

GangPro-CC

Flash Gang Programmer for the CC series devices

User’s Manual
Software version 2.10

 PM025A01 Rev.6

 October-06-2012

Elprotronic Inc.

16 Crossroads Drive

Richmond Hill,

Ontario, L4E-5C9

CANADA

Web site: www.elprotronic.com

E-mail: info@elprotronic.com

Fax: 905-780-2414

Voice: 905-780-5789

Copyright © Elprotronic Inc. All rights reserved.

Disclaimer:

No part of this document may be reproduced without the prior written consent of Elprotronic Inc.

The information in this document is subject to change without notice and does not represent a

commitment on any part of Elprotronic Inc. While the information contained herein is assumed to

be accurate, Elprotronic Inc. assumes no responsibility for any errors or omissions.

In no event shall Elprotronic Inc, its employees or authors of this document be liable for special,

direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claims for lost

profits, fees, or expenses of any nature or kind.

The software described in this document is furnished under a licence and may only be used or copied

in accordance with the terms of such a licence.

Disclaimer of warranties: You agree that Elprotronic Inc. has made no express warranties to You

regarding the software, hardware, firmware and related documentation. The software, hardware,

firmware and related documentation being provided to You “AS IS” without warranty or support

of any kind. Elprotronic Inc. disclaims all warranties with regard to the software, express or implied,

including, without limitation, any implied warranties of fitness for a particular purpose,

merchantability, merchantable quality or noninfringement of third-party rights.

Limit of liability: In no event will Elprotronic Inc. be liable to you for any loss of use, interruption

of business, or any direct, indirect, special incidental or consequential damages of any kind

(including lost profits) regardless of the form of action whether in contract, tort (including

negligence), strict product liability or otherwise, even if Elprotronic Inc. has been advised of the

possibility of such damages.

2

END USER LICENSE AGREEMENT

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE AND

THE ASSOCIATED HARDWARE. ELPROTRONIC INC. AND/OR ITS SUBSIDIARIES

(“ELPROTRONIC”) IS WILLING TO LICENSE THE SOFTWARE TO YOU AS AN

INDIVIDUAL, THE COMPANY, OR LEGAL ENTITY THAT WILL BE USING THE

SOFTWARE (REFERENCED BELOW AS “YOU” OR “YOUR”) ONLY ON THE CONDITION

THAT YOU AGREE TO ALL TERMS OF THIS LICENSE AGREEMENT. THIS IS A LEGAL

AND ENFORCABLE CONTRACT BETWEEN YOU AND ELPROTRONIC. BY OPENING THIS

PACKAGE, BREAKING THE SEAL, CLICKING “I AGREE” BUTTON OR OTHERWISE

INDICATING ASSENT ELECTRONICALLY, OR LOADING THE SOFTWARE YOU AGREE

TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO

THESE TERMS AND CONDITIONS, CLICK ON THE “I DO NOT AGREE” BUTTON OR

OTHERWISE INDICATE REFUSAL, MAKE NO FURTHER USE OF THE FULL PRODUCT

AND RETURN IT WITH THE PROOF OF PURCHASE TO THE DEALER FROM WHOM IT

WAS ACQUIRED WITHIN THIRTY (30) DAYS OF PURCHASE AND YOUR MONEY WILL

BE REFUNDED.

1. License.

The software, firmware and related documentation (collectively the “Product”) is the property of

Elprotronic or its licensors and is protected by copyright law. While Elprotronic continues to own

the Product, You will have certain rights to use the Product after Your acceptance of this license.

This license governs any releases, revisions, or enhancements to the Product that Elprotronic may

furnish to You. Your rights and obligations with respect to the use of this Product are as follows:

YOU MAY:

A. use this Product on many computers;

B. make one copy of the software for archival purposes, or copy the software onto the hard disk

of Your computer and retain the original for archival purposes;

C. use the software on a network

YOU MAY NOT:

A. sublicense, reverse engineer, decompile, disassemble, modify, translate, make any attempt

to discover the Source Code of the Product; or create derivative works from the Product;

B. redistribute, in whole or in part, any part of the software component of this Product;

3

C. use this software with a programming adapter (hardware) that is not a product of

Elprotronic Inc.

2. Copyright

All rights, title, and copyrights in and to the Product and any copies of the Product are owned by

Elprotronic. The Product is protected by copyright laws and international treaty provisions.

Therefore, you must treat the Product like any other copyrighted material.

3. Limitation of liability.

In no event shall Elprotronic be liable to you for any loss of use, interruption of business, or any

direct, indirect, special, incidental or consequential damages of any kind (including lost profits)

regardless of the form of action whether in contract, tort (including negligence), strict product

liability or otherwise, even if Elprotronic has been advised of the possibility of such damages.

4. DISCLAIMER OF WARRANTIES.

You agree that Elprotronic has made no express warranties to You regarding the software, hardware,

firmware and related documentation. The software, hardware, firmware and related documentation

being provided to You “AS IS” without warranty or support of any kind. Elprotronic disclaims all

warranties with regard to the software and hardware, express or implied, including, without

limitation, any implied warranties of fitness for a particular purpose, merchantability, merchantable

quality or noninfringement of third-party rights.

4

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital devices,

pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful

interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy

and, if not installed and used in accordance with the instruction manual, may cause harmful interference to

radio communications. However, there is no guarantee that interference will not occur in a particular

installation. If this equipment does cause harmful interference to radio or television reception, which can be

determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one

of more of the following measures:

* Reorient or relocate the receiving antenna

* Increase the separation between the equipment and receiver

* Connect the equipment into an outlet on a circuit different from that to which the receiver is connected

* Consult the dealer or an experienced radio/TV technician for help.

Warning: Changes or modifications not expressly approved by Elprotronic Inc. could void the user’s authority

to operate the equipment.

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions:

(1) this device may not cause harmful interference and

(2) this device must accept any interference received,

 including interference that may cause undesired

 operation.

This Class B digital apparatus meets all requirements of the Canadian

Interference-Causing Equipment Regulations.

Cet appereil numerique de la classe B respecte toutes les exigences du

Reglement sur le material brouilleur du Canada.

5

Table of Contents

1. Introduction . 9

2. Features . 10

2.1 Key features . 10

2.2 Custom features . 11

2.2.1 Encrypted Project option . 11

2.2.2 Script file . 11

2.2.3 DLLs . 11

3. Getting Started . 13

3.1 Software Installation . 13

3.1.1 Driver Installation . 13

3.2 Hardware Setup . 14

3.3 Starting up “GangPro-CC" Flash Programmer . 16

3.4 X-Pro Selector . 16

4. Programming Dialogue Screen . 18

4.1 SoC Device Type . 19

4.2 Code File Management . 20

4.3 Flash Protection Bits . 23

4.4 Power Device from Adapter . 23

4.5 Target Device selector and action result . 25

4.6 Device Action box . 26

4.6.1 Auto Program button . 27

4.6.2 Verify LOCK bits . 27

4.6.3 Erase Flash button . 28

4.6.4 Blank Check button . 28

4.6.5 Write Flash button . 29

4.6.6 Verify Flash button . 29

4.6.7 Read/ Copy Flash button . 30

4.7 Next button . 31

5. Data viewers . 32

6

6. Memory Option Dialogue Screen . 35

6.1 Memory Erase/Write/Verify Group . 36

6.2 Read Group . 37

6.3 Verification Group . 38

7. Adapter Options . 39

7.1 Communication Dialogue Box . 39

7.1.1 Communication Speed . 39

7.2 Reset Dialogue Box . 39

7.2.1 Reset pulse duration . 40

7.2.2 Final Target Device action . 40

7.3 Options Dialogue Box . 41

8. Serialization . 42

8.1 Introduction . 42

8.2 IEEE Address & Serialization Dialogue Screen . 44

8.2.1 IEEE Address selection . 45

8.2.2 IEEE/SN Record File . 47

8.2.3 Serial number formats . 48

8.2.4 Model, Group, Revision . 56

8.2.5 Device Serialization box . 57

8.3 Serialization Report Dialogue Screen . 59

9. IEEE /SN data file . 61

10. Check Sum Options . 66

10.1 Check Sum types . 69

11. Script File - defined programming sequence . 74

11.1 Script button . 74

11.2 Script file option . 75

11.3 Script commands . 76

12. Project and Configuration Load / Save . 82

12.1 Load / Save Setup . 82

12.2 Load / Save Project . 82

12.3 Commands combined with the executable file . 86

7

13. Target connection . 90

13.1 Connection via Debug Interface . 90

13.2 Connection via SPI Interface . 95

14. Driver for the IAR C-Spy debugger . 97

15. Driver for the Keil uVision debugger . 103

Appendix A - specification . 106

8

1. Introduction

The GangPro-CC programmer is designed to allow simultaneous programming of up to six

CC series SoC with 8051 MCU devices (Chipcon products from Texas Instruments). The

programmer configures target devices by using the debug interface.

The programmer package consist of a microcontroller based adapter (Figure 1-1), WindowsTM

based software, a Gang Splitter to connect up to 6 devices to the adapter, and cable to connect the

adapter with the computer’s USB

port. The internal firmware

software allows to communicate

with the programmed device with

high speed. The effective

programming speed (write only) is

around 20 kbytes/s simultaneously

up to six target devices that is

equivalent to 120 kbytes/s

programming speed per one

programmed target device. Due to

this high speed communication,

programming time is very short and

programmer can be used to program

flash devices in the production

process. For example, six devices with 128 kB Flash, such as CC2430F128, can be programmed in

12 seconds. This time includes initialization, erasing memory, blank checking, programming and

fast verification.

To simplify production process the programming software package can assign IEEE address,

serials number, model type, and revision. Each IEEE address and serial number are unique for each

programmed device and are assigned automatically. Several serial number formats are available.

There are a number of erase/write options available as well. This allows to erase/write all

flash memory, or just the specified fragment of memory. This feature is very useful when only part

of programmed data/code should be replaced. For example one can download the serial number,

calibration data or personality data without erasing existing program code.

Figure 1-1

9

2. Features

The GangPro-CC programmer is dedicated to simultaneously program up to six CC series

SoC with 8051 MCU Chipcon Product from Texas Instruments. To facilitate high speed

communication, an application software for the programming adapter has been optimized for the

maximum speed.

2.1 Key features

The key features of the GangPro-CC programmer are:

* Support all CC Chipcon devices from Texas Instruments.

* Programming speed via debug interface is approximately 20 kBytes/s per target device. Up

to six target devices can be programmed simultaneously, effectively programming at a rate

of 120 kbytes/s,

* Our programmers are professionally made and are recommended by Texas Instruments

as the Third Party Tools source.

* Full memory or sector memory erase capability.

* Write Check Sum verification.

* No code size limitations.

* Target device can be powered from the programming adapter or from external source.

* Easy to use WindowsTM based software.

* Programmer accept TI (*.txt), Motorola (*.s19) and Intel (*.hex) data files for programming.

* Combine code files capability.

* Lock setup capability, useful in production.

* Software package can assign and automatically increment IEEE address and serial number,

model type and revision. Serial Number with or without an automatically inserted current

date can be stored in the FLASH memory in HEX, BCD or ASCII format. Log file capability

allowing to review information about the flashed target devices.

* DLL software package can control programmer from other programs.

* Driver for the IAR CSpy - EW8051 for debugging using FPA and IAR Embedded

Workbench IDE software.

* Programmer has been fully tested to comply with the FCC and CE requirements.

* Uses USB-1.1 (12Mbits/s) Port to communicate with the Programming Adapter.

10

2.2 Custom features

The GangPro-CC programmer can be controlled from an external software as well as custom

scripts to specify programming sequences. These features are very useful in production environment.

2.2.1 Encrypted Project option

Contents of the project that include code contents downloaded to target device can be

encrypted and blocked against unauthorised access.

2.2.2 Script file

A user can define a sequence of programming steps by the means of a script file. The script

file is a sequence of programmer commands, where each command corresponds to a button in the

programming software. Each command can be accompanied by a few options. A script file of up to

1000 lines can be created. The detailed description of script commands is given in Chapter 10. Please

note that the script file is not available in the lite version of the programming software.

The second option allows to use command line interpreter (not available in the lite version),

that can fully control the programming adapter via Multi-FPA API-DLL.

2.2.3 DLLs

The programming adapter can also be controlled through user created applications. For this

purpose a DLL is provided to allow a user to develop custom application that can control the

programming adapter and allow the programming of target devices via the GangPro-CC adapter.

The Multi-FPA API-DLLs allows to fully control up to 16 programming adapters (to program

simultaneously up to 96 target devices) from external software written in MS Visual C++, MS Visual

Basic, LABView, DOS or other programming packages like Borland C++ etc. See the “GangPro-

CC FlashProgrammer - Remote Control Programming User’s Guide” for details.

To speed up programming process it is recommended to program full panel with a lot of boards on

the panel before de-panelization. Access from FPAs to all target devices can be done via nails (see

Figure 2-1).

11

2.2.4 Driver for the IAR CSpy and KEIL uVision debugger

The FPA programming adapter can also be used with the IAR Embedded Workbench

or KEIL uVision IDE software for debugging. See chapters 12 and 13 for details.

Figure 2-1

12

3. Getting Started

GangPro-CC programmer package contains:

1. One READ ME FIRST document.

2. One X-Pro-CC - Flash Programmer CD ROM (Software + Manual).

3. One GangPro-CC Flash Programming Adapter.

4. One 6 feets length USB-A to USB-B cable.

5. GangPro-CC Splitter that allows to connect six target devices to one USB-FPA adapter.

6. Six ribbon cables - with 10 pins connectors.

7. One 14-pins ribbon cable.

3.1 Software Installation

The X-Pro-CC Flash Programming Software runs on PC under Windows TM ME, WinNT, 2000,

XP, Vista (32 or 64-b) or Win-7 (32 or 64-b). Follow instructions below to install the software:

1. Insert X-Pro-CC Software CD into your CD-ROM drive.

2. The X-Pro-CC Setup wizard appears automatically. Click Install X-Pro-CC Programmer

to begin the installation process.

