever for failure to perform services within the time quoted, nor in such circumstances shall the Customer be entitled to cancel or terminate any order or contract.
- 5. The Customer is responsible for delivery to CEIL of test item(s) free of any duty, VAT, freight charges etc. unless otherwise agreed in writing by CEIL.
- The Customer shall be responsible for collecting non-perishable samples received for testing or laboratory work 6. upon completion of tests or laboratory work. If the Customer fails to collect such samples within 90 days from completion of the tests or laboratory work CEIL shall be entitled without further notice to dispose of the samples without liability.
- 7. No action or legal proceedings shall be taken (except in the case of willful neglect or default) against CEIL by reason of or arising out of any research, investigation, test or analyses or the publication of the results thereof in the name of CEIL. Under no circumstances shall CEIL be liable to the Customer for any indirect, incidental, special or consequential damages of any nature whatsoever (including but not limited to loss of use, revenue, profit, data or business opportunity) either based upon a claim or action in Contract or in Tort, indemnity or contribution, or otherwise arising out of the Contract or performance of services by CEIL even if CEIL has been advised of the possibility of such damages. The limit of CEIL's aggregate liability (whether in Contract, Tort, strict liability in Tort or by statute or otherwise) to the Customer or to any third party for non-performance by CEIL and for any and all other claims shall not in the aggregate exceed the fees paid by the Customer to CEIL. The Customer shall indemnify CEIL against all claims made against CEIL by any third party arising from this Contract.
- The copyright of any report is reserved to CEIL and it shall not be used either in whole or in part, for the purposes 8 of advertising, publicity, litigation or otherwise without the prior written consent of a duly Authorised Officer of CEIL where such consent is given the Customer shall comply with any conditions attaching to the consent. In conformance with laboratory accreditation requirements reports shall only be produced in full. The test results tabulated shall relate only to the defined item(s) tested.
- 9. If in CEIL's judgment, the customer's financial condition is such as could adversely affect the customers ability to perform any of its obligations or if the customer is in default in any of its obligations to CEIL whether hereunder or under any other Contract CEIL may terminate this Contract and/ or any other Contract between CEIL and the Customer, cancel any uncompleted order or suspend performance of services or the delivery of any reports and if it does so the Customer shall indemnify CEIL against all costs, charges, expense and damages incurred thereby.
- 10. CEIL will not be liable for non-performance in whole or in part of its obligations if this is attributable to any cause beyond the control of CEIL including (without limitation) any act of god, force majeure, war, civil war, disturbance, rebellion, embargo, strike, labour dispute, illness, flood, fire, sabotage or government action or regulation. If a Contract or order or any part thereof shall become impossible of performance or otherwise frustrated CEIL shall be entitled to reasonable remuneration for any work done up to the date of such impossibility or frustration, due credit being given for any amounts in respect of the Contract or order paid by the Customer.
- 11. CEI agrees to keep confidential all matters relating to this contract. tested, methods used, results of the work and contents of any reports. This includes but is not limited to products
- 12. These Conditions and the Contract to which the document relates shall in all respects be governed by and construed in accordance with the laws of the Republic of Ireland and in accordance with the Republic of Ireland shall have exclusive jurisdiction to determine any disputes arising therefrom unless otherwise agreed.
- 13. CEI is an accredited test laboratory and relevant test reports are denoted by use of the accreditation logo. When the accreditation logo is not used, the report is outside our scope of accreditation.

Executive Summary

The equipment under test fulfils the standards listed below

Standard	Test result
EN 60601-1-2: 2014 (4 th Edition) Title: Medical Electrical Equipment Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.	Pass
EN 60601-1-2: 2007 (3 rd Edition) Title: Medical Electrical Equipment Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.	Pass

Declaration of conformity

The intention of these tests is such that the following statement can be added to the Declaration of Conformity I.e. DoC

The NEVO+600 S/SL/M/ML products comply with the EMC directive 2014/30/EU, EMC directive.

Conformity was demonstrated by testing to and passing the limits set in the following standards.

