



## Data brief

# 40 A 1200 V automotive grade thyristor (SCR)



Features

- AEC-Q101 qualified
- High junction temperature: 150 °C
- AC off state voltage: +/- 1200 V
- Nominal on-state RMS current: 40 A<sub>RMS</sub>
- High EFT noise immunity: 1000 V/µs
- Max. gate triggering current: 50 mA
- D<sup>2</sup>PAK HV creepage distance (anode to cathode):
  - With top coating: 5.38 mm min.
  - Without top coating: 3.48 mm min.
- ECOPACK2 compliant component

## **Applications**

- On board charger
- Capacitor discharge
- Overvoltage crowbar protection
- Power supplies
- AC switches
- Solid state relays

# Description

The TN4050HP-12G2YTR is an automotive grade SCR thyristor designed for applications such as automotive on board and stationary battery chargers.

This SCR thyristor, rated for a 40 A RMS power switching, offers superior performances in peak voltage robustness up to 400 V sine wave pulse. Its key features allow the design of functions such as a 56 A RMS AC switch and a 50 V ACDC controlled rectifier-bridge.

The TN4050HP-12G2YTR is available in D<sup>2</sup>PAK HV surface mount package, ideal for automatic assembly lines.

D<sup>2</sup>PAK HV package offers increased creepage distance of 5.38 mm, simplifying design conformity with insulation coordination standards such as IEC60664-1 and UL-840.

| TN4050HP-12G2YTR                   |        |  |  |  |  |
|------------------------------------|--------|--|--|--|--|
| Product summary                    |        |  |  |  |  |
| I <sub>T(RMS)</sub>                | 40 A   |  |  |  |  |
| V <sub>DRM</sub> /V <sub>RRM</sub> | 1200 V |  |  |  |  |
| V <sub>DSM</sub> /V <sub>RSM</sub> | 1400 V |  |  |  |  |
| I <sub>GT</sub>                    | 50 mA  |  |  |  |  |

T<sub>i</sub>

Product status

-40 to 150 °C

# 1 Characteristics

57

| Symbol                              | Parameter                                                                                                                                                                                                                       | Value                  | Unit                           |             |                  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------|-------------|------------------|
| I <sub>T(RMS)</sub>                 | RMS on-state current (180 ° conduction angle) $T_{\rm C}$ = 135 °C                                                                                                                                                              |                        |                                |             | _                |
| I <sub>T(AV)</sub>                  | Average on-state current (180 ° conduction angle)                                                                                                                                                                               |                        | 1C - 135 C                     | 25          | A                |
| <b>I</b>                            | $t_p = \delta$                                                                                                                                                                                                                  |                        | T <sub>i</sub> initial = 25 °C | 440         | ^                |
| I <sub>TSM</sub>                    | Non repetitive surge peak on-state current, $V_R = 0 V$                                                                                                                                                                         | t <sub>p</sub> = 10 ms | Tjillillar = 25°C              | 400         | A                |
| l <sup>2</sup> t                    | I <sup>2</sup> t value for fusing                                                                                                                                                                                               | t <sub>p</sub> = 10 ms | T <sub>j</sub> = 25 °C         | 800         | A <sup>2</sup> s |
| dl/dt                               | $ \begin{array}{l} \mbox{Critical rate of rise of on-state current,} \\ \mbox{I}_G = 2 \ x \ \mbox{I}_{GT} \ , \ tr \leq 100 \ ns \end{array} \qquad f = 50 \ \mbox{Hz} \qquad T_j = 150 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ |                        | 200                            | A/µs        |                  |
| V <sub>DRM</sub> / V <sub>RRM</sub> | Repetitive off-state voltage $T_j = 150 \text{ °C}$                                                                                                                                                                             |                        |                                | 1200        | V                |
| V <sub>DSM</sub> / V <sub>RSM</sub> | Non repetitive surge peak off-state voltage                                                                                                                                                                                     | t <sub>p</sub> = 10 ms | T <sub>j</sub> = 25 °C         | 1400        | V                |
| V <sub>GM</sub>                     | Peak forward gate voltage                                                                                                                                                                                                       | t <sub>p</sub> = 20 μs | T <sub>j</sub> = 150 °C        | 10          | V                |
| I <sub>GM</sub>                     | Peak forward gate current                                                                                                                                                                                                       | t <sub>p</sub> = 20 μs | T <sub>j</sub> = 150 °C        | 8           | Α                |
| V <sub>RGM</sub>                    | Maximum peak reverse gate voltage $T_j = 25 \degree C$                                                                                                                                                                          |                        |                                |             | V                |
| P <sub>G(AV)</sub>                  | Average gate power dissipation $T_j = 150 \text{ °C}$                                                                                                                                                                           |                        |                                | 1           | W                |
| T <sub>stg</sub>                    | Storage junction temperature range                                                                                                                                                                                              |                        |                                |             | °C               |
| Tj                                  | Operating junction temperature                                                                                                                                                                                                  |                        |                                | -40 to +150 | °C               |