3. If the Setup wizard does not start automatically, click the Start button and choose the Run

dialogue box. Type “D:\SETUP.EXE”, where D represents the drive letter of your CD-ROM

drive. Then click the OK button.

4. Once the installation program starts, on-screen instructions will guide you through the

remainder of the installation. You must accept licence agreement before using software.

3.1.1 Driver Installation

Software installation program is placing the USB driver files in the windows directories

Windows\inf

 and

 Windows\system32\drivers

that simplified driver installation. When the software package mentioned above starts, the following

screen will pop-up (see figure 3.1-1).

13

Select - InstallUSB-FPA Driver..... option if the driver was not installed before. When the

installation software is finished, then the USB driver is preinstalled. Driver preinstallation can also

be executed by running the USB-FPA-DriverInstaller.exe software located in directory

C:\Program Files\Elprotronic\Drivers USB-FPA\XP,Vista,Win-7

When the driver preinstallation is done then plug-in USB-FPA adapter to USB- PC port. The driver

installation should be done automatically in Win-7 64, and in the Win 32 OS (XP, Vista, Win7 32b)

the wizard should start. Follow instruction in wizad by pressing “recomended” option buttons and

all should be done.

See USB-FPA Driver Installation.pdf document located in

C:\Program Files\Elprotronic\Drivers USB-FPAdirectory if you find any problems.

3.2 Hardware Setup

1. Connect the USB-FPA Flash Programming Adapter to the PC USB Port or via USB-HUB

using provided cable extender (USB-A to USB-B) (see figure 3.2-1).

2. Plug in socket connector from the USB-FPA Flash Programming Adapter to the J1 connector

on the GangPro-CC Splitter (PN: PE014X03) using ribbon cable with 14-pins connectors.

Connect up to six target devices to GangPro-CC Splitter using ribbon cables with 10-pins

Figure 3.1-1

14

connectors. Make sure that pin 1 on your device board’s header is connected to pin 1 (red

wire) of the socket connector.

3. Target devices can be supplied form programming adapter (programmable Vcc = 2.2V to

3.6V with step 0.2V, max total current 100 mA)(see Figure 3-2.2-top) or from external

power supply . When target devices are supplied from external power supply then power

supply ON/OFF can be controlled from programming adapter (see Figure 3-2.2-bottom).

Figure 3.2-1

Figure 3-2.2

15

3.3 Starting up “GangPro-CC" Flash Programmer

To start the GangPro-CC Flash Programmer click on the GangPro-CC Elprotronic icon.

Once started the software will attempt to access the programming adapter. If no error messages

appear then the software has initialized without a problem and you may begin using it. However, if

the programming adapter is not detected an error message will appear. To correct the problem, make

sure that the connection cable is properly attached and the USB driver is installed.

3.4 X-Pro Selector

The X-Pro430 software has a Multi-USB feature. Up to 16 Flash Programming Adapters can

be connected to one PC. Each adapter can be controlled by a separate instance of the programming

software application. Up to 16 applications can be opened at the same time. Each application can

have independent setup from the others (code file, controlled microcontroller type etc.).

When more then one X-Pro FPA Adapter is connected to a PC then each time you start the

programmer application a X-Pro FPA Selector dialogue screen will appear (see Figure 3.4-1). The

dialogue screen will list all adapters connected and allow you to choose the adapter you with the

application to control. Make a sure that the selected FPA is not used by another opened application.

The selected FPAs’s serial number will be displayed on the bottom left side of the programming

dialogue screen.

When the Multi-FPA API-DLL is used, then all adapters can be controlled from one

software. See the “GangPro-CC FlashProgrammer - Remote Control Programming User’s

Guide” for details.

Figure 3.3-1

16

Figure 3.4-1

17

Figure 4-1. Programming dialogue box screen.

4. Programming Dialogue Screen

The programming dialogue box (see Fig. 4-1.) contains a pull down menu, interface selection

box, lock protection bits box, device action buttons, report (status) window, open file buttons, target

device information box, IEEE addresses and serial number box, power DC status and check sum

result boxes.

18

Figure 4.1-1

All device action buttons, power ON/OFF button and the check sum result box have their

own status indicators. Each indicator can assume any of the following conditions:

 - blank - idle status.

 - yellow - Test in progress. For power on/off - DC voltage is correct.

 - green - access enabled.

 - red sign - access denied. For power on/off - DC voltage is too low (below 2.0V)

 - device action has been finished successfully.

 - device action has been finished, but result failed.

 - applies to blank check only - Memory is not clean, but the specified memory segment is.

4.1 SoC Device Type

Target device type can be selected from the pull down field of

the SoC Device type group. The pull down field contains a list of all

devices in CC series family currently available. To automatically detect

the microcontroller type choose the ‘- - -’ option from the drop down

list.

When communication between the microcontroller and the

programming adapter is initialized, the software will detect the target

microcontroller automatically. The type of detected microcontroller is

displayed in the field ‘Target:’. This allows the software to warn you

if the connected microcontroller does not match the one specified by the

user.

Note: No warning message will appear when ‘- - -’ microcontroller

type is selected.

Note: If more then one target device is connected to GangPro-CC

programmer then all target devices should be the same type. It

is not possible to simultaneously program target devices of

different type.

19

Figure 4.2-1

4.2 Code File Management

The GangPro-CC flash programmer provides a few options to manage code files. These

options allow the user to open a code file, combine several code files into a single file, and save the

programming data into a code file. The Open Code File button, or the Open Code File from the

FILE pull down menu, prompts for opening the object file that contains the code data, as shown in

Figure 4.2-1. When the file is selected the contents of the object file are downloaded into the PC

memory. If the selected target device does not have enough memory to fit the data contained in the

code file, the warning message in Figure 4.2-2 will be displayed.

When code file is opened and read successfully the code file name and full path will be

displayed on the right side of the Open Code File button (see Fig.4-1 Programming dialogue box

screen). Contents of the selected file can be viewed by the selecting of ‘Code File Data’ from the

‘View’ menu (see chapter 5).

20

The Combine Code Files option allows up to 40 code files to be loaded into the PC memory.

When this option is selected the programmer will create a new data block, which will contain the

combined data of the user selected files. In order to add a code file to the newly created data block,

the user needs to press the ADD Code File button. The programmer will then prompt the user to

specify the code file to be appended to the newly created memory block, using the window in Figure

4.2-1. Every appended file will be verified, so that the total code size does not exceed the target

microcontroller’s memory space and that there is no overlap with previously selected code segments.

After the addition of each file the window in Figure 4.2-3 will be shown. The window shows the

status of previous append operations.

Figure 4.2-2

Figure 4.2-3

21

The Programmer is also able to append files of any type to the new data block. In order to do this the

user must specify the memory location into which the programmer is to load the file and then press

the Add file contents button. The window in Figure 4.2-1 will appear prompting the user to specify

the file to be added. Once the file is added to the new memory block, the programmer will display

the memory space occupied by the selected file. An example of this is shown in Figure 4.3-3 for the

file number 4.

The Save Code File option saves the data currently contained within the PC code data block

into a code file. When the user selects this option from the File menu, the window in Figure 4.2-4

will appear, prompting for the name of the file to be created.

All of the aforementioned Code File options work with three most popular code file formats.

These formats are the Texas Instruments, the Motorola and the Intel file formats. GangPro-CC will

work with any of these formats and will easily convert one file format to another by using the Open

Code File and Save Code File options.

Figure 4.2-4

22

Figure 4.4-1

4.3 Flash Protection Bits

The CC series devices memory can be protected against unauthorized access or can protect

a whole or part of flash against erase or write to the protected flash space. The GangPro-CC software

allows the user to program the protection bits. In the right top corner of the main dialogue screen the

selected option of the protection bits (Figure 4.3-1) is displayed. When the Enable option is selected,

then all protection bits will set in the CC device. Desired combination of the protection bits can be

selected in the Memory Option setup dialogue available from pull down menu “Setup->Memory

Option”. See chapter 6 for details.

To program the protection bits the check mark ‘Enable’ in the ‘Lock Protection Bits’ group

must be selected first (see Figure 4.3-1).

4.4 Power Device from Adapter

The programming adapter is powered from the

USB Port interface. Target device can be powered from

the programming adapter with voltage range from 2.2V

to 3.6V in step 0.2V selected in the voltage selector

located in the ‘Power Device from Adapter” box.

The target device will be powered from the adapter, if check box ‘Enable’ in the ‘Power

Device from Adapter’ group (figure 4.4-1) is selected. When the ‘Enable’ checkbox is selected a

warning message shown in figure 4.4-2 will be displayed. If you confirm this selection by clicking

YES, then POWER ON/OFF button is enabled. By clicking POWER ON/OFF button you can turn

the power on or off on the target device. Current DC voltage on the target device is continuously

Figure 4.3-1

23

monitored and displayed in the ‘Device Voltage’ field in the ‘Power Device from Adapter’ group,

even if the target device is powered from the external DC sources. If DC voltage is higher then 2.0

V, then yellow box will be displayed, indicating that DC voltage is OK and target device is fully

functional under this DC voltage. If DC level is below 2.0V, then access denied sign box will be

displayed (red sign with white line). If DC level is below 1V, then blank sign box will be displayed.

When the target device is powered from the external power supply then the check box ‘Enable’

should not be selected. External power supply ON/OFF can be controlled from programming adapter

(from pin-8) (see Figure 3-2.2-bottom). Voltage level on the pin-8 is over 3 V (typical 4.6V) when

external power supply should be enabled, and below 1V (typical 0V) when the external power supply

should be OFF. It is recommended to put pull-down resistor on the enable input of the external

power supply.

 RESET button located on the right side on the POWER ON/OFF button (Figure 4.1) can

generate a reset pulse to the target device. Pressing this button the target devices can be reset

manually at any time, starting the target’s device application program from the beginning.

Figure 4.4-2

24

4.5 Target Device selector and action result

In the Target Devices Programming Result group box is possible to select target devices to

be activated - tested, programmed etc. Minimum one target devise should be selected. All target

devices connected to programming adapter should be the same type. Otherwise unpredicted state can

be created.

When action with programmer is started then access to all targets are verified. Each part of

process result is displayed in the test result icons (see figure 4.5-1).

All process result have their own status indicators. Each indicator can assume any of the

following conditions:

 - blank - idle status.

 - yellow - test in progress..

 - green - access enabled.

 - red sign - access denied.

 - device action has been finished successfully.

 - device action has been finished, but result failed.

 - applies to blank check only - memory is not clean, but the specified memory segment is.

Figure 4.5-1

25

 Figure 4.6-1

4.6 Device Action box

The Device Action box contains 7 buttons (see Figure 4.6-1)

Each button allows a specific action to be executed. Software

procedures related to each action allow you to fully execute the desired

task, without the need to follow a specific sequence of actions. Every

action starts by powering up the target device, if Power Device from the

Adapter is enabled. When the DC voltage level becomes higher then

2.0V, the communication with the target device is initiated via the debug

interface. The protection access bit is verified, if the access to the target

device is available. Once the specified action is completed successfully

the green check marks will appear (see Figure 4.5-1). Also, the device

will return to the state it was in before the action was executed.

Progress of all actions is displayed in the report window. If the

particular action has been finished successfully, then message ‘done’ or

‘OK’ will appear on the right side of processed procedure (Fig.4.6-2).

If not, a message ‘failed’ will be displayed and selected action will be

terminated. Final status is also displayed in the Status window (see

Fig.4.6-3) as Active (blue), Pass (green), or Fail (red). On the bottom

of the programmer dialogue screen the progress bar is displayed and the

total run time is shown in the report window. Run time does not include

the time when user interaction is required.

Figure 4.6-2

Figure 4.6-3

26

4.6.1 Auto Program button

The Auto Program button is the most frequently used button when programming target

microcontroller devices in a production process. Auto Program button activates all required

procedures to fully program and verify the flash memory contents. Typically, when the flash memory

needs to be erased, Auto Program executes the following procedures:

• reload code file when “Reload Code File” is selected (useful for debugging when

the code file is frequently modified)

• initialization

• read retain data from the flash if specified (optional).

• read label information (IEEE address, Serial Number, Model, Group,

Revision)(optional)

• erase flash memory,

• erased memory blank check,

• flash programming and verification,

• assign or retrieve label information,

• restore retain data if specified,

• retain data verification if specified,

• assigned or retrieved label verification,

• flash memory check sum verification,

• set flash protection bits (if enabled).

In the report window you can see a typical report message during the Auto Program

procedure (see Fig. 4.6-2).

Status window (see fig. 4.6-3) has a counter that is useful in a production process. The total

number of programmed devices can be entered in the Total edit line. The Balance line shows the

number of devices that have not been programmed yet. The Balance counter is initialized to the value

entered in the Total edit line and is decremented every time Auto Program is completed successfully.

In the bottom box in the Status group is displayed number of the available IEEE addresses and serial

numbers taken from the used defined file.

Note: Balance counter works only with the Auto Program procedure.

4.6.2 Verify LOCK bits

27

This button allows the check the access to target device and read protection bits setup, if

access is available.