EN 55011:2009 +A1:2010 Class B EN 61000-3-2:2014 EN 61000-3-3:2013 EN 60601-1-2:2007 (3rd Edition) EN 60601-1-2:2014 (4th Edition)

		aration – electromagnetic emissions
The Device is intended for use in the electromagnetic environment specified below. The customer or the user of the Device should assure that it is used in such an environment		
		invironment
Emissions test	Compliance Group 1	The Device must emit electromagnetic energy in
		order to perform its intended function. Nearby
CISPR 11		electronic equipment may be affected.
EN 55011: 2009 + A1: 2010		
RF Emissions	Class B	Class B equipment is equipment suitable for use in
		domestic establishments and in
CISPR 11 EN 55011: 2009 + A1:		establishments directly connected to a low voltage power supply network which supplies
2010		buildings used for domestic purposes. In the
		documentation for the user, a statement shall be
		included drawing attention to the fact that there may be potential difficulties in ensuring electromagnetic
		compatibility in other environments, due to conducted
		as well as radiated disturbances.
Harmonic emissions	Class A	
IEC 61000-3-2		
EN 61000-3-2: 2014		
Voltage fluctuations / flicker emissions	All Parameters	
nicker emissions		
IEC 61000-3-3		
EN 61000-3-3: 2013		

Table 201 – Guidance and manufacturer's declaration – electromagnetic emissions– for all equipment and systems

Guidance and manufacturer's declaration – electromagnetic immunity			
The Device is intended for use in the electromagnetic environment specified below. The customer or the user of the Device should assure that it is used in such an environment			
Immunity test	IEC 60601 Test level	Compliance level	Electromagnetic environment - guidance
Electrostatic discharge (ESD) IEC 61000-4-2 EN 61000-4-2: 2009	±8 kV contact ±15 kV air	±2, 4, 6 & 8 kV contact ±2, 4, 8 & 15 kV air	Floors should be wood, concrete or ceramic tile. If floors are covered with synthetic material, the relative humidity should be at least 30%.
Electrical fast transient/burst IEC 61000-4-4 EN 61000-4-4: 2012	±2kV for power supply lines ±1 kV for input/output lines	±2kV for power supply lines ±1kV for input/output lines	Mains power quality should be that of a typical commercial or hospital environment
Surge IEC 61000-4-5 EN 61000-4-5: 2006	±1kV differential mode ±2 kV common mode	±0.5 & 1kV differential mode ±0.5, 1 & 2 kV common mode	Mains power quality should be that of a typical commercial or hospital environment
Voltage dips, short interruptions and voltage variations on power supply input lines IEC 61000-4-11 EN 61000-4-11: 2004	<5 % Ut (>95 % dip in Ut) for 0.5 cycle @ 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 70 % Ut (30 % dip in Ut) for 25 cycles <5 % Ut (>95 % dip in Ut) for 5 sec <5 % Ut (>95 % dip in Ut) for 1 cycle 40 % Ut (>60 % dip in Ut) for 5 cycle	<5 % Ut (>95 % dip in Ut) for 0.5 cycle @ 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° 70 % Ut (30 % dip in Ut) for 25 cycles <5 % Ut (>95 % dip in Ut) for 5 sec <5 % Ut (>95 % dip in Ut) for 1 cycle 40 % Ut (>60 % dip in Ut) for 5 cycle	Mains power quality should be that of a typical commercial or hospital environment. If the user of the Device requires continued operation during power mains operation, it is recommended that the Device must be powered from an uninterruptible power supply or battery
Power frequency (50/60 Hz) magnetic field IEC 61000-4-8 EN 61000-4-8: 2010 Note: Ut is the a.c. mains	30 A/m	30 A/m	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment

Table 202 – Guidance and manufacturer's declaration – electromagnetic immunity – for all equipment and systems

			ctromagnetic immunity d below. The customer or the user of th	
Device should assure that it is used in such an environment				
Immunity test	IEC 60601 test level	Compliance	Electromagnetic environmen	
		level	- guidance	
			Portable and mobile RF communications equipment should be used no closer to any part of the EUT, including cables, than the recommended separation distance calculated from the equation applicable	
			to the frequency of the transmitter. Recommended separation distance	
Conducted RF	3 Vrms outside industrial, scientific and medical	6 Vrms	d = [1.17]√P	
	(ISM) and amateur radio bands. 6 Vrms in ISM and amateur radio bands	150 kHz to 80 MHz		
IEC 61000-4-6 EN 61000-4-6: 2014	150 kHz to 80 MHz			
Radiated RF	10 V/m	10 V/m	d = [1.17]√P80MHz to 800 MHz	
IEC 61000-4-3 EN 61000-4-3: 2006 + A1: 2008 + A2: 2010	80 MHz to 2.7 GHz	80 MHz to 2.7 GHz	d = [2.33]√P…800 MHz to 2.5GHz	
	27 V/m, 18 Hz PM 385 MHz	27 V/m, 18 Hz PM 385 MHz	Where P is the maximum output power rating of the transmitter in Watts (W)	
	28 V/m, 50 %18 Hz PM 450 MHz	28 V/m, 50 %18 Hz PM 450 MHz	according to the transmitter manufacturer and d is the recommended separation distance in metres (m)	
	9 V/m, 217 Hz PM 710 MHz	9 V/m, 217 Hz PM 710 MHz	Field strengths from fixed RF transmitters, as determined by an	
	9 V/m, 217 Hz PM 745 MHz	9 V/m, 217 Hz PM 745 MHz	electromagnetic site survey, ^a should b less than the compliance level in each frequency range. ^b	
	9 V/m, 217 Hz PM 780 MHz	9 V/m, 217 Hz PM 780 MHz	Interference may occur in the vicinity of equipment marked with the following	
	28V/m, 18 Hz PM 810 MHz	28V/m, 18 Hz PM 810 MHz	$\frac{symbol}{(((\bullet)))}$	
	28 V/m, 18 Hz PM 870 MHz	28 V/m, 18 Hz PM 870 MHz		
	28 V/m, 18 Hz PM 930 MHz	28 V/m, 18 Hz PM 930 MHz		
	28V/m, 217 Hz PM 1720 MHz	28V/m, 217 Hz PM 1720 MHz		
	28 V/m, 217 Hz PM 1845 MHz	28 V/m, 217 Hz PM 1845 MHz		

9 V/m, 217 Hz PM 5500 MHz 9 V/m, 217 Hz PM 5785 MHz	9 V/m, 217 Hz PM 5500 MHz 9 V/m, 217 Hz PM 5785 MHz	
9 V/m, 217 Hz PM 5500 MHz	5240 MHz 9 V/m. 217 Hz PM	
9V/m, 217 Hz PM 5240 MHz	2450 MHz 9V/m, 217 Hz PM	
27 V/m, 217 Hz PM 2450 MHz	1970 MHz 27 V/m, 217 Hz PM	
28 V/m, 217 Hz PM 1970 MHz	28 V/m, 217 Hz PM	

Note 1: At 80 MHz and 800 MHz, the higher frequency range applies

Note 2: These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

a Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which the EUT is used exceeds the applicable RF compliance level above, the EUT should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as re-orientating or relocating the EUT.

b Over the frequency range 150 kHz to 80 MHz, field strengths should be less than [V₁]V/m

Table 204 – Guidance and manufacturer's declaration – electromagnetic immunity – for equipment and systems that are not life-supporting

Recommended separation distances between portable and mobile RF communication equipment and the EUT

The Device is intended for use in an electromagnetic environment specified in Table 201. The customer or the user of the Device can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and the Device as recommended below, according to the maximum output power of the communications equipment.

Rated maximum	Separation dista	ance according to frequency	of transmitter
output power of	m		
transmitter W	150 kHz to 80 MHz	80 MHz to 800 MHz	800 MHz to 2.5GHz
	d = [1.17]√P	d = [1.17]√P	d = [2.33]√P
0.01	0.12	0.12	0.23
0.1	0.37	0.37	0.75
1	1.17	1.17	2.33
10	3.70	3.70	7.36
100	11.70	11.70	23.30

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in metres (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (w) according to the transmitter manufacturer.

NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

Table 206 – Recommended separation distances between portable and mobile RF communications equipment and the equipment and system – for equipment and systems that are not life supporting

CONTENTS

- Section 1: Equipment Under Test (E.U.T.)
- Section 2: Test Specification, Methods and Procedures
- Section 3: Deviations or Exclusions from the Test Specifications
- Section 4: Operation of E.U.T. During Testing
- Section 5: Results
- Section 6: Analysis of Test Results, Conclusions
- Appendix 1: Test Equipment Used
- Appendix 2: Test Configuration
- Appendix 3: Results
- Appendix 4: Advia Centaur results during testing
- Appendix 5: Results after changes to EUT

<u>1</u> Equipment Under Test (EUT)

1.1 Identification of EUT

Brand Name:	VOX Power
Description:	Modular 600W PSU
Model Number:	Nevo+600M/Nevo+600ML &
	Nevo+600s/Nevo+600SL

1.2 Description of EUT

The EUT was a modular 600W power supply unit.

1.3 Modifications

No Modifications.

1.4 Support Equipment List

Brand Name:	Array
Description:	Electronic Loads (4 of)
Model Number:	3710A

1.5 Date of Test

The tests were carried out on one sample of the EUT on the 14th of March and the 4th of October 2007.

Additional testing required to meet EN 60601-1-2: 2014 (4th Edition) & EN 55011 was carried out between the 5th of December 2016 & 17th of January 2017.

2 <u>Test Specification, Methods and Procedures</u>

2.1 Emissions

Emissions were assessed to the following standards:

EN 55011 Title:

Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement.

Fluctuating Harmonics

EN 61000-3-2 Title: Limits for harmonic current emissions (Equipment input current rating up to 16A per phase)

Flicker

EN 61000-3-3 Title:

Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current < 16A per phase and not subject to conditional connection

2.2 Apparatus and Methods:

Measuring apparatus used during tests was designed and built to the requirements of C.I.S.P.R. 16-1

2.3 Immunity

Immunity was assessed to the following standards:

EN 61000-6-2 Title: Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments

EN 60601-1-2: 4th Edition Title: Medical Electrical Equipment Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.

EN 60601-1-2: 3rd Edition Title: Medical Electrical Equipment Section 1.2: Collateral standard: Electromagnetic Compatibility – Requirements and tests.

EN 61000-4-3: 2006 +	Electromagnetic Compatibility (EMC)
A1:2008 + A2:2010	Part4: Testing and measurement techniques
	Section3: Radiated, radio-frequency, electromagnetic field
	immunity test
EN 61000-4-4: 2012	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section4: Electrical fast transient/burst immunity test
EN 61000-4-5: 2006	Electromagnetic compatibility (EMC)
	Part 4. Testing and measurement techniques.
	Section 5. Surge immunity test.
EN 61000-4-6: 2014	Electromagnetic compatibility
	Part 4. Testing and measurement techniques.
	Section 6. Immunity to conducted disturbances, induced by
	radio-frequency fields.
EN 61000-4-11: 2004	Electromagnetic compatibility (EMC)
	Part 4. Testing and measurement techniques.
	Section 11. Voltage Dips & Interruptions test
EN 61000-4-2: 2009	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section2: Electrostatic discharge immunity test
EN 61000-4-8: 2010	Electromagnetic Compatibility (EMC)
	Part4: Testing and measurement techniques
	Section4: Power frequency magnetic field immunity test

<u>3</u> Deviations or Exclusions from the Test Specifications

3.1 Deviations

. There were no deviations from the test specification.

3.2 Exclusions

There were no exclusions from the test specification.

4 Operation of EUT During Testing

4.1 **Operating Environment**

Supply Voltage: 230 Vac, 50 Hz

The following were the conditions at the time of immunity testing.

Temperature:	17-19°C
Humidity:	56-59%RH

4.2 **Operating Modes:**

The EUT was tested loaded at 450W.

5 <u>Results</u>

5.1 Conducted Emissions

Measurements of conducted emissions were carried out using the receiver analysis feature, which uses three detectors, peak, quasi peak and average. Using this mode the voltage emission spectrum was scanned in peak detection mode and emissions, which exceeded a sub range margin relevant to the respective limits, were further measured using the quasi peak and average detectors. At each such measurement point the live and neutral conductors were examined individually to determine the maximum. The receiver bandwidth was set to 10kHz. Appendix 3 shows the results.

5.1.1 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the conducted voltage test was ± 3.5 dB.

5.2 Radiated Emissions

Compliant measurements of radiated emissions were carried out in an Anechoic Chamber from 30 MHz to 1 GHz. The equipment and cable orientation were investigated to ensure that maximum emissions were obtained at critical frequencies. The antenna height was also adjusted through the range of 1m - 4m.

The receiver bandwidth was set to 120 kHz for frequencies between 30 MHz and 1 GHz. See Appendix 3 for results.

5.2.1 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the radiated emissions test was ± 5.3 dB (from 30 to 100 MHz), ± 4.7 dB (from 100 to 300 MHz) and ± 3.9 dB (from 300 to 1000 MHz

5.3 Immunity to Radiated, Radio Frequency Electromagnetic Fields

a) Radiated RF EM fields

Port:	Enclosure
Limit:	10 V/m (80% AM 1 kHz modulation)
Frequency range:	80-2700 MHz
Dwell time:	3 second dwell
Performance Criteria	A

The EUT was placed in the anechoic chamber.

The step sizes from 80-2700MHz were in 1% steps. The dwell time at each frequency was 3 seconds. The test level was maintained at over 10 V/m at all frequencies in accordance with EN 60601-1-2.

The distance of the antenna from the EUT was 2.2 metres. The tests were carried out with the antenna oriented in horizontal and vertical polarisations for each side of the EUT.

The EUT was deemed to comply in accordance with the manufacturer's specification.

Radiated Immunity Tests

Frequency	Modulation	Polarisation	Level	Result
MHz	Frequency	(V/H)	(V/m)	
80-2700 MHz	1 kHz	V and H	10	Complied

b) Proximity fields from RF wireless communications equipment

Port:	Enclosure
Dwell time:	3 second dwell
Performance Criteria	A

The EUT was placed in the anechoic chamber.

The testing was carried out on the spot frequencies as listed below. The dwell time at each frequency was at least 3 seconds.

A field sensor was placed in close proximity to the system. The tests were carried out with the antenna oriented in horizontal and vertical polarisations for each side of the EUT.

The EUT was deemed to comply with Performance Criteria A when tested in accordance with the manufacturer's specification.

Frequency	Modulation	Polarisation	Level	Result
MHz	Frequency	(V/H)	(V/m)	
385	18 Hz Pulse Modulation	V and H	27	Complied
450	50% 18 Hz Pulse Modulation	V and H	28	Complied
710	217 Hz Pulse Modulation	V and H	9	Complied
745	217 Hz Pulse Modulation	V and H	9	Complied
780	217 Hz Pulse Modulation	V and H	9	Complied
810	18 Hz Pulse Modulation	V and H	28	Complied
870	18 Hz Pulse Modulation	V and H	28	Complied
930	18 Hz Pulse Modulation	V and H	28	Complied
1720	217 Hz Pulse Modulation	V and H	28	Complied
1845	217 Hz Pulse Modulation	V and H	28	Complied
1970	217 Hz Pulse Modulation	V and H	28	Complied
2450	217 Hz Pulse Modulation	V and H	28	Complied
5240	217 Hz Pulse Modulation	V and H	9	Complied
5500	217 Hz Pulse Modulation	V and H	9	Complied
5785	217 Hz Pulse Modulation	V and H	9	Complied

Radiated Immunity Tests

5.4 Immunity to Conducted Radio Frequency Interference

Ports:	AC Mains
Basic Standard:	EN 61000-4-6
Performance Criterion:	A
Limit:	10 Vrms (80%AM 1kHz modulation)
Frequency range:	150 kHz to 80 MHz

The monitor was observed for any deviations from normal operating mode.

The current was injected on the mains cable of the EUT in common mode. The current probe was located at 0.1m from the ac port. Each surface of the EUT was more than 0.5m from other metal surfaces.

The test configuration used was the EM Clamp injection method. The system was calibrated to provide a current input level equivalent to an injected voltage level of 10 Vrms into a 150Ω system.

The EUT functioned as normal during the testing and was subsequently found to be operating satisfactorily.

The test configuration is shown in Appendix 2.

Port	Disturbance type	Result
AC Mains	10 Vrms, 150 kHz - 80 MHz	Complied

Results of Conducted Immunity testing

5.5 Electrical Fast Transient Test

Ports:	AC Mains
Basic Standard:	EN 61000-4-4
Limit:	\pm 0.5, \pm 1 & \pm 2 kV mains power ports
	$\pm 0.5 \& \pm 1 \text{ kV}$ signal port
Repetition Rate:	5 kHz & 100 kHz
	± 0.5 & ± 1 kV signal port

Positive and negative fast transient discharges of amplitude ± 0.5 , ± 1 & ± 2 kV were applied to the mains input & ± 0.5 & 1 kV to the signal port in accordance with the requirements of EN 61000-4-4.

The test was carried out at 230 Vac

.

The EUT functioned as normal during and after the testing.

Test port	Level	Result
Live	±0.5, ±1 & ±2 kV	Complied
Neutral	±0.5, ±1 & ±2 kV	Complied
Earth	±0.5, ±1 & ±2 kV	Complied
L-N-E	±0.5, ±1 & ±2 kV	Complied

Results of Fast transient testing

5.6 Surge Immunity Test

Ports:	AC Mains
Basic Standard:	EN 61000-4-5
Performance Criterion:	A
Limit, Line to Line:	\pm 0.5 kV & \pm 1 kV
Line to Earth:	\pm 0.5 kV, \pm 1 kV & \pm 2 kV

Positive and negative surges were applied to each of the mains inputs in accordance with the requirements of EN 61000-4-5.

Surges were applied to the mains conductors coupled line to line.

The tests were carried out with positive and negative surges. The test was repeated every 60 seconds for a total of 5 times in each polarity and in all coupling modes. The tests were performed at 0° , 90° , 180° and 270° phases for both polarities.

The test was carried out at 230 Vac

The EUT functioned as normal during and after the testing.

Port	Mode of conduction	Disturbance level	Result
PSU	L-N	\pm 0.5 kV & \pm 1 kV	Complied
PSU	L-E	± 0.5 kV, ±1 kV & ±2 kV	Complied
PSU	N-E	± 0.5 kV, ±1 kV & ±2 kV	Complied

Results of Surge Immunity testing

5.7 Voltage Dips and Interruptions

Ports: Basic Standard:	AC Mains EN 61000-4-11
Dips:	Mains port - > 95% dip 0.5 cycles At 0°, 45°, 90°, 135°, 180°, 225°, 270° & 315° Mains port - >95% dip 1 cycle Mains port – 30% dip 25 cycles Mains port – 60% dip 10 cycles
Interruption:	Mains port – Interruption 250 cycles
Performance Criteria	A

Dips and interruptions were applied to the mains input in accordance with the requirements of EN 61000-4-11.

The test was carried out at 100 & 240 Vac

Data is recorded for the duration of the test and analysed after the test.

The EUT continued to operate throughout the duration of the test although with some degradation in performance. Degradation C was a momentary drop in output voltage to 0V.

Port	Disturbance type	Result
Mains supply	>95% dip 0.5 cycles	Complied
240 Vac	At 0°, 45°, 90°, 135°, 180°, 225°, 270° & 315°	А
Mains supply	>95% dip 1 cycles	Complied
240 Vac		А
Mains supply	30% dip 25 cycles	Complied
240 Vac		А
Mains supply	60% dip 10 cycles	Complied
240 Vac		А
Mains supply	>95% interruption 250 cycles	Complied
240 Vac		С

5.8 Electrostatic Discharge Test

Port:	Enclosure
Basic Standard:	EN 61000-4-2
Limit:	± 2 , ± 4 & ± 8 kV contact discharges
	$\pm 2, \pm 4, \pm 8 \& \pm 15 \text{ kV}$ air discharges

Performance Criteria A

The ESD generator contained a discharge capacitor of 150pF and resistor of 330Ω in accordance with the requirements of EN 61000-4-2. The tests were carried out using both positive and negative discharges. Discharges were applied to the EUT to comply with EN 61000-4-2.

Only parts of the equipment that can be touched during normal operation were subjected to discharges.

Air discharges of ± 2 , ± 4 , ± 8 & ± 15 kV, were applied to different points on the enclosure. Contact discharges of ± 2 , ± 4 & ± 8 kV, were applied to conductive points on the enclosure, in addition to the horizontal and vertical coupling planes. 10 discharges of each polarity were applied at each location.

The EUT while powered complied with Performance Criteria A during and after the application of discharges. Discharges were applied to chassis screws and chassis only.

ESD Discharge Points

5.9 Fluctuating Harmonics

Ports:	AC power supply
Basic Standard:	EN 61000-3-2
Class:	А

The Fluctuating Harmonics test measures the current at each of the harmonic frequencies from the second harmonic up to the fortieth harmonic.

A 50 Hertz, 230 Volt AC source was used to power the unit in compliance with EN 61000-3-2The current harmonic levels were measured and compared with the limit levels for Class A waveforms.

See Appendix 3 for results.

5.10 Flicker

Ports:	AC power supply
Basic Standard:	EN 61000-3-3

The EUT was connected to an impedance network and a 50 Hertz, 230 Volt AC source to power the unit in compliance with EN 61000-3-3

Measurements were made over a two-hour period as required to measure Plt.

See Appendix 3 for results.

5.11 Power Frequency Magnetic Field Immunity Test

Basic Standard:	EN 61000-4-8
Level:	30 A/m (50 Hz & 60 Hz)
Performance Criteria	A

The unit was placed on a non-conductive table of 0.8-meter height from the ground plane.

The current level was set to 30 A/m and the unit was centred in the middle of the loop. The EUT was tested with the loop in both horizontal and vertical positions for one minute. The test was carried out at 230 Vac. The test was performed at 50 & 60 Hz.

The level of any interference seen was checked to ensure it remained within specified limits.

The EUT operated as normal for the duration of the test.

6 Analysis of Test Results, Conclusions

6.1 Measurement Uncertainties

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4 with a confidence level of 95%.

6.2 Radiated Emissions to EN 55022.

The E.U.T. complied with the radiated emission specification of EN 55022 class B with a ferrite fitted as outlined in Section 1.3.

6.3 Conducted Emissions to EN 55022.

The E.U.T. complied with the EN 55022 Class B conducted emission specification by a margin of greater than 1 dB (Ave detector)

6.4 Immunity.

The EUT complied with the immunity tests carried out to demonstrate compliance with EN 61000-6-2 & EN 60601-1-2 when tested in accordance with the manufacturers specifications.

6.5 Steady State and Fluctuating Harmonics

The E.U.T. complied with the tests carried out to demonstrate compliance with EN 61000-3-2.

6.6 Flicker

The E.U.T. complied with the tests carried out to demonstrate compliance with EN 61000-3-3.

Appendix 1 Test Equipment Used:

Instrument	Mftr.	Model	Serial No.		
Measuring Receiver	Rohde and Schwarz	ESVS30	607		
Bilog Antenna	CEI	699	605		
Signal Generator	Marconi	2022D	119164/021		
Power Amplifier	Amplifier Research	150L	12396		
Power Amplifier	Milmega	ASM1000-75R	981440		
Field Monitor System	Amplifier Research	FM2000	13142		
Field Probe	Amplifier Research	FP2000	13130		
Bilog Antenna	Schaffner	CBL6111C	329		
Transient Simulator	EMC Partner	Tema 4000	921		
Open Area Test Site	CEI	-	666		
EM Clamp	Schaffner	KEMZ 801	19810		
Universal Power Analyser	Voltech	PM3000A	AM60 / 5432		
Directional Coupler	Werlatone Inc.	C2630	3206		
AC Power Source	Elgar	1751SL	14665		
Function Generator	Hewlett Packard	3325A	675		
Magnetic Loop	CEI	-	-		
Signal Generator	Rohde & Schwarz	SMH	883739 /044		
Electrostatic Discharge Simulator	Schaffner	NSG432	00978		
Positive Discharge Adapter	Schaffner	402 628	9318		
Negative Discharge Adapter	Schaffner	402 645	9325		
AC Power Source	California Instruments	3001ix	-		

Appendix 2 Test Configuration

Figure 1: Conducted Emissions Test Set up

Figure 2: Radiated Emissions Test Set up

Figure 3: Radiated Immunity Test Set up

Figure 4: Fast Transients & Surges Test Set up

Figure 5: Voltage Dips & Surge Test Set up

Figure 6: Conducted Immunity Test Set up

Figure 7: ESD Test Set up

Figure 8: Magnetic Field Set up

Appendix 3 Test Results

Harmonic	Limit 1	Limit 2	Average Reading	Max Reading	Pass/FAIL
2	1.080000A	1.620000A	3.645091mA	3.749847mA	N/A
3 2.30000A		3.450000A	525.8662mA	528.7933mA	Pass
4	430.0000mA	645.0000mA	1.425351mA	2.333760mA	N/A
5	1.140000A	1.710000A	71.05048mA	71.88034mA	Pass
6	300.0000mA	450.0000mA	1.250003mA	1.249999mA	N/A
7	770.0000mA	1.155000A	90.32322mA	91.12167mA	Pass
8	230.0000mA	345.0000mA	1.250003mA	1.249999mA	N/A
9	400.000mA	600.000mA	25.94472mA	26.25036mA	Pass
10	184.0000mA	276.0000mA	1.250003mA	1.249999mA	N/A
11	330.0000mA	495.0000mA	21.23339mA	21.25024mA	Pass
12	153.3333mA	230.0000mA	1.250003mA	1.249999mA	N/A
13	210.0000mA	315.0000mA	21.29943mA	21.68369mA	Pass
14	131.4285mA	197.1428mA	1.250003mA	1.249999mA	N/A
15	150.0000mA	225.0000mA	16.28383mA	16.59631mA	Pass
16	115.0000mA	172.5000mA	1.250003mA	1.249999mA	N/A
17	132.3529mA	198.5294mA	13.54691mA	13.74959mA	N/A
18	102.2222mA	153.3333mA	1.250003mA	1.249999mA	N/A
19	118.4210mA	177.6315mA	6.866032mA	7.730126mA	N/A
20	92.00000mA	138.0000mA	1.250003mA	1.249999mA	N/A
21	107.1428mA	160.7142mA	4.012334mA	5.076766mA	N/A
22	83.63636mA	125.4545mA	1.250003mA	1.249999mA	N/A
23	97.82608mA	146.7391mA	11.29812mA	11.66844mA	N/A
24	76.66667mA	115.0000mA	1.250003mA	1.249999mA	N/A
25	90.0000mA	135.0000mA	11.67625mA	12.63260mA	N/A
26	70.76923mA	106.1538mA	1.250003mA	1.249999mA	N/A
27	83.33333mA	125.0000mA	4.959677mA	6.086349mA	N/A
28	65.71428mA	98.57142mA	1.268743mA	1.466155mA	N/A
29	77.58620mA	116.3793mA	15.05896mA	15.85531mA	Pass
30	61.33333mA	92.00000mA	1.250003mA	1.249999mA	N/A
31	72.58064mA	108.8709mA	14.04663mA	14.69779mA	N/A
32	57.50000mA	86.25000mA	1.263819mA	1.445293mA	N/A
33	68.18182mA	102.2727mA	11.34616mA	12.12549mA	N/A
34	54.11764mA	81.17647mA	1.250003mA	1.249999mA	N/A
35	64.28572mA	96.42857mA	11.30149mA	11.81411mA	N/A
36	51.11111mA	76.66667mA	1.291474mA	1.752734mA	N/A
37	60.81081mA	91.21622mA	6.168393mA	6.391883mA	N/A
38	48.42105mA	72.63158mA	1.252744mA	1.379877mA	N/A
39	57.69230mA	86.53846mA	8.698442mA	9.030342mA	N/A
40	46.0000mA	69.0000mA	1.251376mA	1.373112mA	N/A

Table 1: Fluctuating Harmonics (230V, 50 Hz)

N/A in Pass / FAIL column: Harmonic current below 0.6% of rated current or 5mA, whichever is greater, are disregarded.

	Pst	dc(%)	dmax(%)	3.3
Limit	1	3.3	4	500
Reading 1	0.071	0.015	0.07	0
Reading 2	0.071	0.015	0.07	0
Reading 3	0.071	0.015	0.07	0
Reading 4	0.071	0.015	0.07	0
Reading 5	0.071	0.015	0.063	0
Reading 6	0.071	0.015	0.063	0
Reading 7	0.071	0.015	0.063	0
Reading 8	0.071	0.015	0.063	0
Reading 9	0.071	0.015	0.07	0
Reading 10	0.071	0.015	0.063	0
Reading 11	0.071	0.015	0.063	0
Reading 12	0.071	0.021	0.063	0

Table 2: Flicker Test Results (230V, 50 Hz)

Figure 1: Conducted Emissions (live, 230V, 50Hz)

Figure 2: Conducted Emissions (neutral, 230V, 50Hz)

17. Jan 17 11:26

	ettings (1 F	0,		Rec	eiver	Settings							
Start	Stop		IF BW C		M-Tin	ne Atten Prea	amp Opf	Rge					
30M	1000M	120k	120k	PK	5ms	0dBLD OFF	= 60dB						
								Trans	duce	er No. S	Start		Name
								1	9	20M	1000N		OCAB
									21	30M	1000N	/ BIL	LOG889

17. Jan 17 11:43

Figure 4: Radiated Emissions, Vertical Scan (Class B)

Frequency MHz	QP Level dBuV/m	EN55022 Limit dbuV/m	Antenna Polarity	Antenna Height (m)	Pass / Fail
30.1980	21.0	30	Н	3.5	Pass
42.8800	20.9	30	V	1.5	Pass
70.1000	19.7	30	V	1	Pass
134.1700	22.8	30	Н	4	Pass
148.6420	21.0	30	V	1	Pass

Table 3

Radiated Emissions 30MHz -1GHz, Class B Limits– Anechoic Chamber at 10metres