# Table 2. Electrical characteristics (T<sub>j</sub> = 25 °C unless otherwise specified)

| Symbol          | Test Condition                                                       |                                         | Value | Unit |        |
|-----------------|----------------------------------------------------------------------|-----------------------------------------|-------|------|--------|
| ler             |                                                                      |                                         | Min.  | 10   | mA     |
| 'GI             | $V_{\text{GT}} = 12 \text{ V}, \text{ R}_{\text{L}} = 33 \Omega$     |                                         | Max.  | 50   | - IIIA |
| V <sub>GT</sub> |                                                                      |                                         | Max.  | 1.3  | V      |
| V <sub>GD</sub> | $V_D$ = 800 V, R <sub>L</sub> = 3.3 $\Omega$ T <sub>j</sub> = 150 °C |                                         | Min.  | 0.2  | V      |
| I <sub>H</sub>  | I <sub>T</sub> = 500 mA, gate open                                   |                                         | Max.  | 100  | mA     |
| ١L              | I <sub>G</sub> = 1.2 x I <sub>GT</sub>                               |                                         | Max.  | 125  | mA     |
| dV/dt           | V <sub>D</sub> = 800 V, gate open                                    | $V_D$ = 800 V, gate open $T_j$ = 150 °C |       | 1000 | V/µs   |

## Table 3. Timing Parameters

| Symbol          | Test Condition                                                                                                                                                                                                              | Value                   | Unit |     |    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|-----|----|
| t <sub>gt</sub> | $I_T$ = 80 A , $V_D$ = 800 V, $I_G$ = 100 mA, $dI_G/dt$ = 0.2 A/µs Typ.                                                                                                                                                     |                         |      |     | μs |
| tq              | $I_{TM} = 25 \text{ A}, \text{ V}_{D} = 800 \text{ V}, \text{ d}I_{T}/\text{d}t = 10 \text{ A}/\mu\text{s},$ $V_{R} = 75 \text{ V}, \text{ d}V_{D}/\text{d}t = 20 \text{ V}/\mu\text{s}, \text{ t}_{p} = 100 \ \mu\text{s}$ | T <sub>j</sub> = 150 °C | Тур. | 150 | μs |

#### **Table 4. Static Characteristics**

| Symbol                             | Test Conditions                                 |                         |      | Value | Unit |
|------------------------------------|-------------------------------------------------|-------------------------|------|-------|------|
| V <sub>TM</sub>                    | I <sub>TM</sub> = 80 A, t <sub>P</sub> = 380 μs | T <sub>j</sub> = 25 °C  | Max. | 1.55  | V    |
| V <sub>TO</sub>                    | On-state threshold voltage                      | T <sub>j</sub> = 150 °C | Max. | 0.83  | V    |
| R <sub>D</sub>                     | On-state dynamic resistance                     | T <sub>j</sub> = 150 °C | Max. | 10    | mΩ   |
|                                    |                                                 | T <sub>j</sub> = 25 °C  |      | 5     | μA   |
| I <sub>DRM</sub> /I <sub>RRM</sub> | $V_D = V_{DRM}, V_R = V_{RRM}$                  | T <sub>j</sub> = 125 °C | Max. | 0.9   | mA   |
|                                    |                                                 | T <sub>j</sub> = 150 °C | -    | 6     | mA   |
| I <sub>DSM</sub> /I <sub>RSM</sub> | $V_D = V_{DSM}, V_R = V_{RSM}$                  | T <sub>j</sub> = 25 °C  | Max. | 10    | μA   |