4.6.3 Erase Flash button

This button enables the flash memory segments, or mass (all) memory to be erased. If any

option other then ‘Erase All Memory’ is selected in the Memory Options Setup (see chapter 6.1

Memory Erase/Write/Verify Group for details), then the following question message box will be

displayed:

4.6.4 Blank Check button

When Blank Check button is clicked, the program checks if flash memory of the target

microcontroller is blank (all bytes contain the value 0xFF). This test performs two checks. The first

one determines if the entire memory contents is clean, while the second only checks a memory

segment specified by the user (see setup in Memory Erase/Write Group). The following conditions

can appear at the completion of this operation:

 - all memory is blank

 - all memory is not blank, but selected part of it is.

 - memory is not blank.

Figure 4.6.3-1

28

4.6.5 Write Flash button

When write flash button is clicked, then contents from the code file will be written to the

flash memory. When the second time target device is programmed, then the following warning

message is displayed:

Note: See chapter 5.1 Memory Erase/Write Group for details on how to specify memory segment

for writing.

4.6.6 Verify Flash button

The Verify Flash function compares the contents of the flash memory with data from the code

file. Verify flash function can use the standard memory verification method (byte by byte) or

calculate only the check sum of the code and check sum of the content in the flash (see chapter 5.

Memory Option Dialogue Screen).

Note: During the verification process either all memory or just the selected part of the memory is

verified, depending on settings specified in the Memory Erase/Write Address Range in the

Memory Options setup. See chapter 5.1 Memory Erase/Write Group for details.

Figure 4.6.5-1

29

Figure 4.6.7-1

4.6.7 Read/ Copy Flash button

When ‘Read/Copy’ button is clicked then data can be read from the target microcontroller

and displayed in the Flash Memory Data window (see Fig.4.6.7-1). This window can also be opened

by selecting the ‘Flash Memory Data’ option from the ‘View’ menu. Flash memory data viewer,

shown in figure 4.6.7-1, displays the code address on the left side, data in hex format in the central

column, the same data in Ascii format in the right column. The contents of the code viewer can be

converted to Texas Instruments *.txt file format by clicking on the ‘Convert to TI format’ button.

Data will be viewed in the Notepad Editor.

The address range to be displayed in the Flash Memory Data window can be specified in the

Memory Options screen. See chapter 5.2 Read group for details.

When the ‘Copy’ button is clicked, then the contents of the read target device memory will

30

Figure 4.7-1

Figure 4.7-3

Figure 4.7-2

be saved in the specified by user file name and opened as a current Code File. Also programmer

setup will be modified for the copy procedure. Especially the serialization will be disabled and the

‘All Memory’ option will be selected in the ‘Write/Erase/Verify Address Range’. Following

message will be displayed.

When the button ‘ O K ’ i s

pressed then programmer is ready to program the destination device.

4.7 Next button

The ‘Next’ button is a dynamically programmable device action button,

which is very useful in production process. After opening the program,

‘NEXT’ button is disabled (see Fig.4.7-1). When any button from the

Device Action group is pressed, then button ‘NEXT’ takes the name

and feature of that button. For example, if Auto Program button has

been used, then it’s name will be displayed on top of the ‘NEXT’ button

(see Fig.4.7-2). From now the button ‘NEXT’ will perform the same

function as the Auto Program button. The ‘NEXT’ button has a

shortcut to function key F5. Button ‘NEXT’ will retain its functionality

until some other device key is clicked. For example, if key ‘READ

FLASH’ is clicked, then from this moment button ‘NEXT’ will take

a name and feature of the ‘READ FLASH’ button (see Fig.4.7-3). The

read flash procedure will be called, if button ‘NEXT’ or function key

F5 is pressed.

Figure 4.6.7-2

31

Figure 5-1

5. Data viewers

The contents of the code file or the Flash memory can be displayed, or compared to one

another in a data viewer. To display the contents of a code file select the ‘Code File Data’ option

from the ‘View’ menu. Similarly, the contents of the Flash memory can be displayed by selecting the

‘Flash Memory Data’ option from the ‘View’ menu. Please note that in order to view the contents

of the Flash Memory the ‘Read Flash’ option must be selected first.

When one of the above options is selected the code data viewer, shown in figure 5-1, will

appear. The code viewer displays data in three columns. The leftmost column shows the code

address. The middle column shows the data at the specified address in a hex format. The data is

separated into byte size chunks for easy viewing. The data itself can be a hexadecimal value between

00 and FF, or ‘..’. If two dots appear at any location in the middle column of the code viewer then

32

it means that the code file does not specify the contents of that memory location. Alternatively, if the

data is read from the Flash memory then two dots will appear if the memory address specified is

outside of the Flash Memory Space. In such a case, the following warning message will appear:

‘:== Data out of the Flash Memory Space of the selected device ==’

The rightmost column of the code viewer shows the same data as in the middle column, except that

it is shown in the ASCII format.

The data displayed in the code viewer window can be converted to the Texas Instruments

*.txt file format by clicking on the ‘Convert to TI format’ button. The data will be displayed in the

Notepad Editor.

Finally, the contents of the Code File data and Flash Memory Data can be compared and

differences displayed in a the viewer by selecting ‘Compare Code & Flash Data’ from the ‘View’

menu. Only data that are not the same in the code file data and the Flash memory will be displayed.

In the first line code file data will be displayed, and in the second line - Flash memory data (Figure

Figure 5-2

33

5-2).

Note: Only data at the addresses specified in the code file can be displayed. Any data not specified

in code file will not be displayed, even if the Flash Memory data contains any not empty (FF) data.

34

Figure 6-1

6. Memory Option Dialogue Screen

The Memory Options Dialogue Screen (Fig.6-1) has five settings groups and one information

group. Two of the settings groups allow the user to specify four flash memory segments for erase,

write and read operation to be specified. The third settings group, write verification, allows the user

to select the verification method for Auto Program procedure. The information group contains the

start and stop address of the user specified main memory segment that can be erased, written and

verified independently.

35

6.1 Memory Erase/Write/Verify Group

The Memory Erase/Write/Verify Address Range group block (see Fig.6-1) specifies common

addresses range for erase, write and verify operations. Memory setup has five available options:

1. Update only:

This option allows the user to perform an update

operation. This means that when the Auto Program

procedure is executed then the contents of the code

data taken from the Code File will be downloaded to

the flash memory without erasing any memory

segment. This option is useful when a relatively small

amount of data, such as calibration data, needs to be

added to the flash memory. Flash memory space defined by Code File should be blank and

the code file should contain ONLY data to be downloaded to flash memory. For example,

if code file contains only data as shown in figure 6.1-1 (in Texas Instruments format) then

8 bytes of data will be written starting at location 0x1008 and 6 bytes of data starting at

location 0x2200. Before writing operation, all data in the flash memory at the specified

location should be blank (contain value 0xFF). The software will verify automatically if this

part of memory is blank and will only proceed to program the device if verification is

successful.

Note: The addresses specified in the Code File as well as the number of bytes for each data block

must be EVEN. The software uses word (two bytes) operation for writing and reading data.

In case that the code file contains an odd number of bytes to write the data segment will be

appended by a single byte containing the value 0xFF. This value will not overwrite the

current memory contents, but verification process will return an error if the target device

does not contain the value 0xFF at that location.

2. All Memory

This is the most frequently used option during flash memory programming process. The

entire memory space is cleared before programming. All contents from the code file can then

be downloaded to the target microcontroller’s flash memory.

3. Main memory only

@1008

25 CA 80 40 39 E3 F8 02

@2200

48 35 59 72 AC B8

q

Figure 6.1-1

36

This option allows the user to erase and program only the main memory. Flash information

memory (segments A and B) will not be modified. If the code file contains data intended for

these segments, the data will be ignored.

4. Used by code file:

This option allows main memory segments or/and information memory segments used by

data specified in code file to be erased. Flash memory segments, which do not contain any

data to be written to the memory from the code file, will not be erased. This option is useful,

if some data, such as calibration data, should be replaced in memory. If the code file contains

some new calibration data, such as described in figure 6.1-1, then the ENTIRE information

memory segment at addresses 0x1000 to 0x107F and the main memory segment at addresses

0x2200 to 0x23FF will be erased and new data at locations 0x1008 and 0x2200 will be

written.

5. User Defined:

This option is functionally similar to options described before, but addresses range of the

erased/write/verify main memory and sectors of the information memory can be defined by

the user. When the User Defined option is selected, then on the right side of the Memory

Erase/Write/Verify Group two check boxes and two addresses edit lines will be enabled. The

check boxes allow the user to select the information memory sectors A, or/and B to be used

(erased, written, verified). Edit lines in the Main Memory group allow the user to specify the

main memory address range (start and stop addresses). Start address should specify the first

byte in the segment, and the stop address should specify the last byte in the segment. Since

the main memory segment size is 0x200, then the start address should be a multiple of

0x200, eg. 0x2200. The stop address should specify the last byte of the segment to be written.

Therefore, it should be greater than the start address and point to a byte that immediately

precedes a memory segment boundary, eg. 0x23FF or 0x55FF.

6.2 Read Group

The Read Address Range group block (see Fig.6-1) specifies the address range used in

reading process. Memory read setup has four options available:

1. All Memory

2. Main memory only

3. Info memory only

4. User Defined

37

The meaning of each option is the same as for the erase/write/verify procedure. The Info Memory

only option works the same way as Main memory only option described above, except that only

information memory is modified.

6.3 Verification Group

Verification group setup allows the user to select one of the three write verification methods:

1. Fast Verification,

2. Standard Verification,

3. None.

Fast Verification:

During the fast verification, each byte is verified after being written and at the end of the

process the check sum is read from the flash memory and compared to calculated check sum

taken from the code file.

Standard verification:

Standard verification is performed after memory write process is completed. Contents of the

flash memory are read and compared with the contents of the code file. If they are the same,

then verification process is successful. Typically, the standard verification procedure requires

the same amount of time as the read/write procedure. Total programming time with standard

verification is around two times longer than read/write procedure time.

38

7. Adapter Options

7.1 Communication Dialogue Box

The “Communication Interface with Target Device” dialogue screen enables the user to

select the communication speed between programming adapter and target device - 3 or 1 Mbits/s.

7.1.1 Communication Speed

The default communication speed between programming adapter and target device is 3 Mb/s.

Under some conditions, for example when the cable between FPA and target device is long or some

protection components are installed in the debug interface, the fast communication can not be used.

In this case lower speed 1Mb/s can be used to establish communication between FPA and target

device (see Figure 7-1 - communication speed selector).

7.2 Reset Dialogue Box

The Target’s Reset Dialogue screen enables the user to select the Reset pulse duration and reset line

state at the end of programming process.

Figure 7-1

39

7.2.1 Reset pulse duration

The reset pulse allows the adapter to initiate communication with a microcontroller. In most

cases the pulse width of 10ms is sufficient to initiate communication process. However, this may be

affected by additional load on the reset line. Therefore, four additional settings, 100, 200, 500 ms

and custom, are available. When the RESET IC circuit is used then the custom defined reset pulse

duration can be used. Two parameters of the custom reset pulse are defined - initialization reset pulse

time (typically very short - 1 ms) and an idle reset time. Idle reset time must be set at least to

duration of the reset time generated by the RESET circuit.

7.2.2 Final Target Device action

Every device action, like AUTO Program, Read etc. starts with the activation of the RESET

line (active low). When the device programming action begins the RESET line is raised high. When

device action is finished, then RESET line is again asserted, protecting the target device from

running the application program. This method is commonly used to protect the programming adapter

from the DC overload. However, when target device is supplied from its own power supply, or a

battery, the overload protection of the programming adapter is no longer necessary.

The target device can be set to run an application immediately after the target device is

programmed. This permits verification of the programmed device if required. To do this check the

Figure 7.2

40

 ‘Hardware Reset (RST line) and start the application program’

 or

 ‘ON/OFF Vcc and start the application program’

option in the Reset Options window, shown in Figure 7-2. Application run time can be unlimited

or limited up to 120 seconds. Limited time is specified in the “Program RUN time” box. When

entered ‘0' in the “Program RUN time” box then time is unlimited.

7.3 Options Dialogue Box

The Options Dialogue screen allows to enable or disable the report history in the report

window (see figure 4.1). When enabled then the report history is displayed up to 8 kB characters

(approximately 20 last communication messages). When disabled, then the only last programming

report is displayed.

All programming actions at the end can generate the Beep OK tone. When a lot of units is

programmed then the OK tone can be disabled just to not make a lot of noise. Error programming

tone is enabled permanently and can not be disabled.

Figure 7.3

41

8. Serialization

8.1 Introduction

The GangPro-CC programming software has the ability to automatically create the target

device’s IEEE Address and Serial Number and save it in the flash memory. These numbers are also

saved in the data base file. The new IEEE Address and Serial Number can be created automatically

by incrementing the IEEE Address and Serial Number or can be taken from a file created by the

user. Furthermore, model name, group, and revision can be downloaded to target device. The IEEE

Address format is fixed and contains 8 bytes located at the end of the flash memory. The Serial

Number format and location in the device’s flash memory must be specify by the user.

Note: The Serial Number assignment option is available only when the programming adapter

FPA with the standard access is used. The FPA - lite version does not have access to

serialization. The IEEE Address can be created with FPA standard and lite version.

IEEE Address and Serial Number are created when the Auto Program or Write SN /Write

IEEE Addr button is pressed and the Serialization feature is enabled. When the Auto Program

function is activated then the IEEE Address and/or Serial Number are programmed to the target

device’s memory along with the code data. If the Auto Program function fails for any reason then

new IEEE Address / Serial Number is not created.

The software also allows the device to retain its IEEE Address / Serial Number if one has

already been assigned to it. Every time a device is programmed and serialization is enabled the

contents of the target’s memory are scanned for existing IEEE Address and Serial Number. If

numbers are found in the database, the dialogue screen (see Figure 8.1) will appear and allow you

to decide if you wish to keep the old IEEE Address / Serial Number, new or manually entered

once. When the edited numbers are used, then it is possible to press the “Verify with Data Base”

button and check if the entered IEEE Address / Serial Number have been already used before. On

the right side of each edited number will be displayed message “OK” if the number has not been

used before, or “used” when it was (see Figure 8.1).

42

Figure 8.1

43

8.2 IEEE Address & Serialization Dialogue Screen

IEEE Address & Serialization dialogue box, shown in figure 8-2, allows the user to configure

of the IEEE Address and Serial Number serialization process. The IEEE Address Write option can

be selected from the pull down IEEE Address option list. Serialization (Serial Number) can be

enabled, or disabled, by selecting the check mark in the ENABLE Serialization box. When

serialization is disabled, then all edit lines and check boxes are disabled. When serialization is

enabled all fields must be set.

Figure 8-2

44

8.2.1 IEEE Address selection

The GangPro-CC software allows to create IEEE Address in the target device. Format and

location in flash of the created IEEE Address is fixed and contains 8 bytes located at the end of

available flash memory location. For example, the IEEE Address in a CC2431F128 device is saved

at location 0x1FFF8 to 0x1FFFF. All eight bytes must be specified.

The IEEE Address selection depends on the option used to program the target device. When

using the Autoprogram option, the IEEE Write Address is specified in the IEEE Address Setup (see

Figure 8.3). When the user wishes to manually program the target device, then the IEEE Address can

be specified in through the Device’s IEEE Address and Serialization group (see Figures 4.1 and 8.4).

The above settings are used by the software depending on which programming mode is used

(Autoprogram or manual). For example, in the main dialogue screen the option “Retain Code, Write

IEEE address” can be selected and in the serialization dialogue screen - the “Assign and write

Figure 8.3

Figure 8.4

45

IEEE address” option. When the Autoprogram button is pressed, then the IEEE address will be

assigned automatically (selected option “Assign and write IEEE address”) and when the saved

IEEE address should be modified, then the new number can be modified manually (editing required

number in the edit line) and downloaded to device using “Write IEEE addr” button. The “Retain

Code, Write IEEE address” option will be used when the “Write IEEE addr” button is pressed.

The following IEEE Address Write options are available:

1. Autoprogram -> Disable

2. Manual -> Write new IEEE address if flash is blank

3. Manual -> Retain Code and write IEEE address

4. Autoprogram -> Enforce BLANK Flash in IEEE location

5. Autoprogram -> Retain IEEE address

6. Autoprogram -> Assign and write IEEE address

7. Autoprogram -> Write IEEE address from the file

1. When the IEEE Address option is disabled, then the location in the IEEE address is not used

and not verified.

2. Manual -> Write new IEEE address if flash is blank - used only when the “Write IEEE

addr” button is pressed in the Main Dialogue screen (Figure 4.1 and Figure 8.4). The

software first verifies if all eight bytes are not programmed (all 0xFF). If they are not then

the action is terminated. Otherwise, the new IEEE address is downloaded and verified. The

verified IEEE address is then displayed in the grey line - on the left side of the edited line

(figure 8.2.1-2).

3. Manual -> Retain Code and write IEEE address - used only when the “Write IEEE addr”

button is pressed in the Main Dialogue screen. The software first verifies if all eight bytes

are not programmed (all 0xFF). If not then the action is terminated. Otherwise, the new IEEE

address is downloaded and verified. When the bytes in the IEEE address locations are not

blank, then whole sector (1 or 2 kB) is read, erased, and the new IEEE Address saved and

all data restored. The contents of the whole sector are verified. The new IEEE address is

displayed in the grey line.

4. Autoprogram -> Enforce BLANK Flash in IEEE location - used only when the

“Autoprogram” action is executed. The IEEE address location will be blank (all 0xFF). Any

specified data at this location (eg. in code file) will be ignored. This empty location can be

used in the future for the IEEE address assignment.

5. Autoprogram -> Retain IEEE address - used only when the “Autoprogram” action is

executed. When this option is selected, then the software reads the IEEE address saved in the

device, clears the flash memory contents (entire memory or just the specified segments), and

46

downloads the code to the target device and restores the IEEE address used initially by the

target device.

6. Autoprogram -> Assign and write IEEE address - used only when the “Autoprogram”

action is executed. This option allows to automatically assign the IEEE address and save it

in target device. Downloaded IEEE address is also saved in the data base file. When the next

IEEE address is created, then the data base file is scanned and the highest IEEE address is

selected. The new IEEE address is equal the highest number saved in the data base plus IEEE

address increment specified in the IEEE Address increment (see figure 8.2). If the new IEEE

address is lower then the address specified in the IEEE Address start from filed then the

higher IEEE address is used.

7. Autoprogram -> Write IEEE address from the file - used only when the “Autoprogram”

action is executed. This option allows the software to take IEEE address from the custom

defined IEEE addresses in the file and save it in target device. Downloaded IEEE address

is also saved in the database file. Any HEX numbers can be used as the IEEE address. See

chapter 9 for data format used in the file.

Location of the IEEE address data can be specified or used as default (see Figure 8.2). When the

default location is used then the IEEE address data are saved in the last eight bytes in the available

Flash memory. For example, when the flash size is 128 kbytes, then IEEE address is saved in

locations 0x1FFF8 to 0x1FFFF. The IEEE address data can be saved in the Flash starting from the

lowest byte (when the IEEE Address data in Flash - LSB First is selected) or from the highest byte

(when the IEEE Address data in Flash - LSB First is not selected).

8.2.2 IEEE/SN Record File

The ‘IEEE/SN Record File’ specifies the full path and file name where the database contents

will be saved. The IEEE Address and Serial Number file contains following data, separated by

tabulation:

1. IEEE Address (16 characters - 8 bytes in hex),

1. Serial Number Format (F0,F1,F2,F3,F4,F5,F6,F7),

2. Serial Number,

3. IEEE/SN action type (New SN, unmodified SN, overwritten SN, manual SN)

4. Time and date, when SN has been created,

5. Code File Name

6. Model text.

47

Below is an example of the data file, containing data from the three consecutively created

serial numbers.

0123456789abcdef F0 200300011 . m (Sat, Mar 29,2003, 10:09) AS010X02-1v2.txt -01 R.0003-04-17

001122334455678 F0 200300012 . . (Sat, Mar 29,2003, 10:43) AS010X02-1v2.txt -01 R.0003-04-17

001122334455679 F0 200300013 . u (Sat, Mar 29,2003, 10:43) AS010X02-1v2.txt -01 R.0003-04-17

IEEE Address and Serial number can be created as a unique SN per target device’s type, or

as a unique SN for any device type.

8.2.3 Serial number formats

Programming software has seven methods for creating a serial number, referred to as Display

format, and four methods of storing the SN in the memory, referred to as In Memory Format in the

serialization dialogue screen. When a serial number is created, current date (if required) is taken

from the PC timer. Make a sure that your computer has the correct date and time.

Display Formats:

1. YYYY-1234(5) - (SN Format - F0) Serial number has 8 or 9 characters. First four

characters contain current year, and remaining 4 or 5 characters

contain the serial number, eg. SN 20030123 or 200300123 has a

number 0123 (or 00123) created in the 2003 year.

2. YYMM-1234(5) - (SN Format - F1) Serial number has 8 or 9 characters. First two

characters contain last two digits of current year, next two characters

contains current month, and remaining 4 or 5 characters contain a

number, eg. SN 03030123.

3. YYMMDD-1234 - (SN Format - F5) Serial number has 10. First six characters contain

date (year, month, day of month) and remaining 4 characters contain

a number, eg. 0405120123.

4. YYDDD-1234(5) - (SN Format - F4) Serial number has 9 or 10. First five characters

contain date (year, day of year from 1 to 366) and remaining 4 or 5

characters contain a number, eg. 041230123.

5. 123456768 - (SN Format - F2) 8 digits serial number without date stamp.

6. 1234(5) - (SN Format - F3) 4 or 5 digits serial number without date stamp.

7. Custom - (SN Format - F6) 4 to 16 Ascii characters or hexadecimal numbers

entered manually or from the Bar-Code Reader.

8. From the file - (SN Format - F7) 4 to 16 ASCII characters or hexadecimal

numbers taken from the user created file.

48

When the serials number formats 1 through 6 are selected, then in the dialogue screen all

numbers are displayed and edited as a decimal numbers. Only numeric keystrokes from 0 to 9 will

be accepted. All displayed numbers (decimal) are converted to the format HEX, BCD or ASCII

before they are saved to flash memory.

When the Custom or From the file serial number is selected, then any keystroke is accepted.

When the ASCII format is selected, then entered SN is saved as is in the flash memory. When the

Hex format is selected, then only the HEX characters can be used (0...9,A,B,C,D,E,F).

HEX (MSW first) and HEX (LSW first) format:

When hex format is selected, then all SN display formats described above can be stored as

a one or two integer (16-bits - 2 bytes) numbers. First four display characters will be saved as one

hex integer number and remaining five characters will be saved as a second hex integer number.

When format HEX(MSW first) is selected then the first hex integer number is saved as a first word

and the second number - as a next word in the Flash memory location. When format HEX(LSW

first) is selected then the first hex integer number is saved as a second word and the second number -

as a first word in the Flash memory location.

Display Format: YYYY-1234(5) - size in FLASH - 4 bytes

SN 200300123 will be saved as

YYYY - 2003 (Decy) -> 0x07D3 (hex)

12345 - 00123 -> 0x007B (hex)

In flash memory this number can be seen as

07D3 007B -> HEX(MSW first)

007B 07D3 -> HEX(LSW first)

when integer numbers are viewed, or as

<--- Hex format bytes---> (Size - 4 bytes)

D3 07 7B 00 -> HEX(MSW first)

7B 00 D3 07 -> HEX(LSW first)

when bytes are viewed (first byte is the LSW byte from the integer number)

Displayed consecutive serial number (16-bits integer number) can have a value from 0 to

(2^16-1) equal 65535 and is displayed as the 5 digits serial number.

49

Display Format: YYMM-1234(5) - size in FLASH - 4 bytes

SN 030300123 will be saved as

YYMM - 0303 (Decy) -> 0x012F (hex)

12345 - 00123 -> 0x007B (hex)

In flash memory this number can be seen as

012F 007B -> HEX(MSW first)

007B 012F -> HEX(LSW first)

or

<--- Hex format bytes---> (Size - 4 bytes)

2F 01 7B 00 -> HEX(MSW first)

7B 00 2F 01 -> HEX(LSW first)

Display Format: YYMMDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data in only in two bytes as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 <---(year-2000)----> < month><— day -->

SN 0405110123 will be saved as

YYMMDD - 040511 (Decy) -> 0x08AB (hex)

1234 - 0123 -> 0x007B (hex)

In flash memory this number can be seen as

08AB 007B -> HEX(MSW first)

007B 08AB -> HEX(LSW first)

or

<--- Hex format bytes---> (Size - 4 bytes)

AB 08 7B 00 -> HEX(MSW first)

7B 00 AB 08 -> HEX(LSW first)

Display Format: YYDDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data only in two bytes as follows:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 <---(year-2000)----> < –-- day of year --->

SN 041110123 will be saved as

50

YYDDD - 04111 (Decy) -> 0x086F (hex)

1234 - 0123 -> 0x007B (hex)

In flash memory this number can be seen as

086F 007B -> HEX(MSW first)

007B 086F -> HEX(LSW first)

or

<--- Hex format bytes---> (Size - 4 bytes)

6F 08 7B 00 -> HEX(MSW first)

7B 00 6F 08 -> HEX(LSW first)

Display Format: 123456768 - size in FLASH - 4 bytes

SN 12345678 will be saved as

12345678 (Decy) -> 0x00BC614E (hex)

In flash memory this number can be seen as

00BC 614E -> HEX(MSW first)

 614E 00BC -> HEX(MSW first)

or

<--- Hex format bytes---> (Size - 4 bytes)

00 BC 4E 61 -> HEX(MSW first)

4E 61 00 BC -> HEX(LSW first)

Display Format: 1234(5) - size in FLASH - 2 bytes

SN 12345 will be saved as

12345 (Decy) ---> 0x3039 (hex)

In flash memory this number can be seen as

3039 (integer numbers) -> HEX(MSW first) or HEX(LSW first)

or

<--- Hex format bytes---> (Size - 2 bytes)

39 30 (bytes) -> HEX(MSW first) or HEX(LSW first)

BCD format:

When BCD format is selected, then all SN display formats described above can be stored as

a two or four separate bytes converted to BCD format, where first and last four bits of 8 bit byte

51

contains a value from 0 to 9. All consecutive serial number characters are converted to half byte

each. Finally two consecutive serial number characters will be converted to a single byte.

Display Format: YYYY-1234 - size in FLASH - 4 bytes

SN 20030123 will be saved as

YYYY - 2003 -> 0x20 0x03 (bytes)

1234 - 0123 -> 0x01 0x23 (bytes)

When flash memory bytes are viewed, then this number can be seen as

<--- Hex format bytes--->

20 03 01 23 (Size - 4 bytes)

The consecutive serial number (4 bytes BCD) can have a value from 0 to 9999 and is

displayed as the 4 digit serial number.

Display Format: YYMM-1234 - size in FLASH - 4 bytes

SN 03030123 will be saved as

YYMM - 0303 -> 0x03 0x03 (bytes)

1234 - 0123 -> 0x01 0x23 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->

03 03 01 23 (Size - 4 bytes)

Display Format: YYMMDD-1234 - size in FLASH - 5 bytes

SN 0405110123 will be saved as

YYMMDD - 040511 -> 0x04 0x05 0x11

1234 - 0123 -> 0x01 0x23

In flash memory this number can be seen as

<--- Hex format bytes--->

04 05 11 01 23 (Size - 5 bytes)

52

Display Format: YYDDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data only in two bytes as follows:

Bit 15...12 - Year number - multiple of ones (9,8,...1,0)

 11,10 - Year number - multiple of tens (3,2,1,0)

 9, 8 - Day number - multiple of hundreds (3,2,1,0)

 7...4 - Day number - multiple of tens (9,8,...1,0)

 3...0 - Day number - multiple of ones (9,8,...1,0)

SN 041110123 will be saved as

YYDDD - 04111 (Decy) -> 0x41 0x11 (hex)

1234 - 0123 -> 0x01 0x23 (hex)

Display Format: 123456768 - size in FLASH - 4 bytes

SN 12345678 will be saved as

12345678 -> 0x12 0x34 0x56 0x78 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->

12 34 56 78 (Size - 4 bytes)

Display Format: 1234 - size in FLASH - 2 bytes

SN 1234 will be saved as

1234 -> 0x12 0x34 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->

12 34 (Size - 2 bytes)

ASCII format:

When Ascii format is selected, then all SN display formats described above can be stored as

a four or eight separate bytes converted to Ascii characters. All consecutive serial number characters

are converted to Ascii characters.

53

Display Format: YYYY-1234 - size in FLASH - 8 bytes

SN 20030123 will be saved as

YYYY - 2003 -> 0x32 0x30 0x30 0x33 (bytes)

or ‘2' ‘0' ‘0' ‘3'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

When flash memory bytes are viewed, then this number can be seen as

<------ Hex format ------> <– Ascii format –>

32 30 30 33 30 31 32 33 20030123 (Size - 8 bytes)

Display Format: YYMM-1234 - size in FLASH - 8 bytes

SN 03030123 will be saved as

YYMM - 0303 -> 0x30 0x33 0x30 0x33 (bytes)

or ‘0' ‘3' ‘0' ‘3'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

In flash memory this number can be seen as

<------ Hex format ------> <– Ascii format –>

30 33 30 33 30 31 32 33 03030123 (Size - 8 bytes)

Display Format: YYMMDD-1234 - size in FLASH - 10 bytes

SN 0405110123 will be saved as

YYMMDD - 040511 -> 0x30 0x34 0x30 0x35 0x31 0x31 (bytes)

or ‘0' ‘4' ‘0' ‘5' ‘1' ‘1'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

In flash memory this number can be seen as

<----------- Hex format ----------> <– Ascii format –>

30 34 30 35 31 31 30 31 32 33 0405110123 (Size - 10 bytes)

Display Format: YYDDD-1234 - size in FLASH - 9 bytes

54

SN 042140123 will be saved as

YYDDD - 04214 -> 0x30 0x34 0x32 0x31 0x34 (bytes)

or ‘0' ‘4' ‘2' ‘1' ‘4'

1234 - 0123 -> 0x30 0x31 0x32 0x33 (bytes)

or ‘0' ‘1' ‘2' ‘3'

In flash memory this number can be seen as

<-------- Hex format ----------> <– Ascii format –>

30 34 32 31 34 30 31 32 33 042140123 (Size - 9 bytes)

Display Format: 123456768 - size in FLASH - 8 bytes

SN 12345678 will be saved as

12345678 -> 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 (bytes)

In flash memory this number can be seen as

<------ Hex format ------> <– Ascii format –>

31 32 33 34 35 36 37 38 12345678 (Size - 8 bytes)

Display Format: 1234 - size in FLASH - 4 bytes

SN 1234 will be saved as

1234 -> 0x31 0x32 0x33 0x34 (bytes)

In flash memory this number can be seen as

<------ Hex format ------> <– Ascii format –>

31 32 33 34 1234 (Size - 4 bytes)

Display Format: Custom or from the file - size in FLASH - defined size in bytes

Taken from the file or entered manually Ascii string will be saved in the flash memory.

When the Ascii format is selected, then the Ascii string is saved in memory “as is”.

All Ascii characters can be used. For example the entered following string

 02WX24S234

55

will be saved in memory as

 30 32 57 58 32 34 53 32 33 34 -> “02WX24S234"

When the HEX format is selected, then the string is converted to HEX format (only hex

characters are accepted - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

All two character pairs are converted to hex format and saved in memory.

 For example the entered following string

02A3B109E12F

will be saved in memory as

 HEX(MSW first) -> 02 A3 B1 09 E1 2F

or HEX(LSW first) -> 2F E1 09 B1 A3 02

Location in the target device’s flash memory, where the described above bytes are saved, is

specify in the ‘Memory Location - SN Start Address in Memory’ field of the serialization dialogue

screen (see figure 8.2-1). Specified address must be even and should be specified in the empty

memory space, not used by program code or data block

8.2.4 Model, Group, Revision

Custom text or data (hex), saved in target device’s flash memory is a string or data, up to 32

characters (bytes) long, in Ascii or hex format. It can contain any text or data, but this feature is

intentionally created to allow the hardware model, revision and group to be saved. Typically the

object code does not contains this kind of information, but it may be useful in some applications.

This feature is enabled when the check box ENABLE in the Model/Group/Revision field

is marked (see figure 8.2-1). When enabled, the size of desired text or data must be specified in the

field ‘Size in Bytes’. Size value can be any even number between 2 and 32. The location of the

text/data in the flash memory can be specified in the field ‘Start Address in Memory’. Similarly to

the location of the serial number, the specified address must be even and must be specified in the

empty memory space, unused by program code or data block. Otherwise, the error message will be

displayed.

The text to be saved in the flash memory can be entered in the edit line. Bytes can be entered

as an Ascii, if Ascii option is selected, or in hex bytes, if the Hex option is selected. When the

Ascii/Hex selector is modified, then the contents data is displayed as an Ascii string or as a hex bytes

data.

56

8.2.5 Device Serialization box

Device Serialization box, located on the main programming dialogue screen (see figures 8-2

and 4-1) contains IEEE Addresses, serial number and model information. The left columns contains

information taken from the target devices, and the right columns - pending data to be saved.

Whenever a communication with the target device is performed the IEEE Address and serial number

is read and displayed in the Device Serialization group (Figure 8.5). IEEE address or serial number

displayed in the white fields can be manually modified if required. The manually entered numbers

can be saved using Autoprogram option, or using manual buttons located inside the Device’s IEEE

Address and Serialization group. When the next time the Autoprogram action is selected, then the

next IEEE Address or SN is generated automatically, according to the setup in the Serialization .

This means that any data entered in the‘Device Serialization’ group can be treated as temporary data

and downloaded to the target devices.

Current target’s label (IEEE Address, serial number and model text) can be read at any time

by pressing READ IEEE Addr. and READ SN buttons located in the ‘Device Serialization’ group

(see figure 8.5)

When the Autoprogram action is selected and the IEEE Address / Serialization is enabled,

then the current data saved in target device is read first. If target device already contains IEEE

Figure 8.5

57

Address and/or serial number, or the IEEE Address and/or serial number have been modified

manually, then the following IEEE/SN edit dialogue screen is displayed (Figure 8.1). In this screen

all IEEE Addresses and serial numbers are displayed - taken from current target devices, pending

new data created automatically, and data edited manually. Each line contains selector, that allows

to accept desired data to be downloaded to target device - taken from current device, created

automatically, or modified manually for each target device separately.

58

8.3 Serialization Report Dialogue Screen

Serialization Report Dialogue Screen reports the results of the serialization procedure. The

report contains the detailed information of the two highest serial number programmed units, quantity

of programmed units along with the new created serial numbers, unmodified SN (reprogrammed

units), manually created SN and quantity of the overwritten SN. Detailed information about all

programmed units can be viewed using the Notepad text editor by pressing the ‘NotePad’ button.

Short information of the created serial numbers, format, date and time of programming is

displayed on the white report box (see Figure 8.3-1). IEEE/ SN are created automatically via

software by incrementing the highest IEEE/SN taken from the serial number files. If from any

reason the highest IEEE Address or Serial Number is wrong it can be removed from the database by

Figure 8.6

59

pressing the ‘Delete’ button. Note that the delete operation is not reversible. Third line allows to

select any line from the report information and delete it if required. Selected line is marked in the

report window with character ‘>’ on the left of the selected line.

60

9. IEEE /SN data file

The GangPro-CC software allows the user to download the IEEE Address and/or serial

number from custom defined data file. When the data file is used then in the IEEE Address Write

to Flash option the Write IEEE address from the file option should be selected (see Figure 8.2),

and in serialization the Serial Number Format field should be set to From File.

The IEEE/SN data file can contains list of IEEE Addresses, list of serial numbers of both -

pairs of the IEEE Addresses and serial numbers. Format of the IEEE addresses data is fixed and

contain 8 bytes data in hex format. Format of the serial numbers can be specified in the serialization

dialogue screen (Figure 8.2). The IEEE/SN data file can be created in any text editor.

All data specified after semicolon (;) are ignored and can be used by user as a comments. On

the top of the data the IEEE/SN file should contain header data. When the header is specified, then

list of desired IEEE Addresses and/or serial numbers can be listed. Following list of commands

started from # can be specified in the header:

#IEEE_SN_LIST

Data file contains IEEE addresses and serial numbers.

#IEEE_LIST

Data file contains only IEEE addresses.

#SN_LIST

Data file contains only Serial number list.

#SN_SIZE number ;optional

Overwrite size of the custom defined serial number size (see Figure 8.2). If the #SN_SIZE

is not specified, then the data specified in the serialization dialogue screen is used.

#IEEE_PREFIX hex numbers ;optional

#IEEE_SUFFIX hex numbers ;optional

#SN_PREFIX string ;optional

#SN_SUFFIX string ;optional

The IEEE Address that contains 8 bytes in hex (16 characters) can be specified in fully, or

can be combined from the fixed prefix, fixed suffix and listed part of the individual number.

In total this combination of data must contains 16 characters (8 bytes). For example

following IEEE addresses list

61

1111213330012222

1111213330022222

1111213330032222

.................................

1111213331202222

can be grouped from two the same data block and from one modified as follows

#IEEE_PREFIX 111121333

#IEEE_SUFFIX 2222

and list of variable IEEE Addresses list

001

002

003

.................................

120

Prefix and /or suffix numbers can be modified in the list if required, eg.

#IEEE_PREFIX 111121333

#IEEE_SUFFIX 2222

001

002

003

#IEEE_PREFIX 333121333

001

002

003

that defined IEEE addresses

1111213330012222

1111213330022222

1111213330032222

3331213330012222

3331213330022222

3331213330032222

#SN_PREFIX string ;optional

#SN_SUFFIX string ;optional

Similar to IEEE prefix/suffix - the serial number string can be combined from SN prefix,

suffix and variable SN part.

62

Example of the IEEE Address / Serial Number list (5 lines only in this example)

; ===

; IEEE Address /Serial Number List

; first col - IEEE address, second col - SN

; SN format - Ascii

; ===

#IEEE_SN_LIST

#SN_SIZE 12

01C2220000010022 WX5E2007001P

01C2220000020022 WX5E2007002P

01C2220000030022 WX5E2007003P

01C2220000040022 WX5E2007004P

01C2220000050022 WX5E2007005P

The same IEEE Address / Serial Number list with specified prefix /suffix

; ===

; IEEE Address /Serial Number List

; first col - IEEE address, second col - SN

; SN format - Ascii

; ===

#IEEE_SN_LIST

#SN_SIZE 12

#SN_PREFIX WX5E2007 ;any Ascii character

#SN_SUFFIX P

#IEEE_PREFIX 01C222000 ;hex only

#IEEE_SUFFIX 0022

001 001

002 002

003 003

004 004

005 005

The same IEEE Address / Serial Number list with specified prefix only

; ===

; IEEE Address /Serial Number List

; first col - IEEE address, second col - SN

; SN format - Ascii

63

; ===

#IEEE_SN_LIST

#SN_SIZE 12

#SN_PREFIX WX5E2007 ;any Ascii character

#IEEE_PREFIX 01C222000 ;hex only

0010022 001P

0020022 002P

0030022 003P

0040022 004P

0050022 005P

When writing a new IEEE Address, or SN, entry the IEEE Address/SN can be compared to those

stored in the IEEE/SN data file. To do so, the data file should be specified in the SN/IEEE Record

file field (see Figure 8.2). When the desired IEEE Address Write option and Serial Number Format

is selected using the data from the file, then using the SN/IEEE file button located in the main

dialogue screen (Figure 4.1) the desired IEEE/SN file should be opened. Selected file is converted

to final format and all listed IEEE addresses and serial numbers are verified in the data base file

against usage. If specified IEEE addresses or SN have been used before, then these numbers are

removed from the pending list. When the IEEE/SN file is read and verified, then the current pending

list is displayed in the screen (Figure 9.1) with extra information on the top

* number of the IEEE/SN found in data base and removed from the pending list

* number of the IEEE addresses with incorrect size and removed from the pending list

* number of the Serial Numbers with incorrect size and removed from the pending list

* number of the accepted IEEE/SN

64

When the “Paste to Notepad” button is pressed, then the pending IEEE addresses /Serial Number

list can be saved in format ready to be used as a valid IEEE/SN file if required.

Figure 9.1

65

10. Check Sum Options

Programming software has two groups of check sum (CS) calculation. The first group is used

for internal programming verification and the second group can be used for firmware verification

in application software.

The CS used for internal verification is calculating CS only for specified words in the code

file regardless of the flash memory size, location etc. This CS is useful only inside the programmer,

because programmer has all information about programmed and empty bytes location. This method

is also useful if only part of the code is programmed in the flash (append option). All not

programmed words in the programming process are ignored, even if these words are not empty in

the flash.

The check sum used for internal programming verification is displayed in the Check Sum

Group (Figure 10.1) (see the Main Dialog screen - Figure 4.1)

In the source line is displayed the arithmetic sum of the code contents with added contents

of the serialization, model etc. if selected. Arithmetic sum is calculated as the sum of 16-bits

unsigned words - result is 32 bits unsigned. Only programmed words are taken for calculation. All

other not used words are ignored. All bytes are converted to 16-bits words as follows (for simplicity -

format casting is not present in this example):

 word = data[address] + (data[address+1]<<8)

where address is even and incremented by 2.

In the memory line is displayed the CS result taken from the flash memory, calculated in the

same way as the CS taken from the source. Only words defined in the source are taken from the flash

memory for calculation.

Figure 10.1

66

Second group of the CS is custom defined Check Sum that can be used by firmware for code

verification in the flash. Up to four CS block can be specified and CS results can be saved in the

flash for verification. Size of each CS block and CS result location in flash are defined by the user.

The Check Sum Options dialog (figure 10-2) is selected from following pull down menu:

 Setup -> Check Sum Options

Start Address should be even, and the Stop Address should be odd. CS result address in the flash

should be even. Make sure that the CS result is saved out of the CS block space. Otherwise the CS

result will modify the contents of the CS inside the specified block. CS result after the second

calculation would not be the same and CS result would be useless.

Figure 10.2

67

When the CS Result Save option is not selected then the CS of the selected block is

calculated and CS result displayed in the report window only (Figure 10.3). This option can be used

for CS code verification defined as the code form Start to End Addresses with 0xFF data in the not

specified code location.

Type of the CS can be selected from the following list (Figure 10.4)

Initial value for CS calculation can be selected as zero, all 0xFFs or as the Start Address from

pull down menu (Figure 10.5).

Figure 10.3

Figure 10.4

68

CS result can be used As Is or can be inverted (Figure 10.6).

Data size (byte or 16 bits word) used for calculation and CS result size is displayed in the

dialog screen as Data IN word size and CS Result size (Figure 10.2). Polynomial contents (if

required) can be specified in the POLY edit line in HEX format (eg. 0x1234).

10.1 Check Sum types

Following Check Sum types are implemented (Figure 10.4)

Arithmetic Sum (8b / 16b)

Check Sum is calculated as modulo 16-bits sum of all bytes (unsigned) from Start to the End

Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

Figure 10.5

Figure 10.6

69

 CS = CS + (unsigned int) data[addr];

}

CS = 0xFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFF ^ CS;

Arithmetic Sum (8b / 32b)

Check Sum is calculated as modulo 32-bits sum of all bytes (unsigned) from Start to the End

Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

 CS = CS + (unsigned long) data[addr];

}

CS = 0xFFFFFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFFFFFF ^ CS;

Arithmetic Sum (16b / 16b)

Check Sum is calculated as modulo 16-bits sum of all 2-byte words (unsigned) from Start

to the End Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr=addr+2)

{

 CS = CS + (unsigned int)data[addr] + (unsigned int)data[addr+1];

}

CS = 0xFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFF ^ CS;

Arithmetic Sum (16b / 32b)

Check Sum is calculated as modulo 32-bits sum of all 2-byte words (unsigned) from Start

to the End Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr=addr+2)

{

 CS = CS+(unsigned long)data[addr] + (unsigned long)data[addr+1];

70

}

CS = 0xFFFFFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFFFFFF ^ CS;

CRC16 (Poly 0x11201) - (8b / 16b) (Named as CRCCCITT)

and

CRC16 defined polynomial - (8b / 16b)

Check Sum is calculated as CRC16 from each bytes from Start to the End Addresses as

follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

 CS = CS_CRC16_8to16((long)data[addr], CS);

}

CS = 0xFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFF ^ CS;

where

unsigned long CS_CRC16_8to16(long data, unsigned long crc)

{

 unsigned long tmp;

tmp = 0xFF & ((crc >> 8) ^ data);

crc = (crc << 8) ^ crc_tab32[tmp];

 return(0xFFFF & crc);

}

The CRC table is generated first as follows:

CS_init_crc16_tab(0x1021); for CRC CCITT

CS_init_crc16_tab(CRC_def_POLY); for CRC16 defined polynomial

where

void CS_init_crc16_tab(unsigned short poly)

{

 int i, j;

71

 unsigned short crc, c;

 for (i=0; i<256; i++)

{

 crc = 0;

 c = ((unsigned short) i) << 8;

 for (j=0; j<8; j++)

{

 if ((crc ^ c) & 0x8000)

crc = (crc << 1) ^ poly;

 else

crc = crc << 1;

 c = c << 1;

 }

 crc_tab32[i] = (unsigned long)(0xFFFF & crc);

 }

}

CRC32 (Poly 0x04C11DB7) - (8b / 32b) (Named as IEEE 802-3)

and

CRC32 defined polynomial - (8b / 32b)

Check Sum is calculated as CRC32 from each bytes from Start to the End Addresses as

follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr++)

{

 CS = CS_CRC32_8to32((long)data[addr], CS);

}

CS = 0xFFFFFFFF & CS;

 if(cs_inverted)

 CS = 0xFFFFFFFF ^ CS;

where

unsigned long CS_CRC32_8to32(long data, unsigned long crc)

{

 return(((crc >> 8) & 0x00FFFFFF) ^ crc_tab32[0xFF & (crc ^ data)]);

}

The CRC table is generated first as follows:

 CS_init_crc32_tab(0x04C11DB7) for IEEE 802-3

72

 a polynomial of

 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

and

 CS_init_crc32_tab(CRC_def_POLY) for CRC32 defined polynomial

where

void CS_init_crc32_tab(unsigned long poly_in)

{

 int n, k;

 unsigned long c, poly;

 poly = 0L;

 for (n = 0; n < 32; n++)

 {

poly <<= 1;

poly |= 1L & poly_in;

poly_in >>= 1;

 }

 for (n = 0; n < 256; n++)

 {

 c = (unsigned long)n;

 for (k = 0; k < 8; k++)

 c = c & 1 ? poly ^ (c >> 1) : c >> 1;

 crc_tab32[n] = c;

 }

}

73

11. Script File - defined programming sequence

Programming sequence can be customized when is using a script file. Script file prepared as

a text file (using any editor like notepad) can contains customized programming sequences in any

order. Generally, all buttons available on the main dialogue screen can be used in the script file. All

other options available on others screens like memory options, serialization type etc. can not be

modified from the script file directly, but can be reloaded in fully using configuration file. From the

script file any configuration files can be called at any time that allows to modify programmer

configuration. This method can simplify programming process using script file and allows to use full

options available in the programmer. Programming sequence conditions can be taken from user

defined procedures attached as an independent DLL if required.

Programmer has two entry for taking the sequence from the script file

1. By pressing the Script File button in the Main dialog

2. By using the -rf with the executable file

11.1 Script button

The ‘Script ’ button is the dynamically programmable device action

button that allows to take a desired action taken from the script file. The

Script button has a name Script File - none (Figure 11-1) if the script file

is not defined or Script: with used file name when the script file is active

(Figure 11-2). When the Script button is pressed and the current script file

is not active, then the Open File dialog is displayed and the desired script

file should be selected. When the Script file button is not empty and the

new script file if required, then the new file can be selected from the pull

down menu - File-> Open Script File.

The Script button is very useful for implementing a short

programming sequence not present directly in the Device Action group buttons Below is an easy

script file used for downloading two independent codes to target device - first code used for

hardware test if possible, and when hardware is ok, then the second code is downloaded as the final

Figure 11-1

Figure 11-2

74

code to target device. The same sequence can be used with other buttons, but sequence should be

always repeated, that of course is not convenient.

Using the notepad editor create the script file and save it eg. as the file “test.sf” or any other file

name. See this chapter below for all available instructions that can be used in the script file.

;--

; easy script file;

;--

 LOADCFGFILE C:\Program Files\Elprotronic\USB GangPro-CC\test.cfg

 LOADCODEFILE C:\Program Files\Elprotronic\USB GangPro-CC\test.cfg

 AUTOPROGRAM

; now the hardware is tested according to downloaded firmware

 MESSAGEBOX YESNO

 "Press YES when the test finished successfully."

 "Press NO when the test failed."

 IF BUTTONNO GOTO finish

 LOADCFGFILE C:\Program Files\Elprotronic\USB GangPro-CC\final.cfg

 LOADCODEFILE C:\Program Files\Elprotronic\USB GangPro-CC\final.cfg

 AUTOPROGRAM

>finish

 END

;--

When the script file above is used then the first configuration file and the fist code file is downloaded

and Autoprogram function is executed. When finished then the MCU firmware started (make sure

that the first configuration allows to start the code when the Autoprogram is finished). Final code

is downloaded when the test has been finished successfully.

Before running the script file the configuration files named test.cfg and final.cfg required

in the project should be created using the GUI software first. To do that connect target devices to

programming adapter, select desired configuration and save the configuration file as test.cfg and

create final configuration file in similar way.

11.2 Script file option

75

Programming sequence can be customized when using the -rf with the executable file

(described in the “Project and Configuration Load/Save” chapter) .

When the executable file GangPro-CC.exe is called with a script path as an argument e.g.

 FlashPro-CC.exe -rf C:\Program Files\Elprotronic\USB GangPro-CC\script.txt

or when the icon with the GangPro-CC.exe and script file path is executed then programmer

starts automatically programming sequences according to procedure specified in the script file.

Access to other buttons are blocked. When script file sequence is finished then program is

terminated. There is not option to modify the running sequence when script sequence is used. This

option is useful in production, because nobody can modify sequence that has been prepared for the

production purpose.

11.3 Script commands

LIMITATIONS:

1. Up to 1000 script lines commands can be used. Empty lines and lines with comments only are ignored and not

counted.

2. Up to 50 CALL’s deep stack is used (CALL in CALL in CALL......).

SYNTAX:

white spaces before instructions, labels etc are ignored.

; comment - all contents after semicolon are ignored.

NOTE: Comment can not be used in the lines where the file name is specified.

>label - character ‘>’ without spaces must be placed before label name.

NOTE: After label can not be specified any command in the same line. Line can contain label only.

LIST OF INSTRUCTIONS:

MESSAGEBOX type FCTEXT - pop-up message box with buttons.

- message taken from the FCONTROL function (User’s DLL)

MESSAGEBOX type - pop-up message box with buttons.

 “ message - line -1 “ - Text displayed in message box.

 “ message - line -2 “ - Each line contents must be located between characters “ ”

 “ max up to 50 lines “ - Number of content lines - up to 50 lines.

 Message box type list

76

 OK - One button OK

 OKCANCEL - Two buttons OK , CANCEL

 YESNO - Two buttons YES , NO

 YESNOCANCEL - Three buttons YES , NO, CANCEL

GOTO label

CALL label - CALL procedure.

RETURN - return from CALL.

IF condition GOTO label

IF condition CALL label

 condition list:

 BUTTONOK - if button OK pressed in the message box.

 BUTTONYES - if button YES pressed in the message box.

 BUTTONNO - if button NO pressed in the message box.

 BUTTONCANCEL - if button CANCEL pressed in the message box.

 DONE - if selected process e.g. AUTOPROGRAM finished successfully.

 FAILED - if selected process e.g. AUTOPROGRAM failed.

 CONTROL = number - if status from the FCONTROL function = NUMBER

FCONTROL type argument - call the external function from FxControl DLL

PAUSE number - pause in miliseconds - 1 to 100000 range (1ms to 100 s).

OPENDLLFILE filename - FxControl DLL file - Full path and DLL File name.

LOADCFGFILE filename - Configuration file - Full path and File name.

LOADCODEFILE filename - Code file - Full path and File name.

LOADSNFILE filename - IEEE/SN file - Full path and File name.

VCCOFF - Turn OFF Vcc from programming adapter to target device.

VCCON - Turn ON Vcc from programming adapter to target device.

Note: Vcc from FPA must be enabled first using configuration file.

RESET -equivalent to pressed button RESET on the main dialogue screen.

AUTOPROGRAM -equivalent to pressed button AUTOPROGRAM on the main dialogue screen.

VERIFYACCESS -equivalent to pressed button VERIFY LOCK BIT on the main dialogue screen.

ERASEFLASH -equivalent to pressed button ERASE FLASH on the main dialogue screen.

BLANKCHECK -equivalent to pressed button BLANK CHECK on the main dialogue screen.

WRITEFLASH -equivalent to pressed button WRITE FLASH on the main dialogue screen.

VERIFYFLASH -equivalent to pressed button VERIFY FLASH on the main dialogue screen.

READFLASH -equivalent to pressed button READ/COPY on the main dialogue screen.

READSN -equivalent to pressed button READ SN on the main dialogue screen.

READIEEE -equivalent to pressed button READ IEEE Addr on the main dialogue screen.

LOCKFLASH -equivalent to pressed button LOCKFLASH on the main dialogue screen.

TRACEOFF - trace OFF.

TRACEON - trace ON and saved in the “Trace-Scr.txt” file in current working directory.

77

Option useful for debugging. Trace file contains sequence of all executed commands from script file in the run

time. On the left side of all lines the current line numbers correspondent to the line number in the script file

are printed. Line numbers are counted without empty lines and without lines contains comments only.

END - end of script program.

Programming sequence conditions can be taken from user defined procedures attached as an

independent DLL and called in the script as a function.

FCONTROL type argument - call the external function from FxControl DLL

Function should be created using Visual C++ and attached to FlashPro-CC software. When the DLL

is created then the full path and name of the used DLL should be specified in the script file. In the

script file the name of the desired DLL can be specified on-line few times. This means that more then

one DLL can be used in the programming sequence, but only one DLL at the time. When the new

DLL file is open, then the old DLL file is closed at the same time. One function is used in the user

defined DLL

 _int32 F_Control(_int32 type, _int32 argument, char * message);

Parameters type and argument are specified in the script file and are transferred from the

programming software to DLL. Status from F_Control and message are transferred from DLL to

programming software.

Programming software package contains the source code of the user defined DLL. Package has been

prepared using MS Visual C++.net package. Source code is located in directory

 C:\Program Files\Elprotronic\FxControl-DLL

User defined function should be inserted in empty place inside the FxControl.cpp file and

recompiled. Recompiled file FxControl.dll ready to be used will be located in directory

 C:\Program Files\Elprotronic\FxControl-DLL\release

DLL file can be renamed to any file name and name and specified in the script file via command

 OPENDLLFILE filename

Below is an easy script file contents that allows to create following sequence;

78

1. Vcc supplied to target device is turn-OFF and first message box with buttons OK/CANCEL

is displayed. Programmer is waiting until button OK or CANCEL is pressed.

2. When confirmed, then first configuration file test-A.cfg is downloaded to programmer.

Configuration file test-A.cfg should be prepared first using programming software with

desired configuration, selected desired code file etc. Programmer’s configuration should be

saved using “Save setup us ..” option.

3. When test code is downloaded and processor started (if enabled in test-A.cfg file) then

message box is displayed and software is waiting until button YES / NO is press. Meantime

manual target’s device test can be done. If test is positive, then button OK should be pressed.

Or button NO if test failed.

4. When button OK has been pressed then programmer downloads finalcode.cfg configuration

file to programmer. Current configuration can activate serialization if required, reload final

code to be downloaded etc. When the new configuration is reloaded then final code is

downloaded to target device, serialization is created etc.

5. On the end programmer returns to beginning and waiting for the next target device to be

connected.

;===

; Script file - demo program - without DLL file

;---

>START

 VCCOFF

 MESSAGEBOX OKCANCEL

 "VCC if OFF now. Connect the test board."

 "When ready press the button:"

 " "

 "OK - to test the board"

 "CANCEL - to exit from program"

 IF BUTTONCANCEL GOTO finish

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\GangPro-CC\test-A.cfg

 MESSAGEBOX OK

 "Press OK to download the test program."

 AUTOPROGRAM

 MESSAGEBOX YESNO

 "Press YES when the test finished successfully."

 "Press NO when the test failed."

 IF BUTTONNO GOTO START

79

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\GangPro-CC\finalcode.cfg

 AUTOPROGRAM

 GOTO START

>finish

 END

;===

Below is the next script file examples uses DLL file that allows to control testing process via

function written in the DLL. Functionality is the same as in the example above, but instead manually

confirmation of the test result the result is taken automatically from the DLL function. Two functions

has bee used for this purpouse

 FCONTROL - calls external user defined function in the DLL

 IF CONTROL = 0 GOTO START - test status from the FCONTROL and if result is 0 (FALSE)

then procedure returns to start.

Required DLL file should be created first.

;===

; Script file - demo program - with DLL file

;---

 OPENDLLFILE C:\Program Files\Elprotronic\FxControl-DLL\release\FxControl.dll

>START

 VCCOFF

 MESSAGEBOX OKCANCEL

 "VCC if OFF now. Connect the test board."

 "When ready press the button:"

 " "

 "OK - to test the board"

 "CANCEL - to exit from program"

 IF BUTTONCANCEL GOTO finish

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\GangPro-CC\test-A.cfg

 MESSAGEBOX OK

 "Press OK to download the test program."

 AUTOPROGRAM

 FCONTROL 1 0 ;type 1, argument 0, but can be any

 IF CONTROL = 0 GOTO START ;when false (0), return to start

 IF BUTTONNO GOTO START

 LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\GangPro-CC\finalcode.cfg

80

 AUTOPROGRAM

 GOTO START

>finish

 END

;===

81

12. Project and Configuration Load / Save

Programming software can save configuration settings in the configuration files or save the

whole project configuration with used code contents and save it in the encrypted project file . This

allows the user to create several configuration or project fils, one for a particular task, and thus

eliminates the need to manually change settings every time a different configuration is desired.

Furthermore, the config.ini file contains the most recently used settings and those settings will be

used as default whenever the software is started.

12.1 Load / Save Setup

To create a configuration file simply select Save Setup from the File menu. Current settings

will be saved for future use. To restore configuration settings select Load Setup from File menu and

select a file containing the settings you wish to restore.

In order to prevent accidental setup changes the GangPro-CC Programmer provides the

option to Lock configuration settings. When the user selects the Lock/Unlock Setup option from the

Setup menu, the Flash Programmer will prevent the user from modifying the setup. The only options

that are available when the programmer is locked are Verify, Read, Autoprogram and Next. Notice

that the Next button will immediately change to implement the Autoprogram function. To unlock

the programmer the user must select the Lock/Unlock Setup option from the Setup menu.

12.2 Load / Save Project

The Project option (Save/Load) contains more then the programmer configuration only, but

can also the code used in the project. Contents of the project file is encrypted, so it is not possible

to read the contents of the used code downloaded to target device. When the project is opened then

the same decryption key must be used as it was used in the encryption process, otherwise decryption

will not succeed. Encryption key depends from the used type of software (FlashPro-CC, GangPro-

CC, etc.) used password or destination’s PC “hardware fingerprint” number. So - the project file

created with the GangPro-CC software cannot be used with the FlashPro-CC and vice-verse. Each

project file should be create in the same type of software. Project file is CRC protected and CRC

check is performed when the file is loaded .

Project can be unprotected or protected with the destination PC “hardware fingerprint”

number or password protected. This allows to create the project that can be used only on the specific

PC when the project is encrypted with the destination PC “hardware fingerprint” number (useful in

82

production) or create the project that can be used only when the correct password is entered every

time when the project is open. Project can be unlocked or locked with almost all blocked buttons and

pull down menu items. When the project is locked, then only major buttons like Autoprogram or

Verify are active - and only a few pull-down menu items are accessible. All options that allows to

read the code contents are blocked.

When the new project is create then it is recommended to select the New Setup from pull

down menu and set the default option of all parameters and names used in the programmer. As the

next - the desired processor, code file, password file if required and all desired option (see all

available options described in this manual) should be selected. When it is done, it should be verified

if programmers works as expected. When all works, then the current setup can be saved as the

project file. Select the Save Project as.. from File pull down menu. Following dialogue will be

displayed (Figure 12.2-1) that allows to select desired project option

Following options can be selected:

Figure 12.2-1

83

 Project protection:

Any PC - not protected.

When this option is selected then project is not protected and can be opened on any

PC without restrictions.

Any PC - Password protected.

When this option is selected then project can be opened when the password is

correct. The desired password should be entered in two edit lines. Password is case

sensitive and takes up to 16 characters - space including.

Selected PC - Hardware Fingerprint

When this option is selected then project can be opened only on one desired PC

where the PC’s “hardware fingerprint” number taken from the destination PC is the

same as the number used when the project has been created. This option is useful in

production because project can be opened automatically without password on the

desired PC. The same project file cannot work on other computers. When the project

is created for particular PC, then the PC “hardware fingerprint” number should be

taken from the desired PC and entered in the edit line in dialogue screen (figure 12.2-

1). This number has hardcoded format and contains eight hex characters with dash

between 4th and 5th character eg.

6FA4-E397

Notice, that the project created with the desired PC’s “hardware fingerprint”

number will not work on the PC where the project has been created, because

“hardware fingerprint” numbers on the destination PC and the PC used for creating

a projet are not the same. It is possible to create the project with the PC’s “hardware

fingerprint” number taken from his own PC, create a project and check if work as

expected. When all is OK, then project should be saved again with the desired PC’s

“hardware fingerprint” number.

PC’s “Hardware fingerprint” number used with the project can be read by selecting

the “PC Hardware fingerprint number” option from pull down menu

About/Help -> PC Hardware fingerprint number

Following message box is displayed when the option above is selected (figure 12.2-2)

84

 Locking option:

Locked Project

 1. When not selected, then project is not locked. All contents can be modified and all

buttons are accessible.

 2. When selected then project is locked. Almost all buttons are disabled (grayed) and

almost all items in the pull down menu are disabled.

When the project is locked, then it is possible to select - permanently lock project,

or select an option that it is possible to unlock the project under password. The

unlock password can be not the same as the password used for opening the project.

Locked Read options

When selected then the code viewers and READ button are blocked and not allows

to read the code contents downloaded to target device. If the security fuse is blown

after programming the target device, then code cannot be seen by the staff

downloading code to target devices.

Unlock with password

When project is locked then it is possible to select option “unlock with password”

and specify up to 16 characters unlocking password. Password is case sensitive.

On the figure 12.2-3 is a “Project Security Options” dialogue screen with selected

options

 Project protected with PC’s “hardware fringerprint” number, locked and

unlocked with password.

Figure 12.2-2

85

By default, project is not protected and not locked. This allows to create unprotected project and

open it at any time on any PC without restrictions. All buttons and items on the dialogue screen are

not blocked.

12.3 Commands combined with the executable file

Project file or configuration setup file (or Code file) can be opened using Load Setup (Load

Code / Password File) option from File menu or can also be opened using command line combined

with the executable file name. Following command line switches are available

 -prj Project file name (Open Project file)

 -sf Setup_file_name (Open Setup file)

 -cf Code_file_name (Open Code file)

 -nf IEEE/SN_ file_name (Open IEEE addresses / Serial number list file)

 -rf Script_file_name (Run programming sequence from the Script File)

 -lock

Figure 12.2-3

86

Note: When the -cf option is used, then code file name saved in the setup file (configuration

file) is ignored and code file name specified with key -cf is used.

When the -prj option is used, then the -sf, -cf, -rf options are ignored.

Using Windows START button (left bottom) select Run.. Using Browse.. find and select executable

file (see Figure 12.3-1)

“C:\Program Files\Elprotronic\USB GangPro-CC\GangPro-CC.exe"

and at the end enter the required key with name of the setup file eg.

“C:\Program Files\Elprotronic\USB GangPro-CC\GangPro-CC.exe” -sf E:\ElproTronic\MFG\prg-04.cfg

To fully lock the configuration setup the extra key “-lock” can be added in the command line eg.

Figure 12.3-1

Figure 12.3-2

87

“C:\Program Files\Elprotronic\USB GangPro-CC\GangPro-CC.exe” -lock -sf E:\ElproTronic\MFG\prg-04.cfg

or

“C:\Program Files\Elprotronic\USB GangPro-CC\GangPro-CC.exe” -sf E:\ElproTronic\MFG\prg-04.cfg

Following configuration setup can be created using Shortcut options that allows to create a lot of

icons located on the desktop - each icon with required independent configuration setup. To do that

move the cursor to inactive desktop area, click right mouse button and select New (see Figure 12.3-3)

Using Browse.. in the Create Shortcut dialogue box select the following executable file

 “C:\Program Files\Elprotronic\USB GangPro-CC\GangPro-CC.exe"

(see Figure 12.3-4) and at the and add the required command keys (see Figure 12.3-5) eg.

“C:\Program Files\Elprotronic\USB GangPro-CC\GangPro-CC.exe" -lock -sf E:\ElproTronic\MFG\prg-04.cfg

Figure 12.3-3

88

Click button Next and follow instruction to create icon. Using Copy and Paste and modify required

configuration file names a lot of icons can be created with independent configuration setups.

Clicking on the selected icon GangPro-CC programming software will start with the selected

configuration setup, and locked if required.

Figure 12.4

Figure 12.5

89

13. Target connection

13.1 Connection via Debug Interface

Texas Instruments’ boards uses 10 pins connector for communication with the CCxxxx

devices, that allows to program target device via “SoC debug” interface. This connector contains all

signals necessary to debug, program and interface the supported devices. In the table 13.1 and Figure

13.1 are listed and shown all pins used for debug mode. Not specified pins in this table are used for

other communication and should not be grounded, shorted etc.

The GangPro-CC Flash Programmers use

the 14-pin connector’s pinout (Figure 13.2 -

Header - Top View) to facilitate connections with

six target devices. All clock signals (DC) are

connected in parallel to target devices and all six

bidirectional data lines (DD) are connected to each

target devices. Reminding lines (RST, Vdd, GND)

Pin

#

Name Description

1 GND Ground

2 Vdd / Sense Vdd used to set correct voltage for the

voltage level connector and can be used to

supply target device.

3 DC Debug Clock

4 DD Debug Data

5 do not use do not use

6 do not use do not use

7 RST RESET - Active LOW

8 do not use do not use

9 Vdd / alt NC Deliver Vdd from external source

(OPTIONAL)

Table 13.1 Target’s Device connector

Header - Top View

Figure 13.1

Header - Top View

Figure 13.2

90

are connected to all target devices in parallel. In the table 13.2 are listed all pins in the GangPro-CC

adapter (USB-FPA-5.x)

Figure13-3 shows interconnection between GangPro-CC programming adapter, GangPro-CC

Splitter and six target devices using debug interface.

Figure13-4 and 13-5 shows picture and schematic of the GangPro-CC Splitter.

Figure13-6 shows simplified schematic of the 14-pins Input/Output connection inside the

GangPro-CC Flash Programming Adapter.

For the connection between programmed target device and programming adapter or Gang

Splitter are used ribbon flat cables. Active signals DD (Data) and DC (Clock) are using pins 3 and

4 in the 10-pins connector, or wires no 3 and 4 in the flat ribbon cable. When these cable are long,

then signals between these wires can be coupled and communication can be degraded. When the

long cables are between GangSplitter and target devices - over 8 inches (over 20 cm) then it is

recommended twist the wires 2,3 that allows to insert the Vdd wire between signal lines. This

Pin # Name Description

1 (Red) DD-1 Debug Data output / Input - 1

2 Vdd / Sense Vdd supplied to the target (2.2 to 3.6V/ max 100 mA) and the target’s Vdd voltage sense.

This pis should be connected to target’s device Vdd if device is supplied from the Flash

Programming Adapter. If the target’s device is supplied from his own battery or from external

power supply then the pin 2 or 4 (Vdd sense) should be connected to device’s Vdd.

3 Busy BUSY - 1 when the communication with target is active.

4 Sense Target’s Device Vdd Sense (see pin-2 description)

5 do not use do not use

6 DD-2 Debug Data output / Input - 2.

7 DC Debug Clock - common clock to all target devices

8 Vdd-En Used to control external power supply. Voltage 2 to 5V -> Power Supply ON

9 GND Ground

10 DD-3 Debug Data output / Input - 3.

11 \RST Reset output

12 DD-4 Debug Data output / Input - 4.

13 DD-6 Debug Data output / Input - 6.

14 DD-5 Debug Data output / Input - 5.

Table 13.2 GangPro-CC Interface connector

91

modification will significantly reduce coupling between signal wires and allows to increase the cable

length (see Figure 13.7). Communication degradation can also be reduced when the small capacitor

Figure 13.4

Figure 13.3
92

Figure 13.5

93

Figure 13.6

94

value 33 to 47 pF is connected between DD (Data) pin and ground on the target’s device. Do not

connect any components to the DC (Clock) pin.

13.2 Connection via SPI Interface

Some of the latest MCU - the CC85xx (CC8520, CC8521, CC8530, CC8531) - provide

only SPI communication interface for programming the MCU. The GangPro-CC provide also

ability to program these devices via SPI interface, however desired adapters/gang splitters are not

provided for the SPI interface. Below is the description how to connect the GangPro430 adapter

with target devices and provide communication via SPI. There is a limitation, that the data

downloaded to target devices must be same for all target. That means, the unique data like unique

serial number cannot be downloaded to each targets. If the unique data are required then the

FlashPro-CC should be used. In the Table 13-3 re provided signal description used for SPI

connection with target devices.

Figure 13.7

95

Pin # Name Description

1 (Red) DD-1 MISO-1 (SPI-1 output) from the 1-st target device

2 Vdd / Sense Vdd supplied to the target (2.2 to 3.6V/ max 100 mA) and the target’s Vdd voltage sense.

This pis should be connected to target’s device Vdd if device is supplied from the Flash

Programming Adapter. If the target’s device is supplied from his own battery or from external

power supply then the pin 2 or 4 (Vdd sense) should be connected to device’s Vdd.

3 TDI MOSI (SPI Input) - common SPI input to all target devices.

4 Sense Target’s Device Vdd Sense (see pin-2 description)

5 TMS CSn - Chip enable (active LOW) - common to all target devices.

6 DD-2 MISO-2 (SPI-2 output) from the 2-nd target device

7 DC SPI Clock - common clock to all target devices

8 Vdd-En Used to control external power supply. Voltage 2 to 5V -> Power Supply ON

9 GND Ground

10 DD-3 MISO-3 (SPI-3 output) from the 3-th target device

11 \RST Reset output - common to all targets

12 DD-4 MISO-4 (SPI-4 output) from the 4-th target device

13 DD-6 MISO-6 (SPI-6 output) from the 6-th target device

14 DD-5 MISO-5 (SPI-5 output) from the 5-th target device.

Table 13.3 GangPro-CC connection with SPI interface

96

14. Driver for the IAR C-Spy debugger

The FPA programming adapter can be used with the IAR Embedded Workbench IDE

software for debugging. When the FPA Gang adapter is used, then the only one target connected to

slot # 1 can be used for debugging. Adapter connection with the C-Spy debugger software can be

done easy in two steps.

First step:

Open the IAR C-Spy debugger software and under pull down menu

 Project-> Options..

 Select Debugger

In the Driver field of the Setup page select Third-Party Driver. See figure 14-1 for details.

Second step:

Open the IAR C-Spy debugger software and under pull down menu

 Project-> Options..

 Select Debugger -> Third-Party Driver

In the IAR debugger driver plugin field using browse button (marked as “....”) select following path

for the FPA driver and select a desired driver version versus the IAR software version

Figure 14-1

97

C:\Program Files\Elprotronic\CCxx\Driver-for-CSpy-IAR\cc8051_fpa_7v20.dll

for the IAR EW8051 version 7.20

C:\Program Files\Elprotronic\CCxx\Driver-for-CSpy-IAR\cc8051_fpa_7v40.dll

for the IAR EW8051 version 7.40

C:\Program Files\Elprotronic\CCxx\Driver-for-CSpy-IAR\cc8051_fpa_7v50.dll

for the IAR EW8051 version 7.50

 etc.

See Figure 14-2 for details

It is possible to copy and paste the dll files from the

C:\Program Files\Elprotronic\CCxx\Driver-for-CSpy-IAR

directory to other location, eg. to IAR directory

.....\8051\bin

Note, that in the

C:\Program Files\Elprotronic\CCxx\Driver-for-CSpy-IAR

directory are located two dll files - the cc8051_fpa_xxxx.dll that should be called directly from the

IAR C-Spy debugger, and the second dll file - ccFPAhil.dll, that is used by the first DLL

(cc8051_fpa_xxxx.dll). These two dlls should be always located in the same directory.

Figure 14-2

98

The IAR C-Spy debugger is ready to work with FPA adapter. Connect programming adapter to target

device and try. By default - the Vcc = 3.0 volts is supplied from FPA to target device, and

communication speed is fast (3Mb/s). If other setup is required, then it is possible to add extra setups

in the IAR C-Spy software and modify it.

Modification can be added in the Debbuger - Extra Option page (see figure 14-3 for details)

Currently following options are implemented (note: dash ‘-‘ must be on the front of all commands):

Command -MCUtype

* If commands is not used, then any CCxx can be accepted (default)

* If MCU type is specified, then warning will be displayed, if MCU type is not the same then

specified. However, if the same type of the MCU is used with different flash size then

warning will not be displayed, because ID number taken from the MCU specified only MCU

type, not the MCU flash size.

Acceptable MCU type list:

Figure 14-3

99

CC1110F8

CC1110F16

CC1110F32

CC2430F32

CC2430F64

CC2430F128

CC2431F32

CC2431F64

CC2431F128

CC2510F8

CC2510F16

CC2510F32

CC2511F8

CC2511F16

CC2511F32

CC1111F8

CC1111F16

CC1111F32

RC11xx-8kB

RC11xx-16kB

RC11xx-32kB

RC2300

CC2530F32

CC2530F64

CC2530F128

CC2530F256

Command example -MCUtype CC2430F128

Command -fpaVcc

By default, the Vcc from programming adapter is used with value Vcc= 3.0V. Vcc voltage

can be modified from external of from FPA Vcc=2.2V to 3.6 V step 0.2 V

keys 0.0 (external Vcc is used - Vcc from FPA is disabled)

2.2 (Vcc = 2.2 V from FPA is used)

2.4 (Vcc = 2.4 V from FPA is used)

2.6 (Vcc = 2.6 V from FPA is used)

2.8 (Vcc = 2.8 V from FPA is used)

3.0 (Vcc = 3.0 V from FPA is used)

3.2 (Vcc = 3.2 V from FPA is used)

3.4 (Vcc = 3.4 V from FPA is used)

3.6 (Vcc = 3.6 V from FPA is used)

100

Note: keys 0.0 — 3.6 uses double number. All data 1.0 and below are converted to 0.0. All data

over 1.0 and below 2.3 are converted to 2.2 etc.

Command example -fpaVcc 3.2

Command -fpaSpeed

By default, the fast communication speed (up to 3 Mb/s) is used. When communication is

too fast (see communication speed in FlashPro-CC for details) then slower communication speed

can be used - up to 1 Mb/s

Acceptable keys

fast (speed up to 3 Mb/s)

slow (speed up to 1 Mb/s)

Command example -fpaSpeed slow

Command -fpaSN

By default, the first detected FPA for the FlashPro-CC/GangPro-CC is used for debugging.

If more then one adapter is connected to PC, then the serial number of the desired FPA (8 characters

taken from the FPA label) for the IAR C-Spy debugger should be specified to avoid a problems

(when other then expected FPA would be used with IAR C-Spy debugger)

When SN is specified, then oly selected FPA with specified SN will be used. If adapter is not

detected, and even other adapters will be available, then communication will be ignored. Option with

specified SN also can be used when multi MCU for debugging are used. Each IAR C-Spy debugger

should call his own FPA serial number. This allows to open more then one IAR C-Spy debugger and

debug more then one MCU at the same time. One IAR C-Spy debugger will use FPA SN1, and

second one - the FPA SN2.

Command example -fpaSN 20070867

The IEEE Address saved in the FLASH memory can be retained or defined by user and does not

need to be specified in the application code. Following commands can be used for IEEE address

contents in Flash manipulation

Command -IeeeAddrLocation

101

The IEEE address location (in hex) can be specified by the command -IeeeAddrLocation.The

full IEEE address must be located in one flash sector. Make sure that 64 bits (8 bytes) address will

not be located in more then one flash sector space.

Command example -IeeeAddrLocation 0x1FFF8

Command -RetainIeeeAddr

The IEEE address located in the flash at the address defined in commands

-IeeeAddrLocation can be read before flash erase and saved together with the downloaded code

when the Retain IEEE Address is enabled. Retain the IEEE Address is enabled when the command

RetainIeeeAddress is defined

Command example -RetainIeeeAddr

Command -IeeeAddrValue

The 64 bits (8 bytes) IEEE address contents in the flash at the address defined in commands

-IeeeAddrLocation can be defined using -IeeeAddrValue commands. The RetainIeeeAddr ust be

disabled, this means - the -RetainIeeeAddr cannot be specified.

Command example -IeeeAddrValue 0x1234567890ABCDEF

102

15. Driver for the Keil uVision debugger

The FPA programming adapter can be used with the KEIL uVision software for debugging.

When the FPA Gang adapter is used, then the only one target connected to slot # 1 can be used for

debugging.

FPA- adapter setup with Keil software (Uv2 or Uv3 version)

Step 1:

Copy and paste following dll files

 ccFPAhil.dll

 ccfpaUv2.dll

to location

 C:\Keil\C51\BIN

Step 2:

Open file

 TOOLS.ini located in directory

 C:\Keil

and add one line

 TDRVx=BIN\CCfpaUv2.dll("Elprotronic FPA for Chipcon")

 where x - consecutive number of the TDRVx - inexample below - x = 4

 TDRV4=BIN\CCfpaUv2.dll("Elprotronic FPA for Chipcon")

See example below - when added this line - save the file

[C51]

BOOK0=HLP\RELEASE_NOTES.HTM("Release Notes")

BOOK1=HLP\GS51.PDF("uVision2 Getting Started")

BOOK2=HLP\C51.PDF("C51 User's Guide")

BOOK3=HLP\C51LIB.CHM("C51 Library Functions",C)

BOOK4=HLP\A51.PDF("Assembler/Utilities")

BOOK5=HLP\TR51.CHM("RTX51 Tiny User's Guide")

BOOK6=HLP\DBG51.CHM("uVision2 Debug Commands")

BOOK7=HLP\ISD51.CHM("ISD51 In System Debugger")

BOOK8=HLP\FlashMon51.CHM("Flash Monitor")

BOOK9=MON390\MON390.HTM("MON390: Dallas Contiguous Mode Monitor")

TDRV0=BIN\MON51.DLL ("Keil Monitor-51 Driver")

TDRV1=BIN\ISD51.DLL ("Keil ISD51 In-System Debugger")

TDRV2=BIN\MON390.DLL ("MON390: Dallas Contiguous Mode")

103

TDRV3=BIN\LPC2EMP.DLL ("LPC900 EPM Emulator/Programmer")

TDRV4=BIN\CCfpaUv2.dll("Elprotronic FPA for Chipcon")

RTOS1=RTXTINY.DLL ("RTX-51 Tiny")

RTOS2=RTX51.DLL ("RTX-51 Full")

Version=V7.0

PATH="C:\Keil\C51"

SN=MSC1210

Step 3:

Run Keil software

Open Project-> Option for Target -> Debug

and select Elprotronic FPA for Chipcon

Make sure to select “*” Use.

v - Load Application at Start-up add Go To main (optional)

Step 4

Figure 15.1

104

 Press Setting button and in the FPA and Target Setup select desired Vcc, communication speed

and Any FPA (or selected FPA with desired FPA’s Serial Number (SN) if more then one FPA is

used)

Unit is ready to work.

Figure 15.2

105

Appendix A - specification

Specification:

PC Communication Interface: - Full Speed USB-1.1 (12Mbits/s)

USB connector - Adapter site: USB-type B, Computer site: USB-type A

Target connector - 14 pins header connector.

Number of programmed target devices - up to 6 programmed simultaneously via debug interface

DC Power - from USB Interface - 5V +/- 20%, 50mA + target’s current (0-100mA)

Target Device DC supply

- external - 2.2 V to 3.6 V

- from programming adapter - 2.2 V to 3.6 V in step 0.2V / 100 mA max.

Communication speed via debug interface - selectable 3Mb/s or 1Mb/s

Size: - 76 x 43 x 20 mm (3.0 x 1.68 x 0.8 inch)

Verification Compliance: - CE (European CISPR 22 and EN 55022).

- FCC Part 15, Subpart B- Class B Unintentional Radiators for Uses

in Home, Commercial and Industrial Areas.

106