### Table 5. Thermal parameters

| Symbol               | Parameter                                                                          |      | Value | Unit |
|----------------------|------------------------------------------------------------------------------------|------|-------|------|
| R <sub>th(j-c)</sub> | Junction to case (DC)                                                              | Max. | 0.4   | °C/W |
| R <sub>th(j-a)</sub> | Junction to ambient (DC, $S_{CU}$ = 2.5 cm², $\mathrm{e}_{CU}$ = 70 $\mu\text{m})$ | Тур. | 45    | C/W  |

# 2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

## 2.1 D<sup>2</sup>PAK high voltage package information

• Epoxy meets UL94, V0

#### Figure 1. D<sup>2</sup>PAK high voltage package outline









|      | Dimensions  |       |        |        |  |
|------|-------------|-------|--------|--------|--|
| Ref. | Millimeters | Inc   | hes    |        |  |
|      | Min.        | Max.  | Min.   | Max.   |  |
| А    | 4.30        | 4.70  | 0.1692 | 0.1851 |  |
| A1   | 0.03        | 0.20  | 0.0011 | 0.0079 |  |
| С    | 1.17        | 1.37  | 0.0460 | 0.0540 |  |
| D    | 8.95        | 9.35  | 0.3523 | 0.3682 |  |
| е    | 4.98        | 5.18  | 0.1960 | 0.2040 |  |
| E    | 0.50        | 0.90  | 0.0196 | 0.0355 |  |
| F    | 0.78        | 0.85  | 0.0307 | 0.0335 |  |
| F2   | 1.14        | 1.70  | 0.0448 | 0.0670 |  |
| Н    | 10.00       | 10.40 | 0.3937 | 0.4095 |  |
| H1   | 7.40        | 7.80  | 0.2913 | 0.3071 |  |
| J1   | 2.49        | 2.69  | 0.0980 | 0.1060 |  |
| L    | 15.30       | 15.80 | 0.6023 | 0.6221 |  |
| L1   | 1.27        | 1.40  | 0.0500 | 0.0552 |  |
| L2   | 4.93        | 5.23  | 0.1940 | 0.2060 |  |
| L3   | 6.85        | 7.25  | 0.2696 | 0.2855 |  |
| L4   | 1.50        | 1.7   | 0.0590 | 0.0670 |  |
| М    | 2.60        | 2.9   | 0.1023 | 0.1142 |  |
| R    | 0.20        | 0.60  | 0.0078 | 0.0237 |  |
| V    | 0°          | 8°    | 0°     | 8°     |  |

### Table 6. D<sup>2</sup>PAK high voltage package mechanical data

#### Figure 2. D<sup>2</sup>PAK high voltage footprint in mm



Note:

For package and tape orientation, reel and inner box dimensions and tape outline please check TN1173.



### 2.1.1 Creepage distance between anode and cathode

#### Table 7. Creepage distance between anode and cathode

| Symbol             | Parameter                                                        |                 |      |    |
|--------------------|------------------------------------------------------------------|-----------------|------|----|
| Cd <sub>K-A1</sub> | Minimum creepage distance between K and A1 (with top coating)    |                 | 5.38 |    |
| Cd <sub>K-A2</sub> | Minimum creepage distance between K and A2 (without top coating) | ut top coating) |      | mm |

Note:

## D<sup>2</sup>PAK HV creepage distance (anode to cathode) = 5.38 mm min. (refer to IEC 60664-1)

### Figure 3. Creepage with top coating

Creepage



Minimum distance between K & A1 = 5.38 mm (with top coating)

#### Figure 4. Creepage without top coating

Creepage



Minimum distance between K & A2 = 3.48 mm (without top coating)

# **3** Ordering information

57

#### Figure 5. Ordering information scheme



#### Table 8. Ordering information

| Order code       | Marking    | Package               | Weight | Base qty. | Delivery mode     |
|------------------|------------|-----------------------|--------|-----------|-------------------|
| TN4050HP-12G2YTR | TN40P12YB2 | D <sup>2</sup> PAK HV | 1.38 g | 1000      | Tape and reel 13" |

# **Revision history**

| Date        | Revision | Changes                                                          |  |
|-------------|----------|------------------------------------------------------------------|--|
| 20-Jul-2021 | 1        | Initial release.                                                 |  |
|             |          | Updated Features and Description on cover page.                  |  |
| 20-Jul-2021 | 2        | Updated Table 4.                                                 |  |
|             |          | Added Section 2.1.1 Creepage distance between anode and cathode. |  |

### Table 9. Document revision history

#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved