

Multistandard hybrid IF processing

Rev. 04 — 25 May 2009

1. General description

The Integrated Circuit (IC) is suitable for Intermediate Frequency (IF) processing including global multistandard Analog TV (ATV), Digital Video Broadcast (DVB) and mono FM radio using only 1 IC and 1 to 3 fixed Surface Acoustic Waves (SAWs) (application dependent). TDA9898 includes, TDA9897 excludes L and L-accent standard.

2. Features

2.1 General

- 5 V supply voltage
- I²C-bus control over all functions
- Four I²C-bus addresses provided; selection by programmable Module Address (MAD)
- Three I²C-bus voltage level supported; selection via pin BVS
- Separate gain controlled amplifiers with input selector and conversion for incoming IF [analog Vision IF (VIF) or Sound IF (SIF) or Digital TV (DTV)] allows the use of different filter shapes and bandwidths
- All conventional ATV standards applicable by using DTV bandwidth window (SAW) filter
- Two 4 MHz reference frequency stages; the first one operates as crystal oscillator, the second one as external signal input
- Stabilizer circuit for ripple rejection and to achieve constant output signals
- Smallest size, simplest application
- ElectroStatic Discharge (ESD) protection for all pins

2.2 Analog TV processing

- Gain controlled wideband VIF amplifier; AC-coupled
- Multistandard true synchronous demodulation with active carrier regeneration: very linear demodulation, good intermodulation figures, reduced harmonics and excellent pulse response
- Integrated Nyquist processing, providing additionally image suppression for high adjacent channel selectivity
- Optional use of conventional Nyquist filter to support a wide range of applications
- Gated phase detector for L and L-accent standards
- Fully integrated VIF Voltage-Controlled Oscillator (VCO), alignment-free, frequencies switchable for all negative and positive modulated standards via l²C-bus
- VIF Automatic Gain Control (AGC) detector for gain control; operating as a peak sync detector for negative modulated signals and as a peak white detector for positive modulated signals

Multistandard hybrid IF processing

- Optimized AGC modes for negative modulation; e.g. very fast reaction time for VIF and SIF
- Precise fully digital Automatic Frequency Control (AFC) detector with 4-bit Digital-to-Analog Converter (DAC); AFC bits can be read-out via I²C-bus
- High precise Tuner AGC (TAGC) TakeOver Point (TOP) for negative modulated standards; TOP adjust via I²C-bus
- TAGC TOP for positive standards and Received Signal Strength Indication (RSSI); adjustable via I²C-bus or alternatively by potentiometer
- Fully integrated Sound Carrier (SC) trap for any ATV standard (SC at 4.5 MHz, 5.5 MHz, 6.0 MHz and 6.5 MHz)
- SIF AGC for gain controlled SIF amplifier and high-performance single-reference Quasi Split Sound (QSS) mixer
- Fully integrated sound BP filter supporting any ATV standard
- Optional use of external FM or AM sound BP filter
- AM sound demodulation for L and L-accent standard
- Alignment-free selective FM Phase-Locked Loop (PLL) demodulator with high linearity and low noise; external FM input
- Port function
- VIF AGC voltage monitor output or port function
- TAGC voltage monitor output or port function
- VIF AFC current or tuner, VIF, SIF or FM AGC voltage monitor output
- 2nd SIF output, gain controlled by internal SIF AGC or by internal FM carrier AGC for Digital Signal Processor (DSP)
- Fully integrated BP filter for 2nd SIF at 4.5 MHz, 5.5 MHz, 6.0 MHz or 6.5 MHz

2.3 Digital TV processing

- Applicable for terrestrial and cable TV reception
- 70 dB variable gain wideband IF amplifier (AC-coupled)
- Gain control via external control voltage (0 V to 3 V)
- 2 V (p-p) differential low IF (downconverted) output or 1 V (p-p) 1st IF output for direct Analog-to-Digital Converter (ADC) interfacing
- DVB downconversion with integrated selectivity for Low IF (LIF)
- Integrated anti-aliasing tracking low-pass filter
- Fully integrated synthesizer controlled oscillator with excellent phase noise performance
- Synthesizer frequencies for a wide range of world wide DVB standards (for IF center frequencies of e.g. 34.5 MHz, 36 MHz, 44 MHz and 57 MHz)
- TAGC detector for independent tuner gain control loop applications
- TAGC operating as peak detector, fast reaction time due to additional speed-up detector
- Port function
- TAGC voltage monitor output

Multistandard hybrid IF processing

2.4 FM radio mode

- Gain controlled wideband Radio IF (RIF) amplifier; AC-coupled
- Buffered RIF amplifier wideband output, gain controlled by internal RIF AGC
- Use of external FM sound BP filter
- 2nd RIF output, gain controlled by internal RIF AGC or by internal FM carrier AGC for DSP
- Alignment-free selective FM PLL demodulator with high linearity and low noise
- Precise fully digital AFC detector with 4-bit DAC; AFC bits read-out via I²C-bus
- Port function
- Radio AFC or tuner, RIF or FM AGC voltage monitor output

3. Applications

Analog and digital TV front-end applications for TV sets, recording applications and personal computer cards

4. Quick reference data

Table 1. Quick reference data

 $V_P = 5 V; T_{amb} = 25 \circ C.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _P	supply voltage		<u>[1]</u>	4.5	5.0	5.5	V
l _P	supply current	ATV QSS; B/G standard; sound carrier trap on; sound BP on		-	-	175	mA
Analog TV :	signal processing						
Video part							
V _{i(IF)(RMS)}	RMS IF input voltage	lower limit at −1 dB video output signal		-	60	100	μV
G _{VIF(cr)}	control range VIF gain			60	66	-	dB
f _{VIF}	VIF frequency	see Table 24		-	-	-	MHz
$\Delta f_{VIF(dah)}$	digital acquisition help VIF	related to f _{VIF}					
	frequency window	all standards except M/N		-	±2.3	-	MHz
		M/N standard		-	±1.8	-	MHz
V _{o(video)(p-p)}	peak-to-peak video output voltage	positive or negative modulation; normal mode and sound carrier on; W6[1] = 0; W4[7] = 0; W7[4] = 0; see Figure 10		1.7	2.0	2.3	V
G _{dif}	differential gain	"ITU-T J.63 line 330"	[2][3]				
		B/G standard		-	-	5	%
		L standard		-	-	7	%
Φdif	differential phase	"ITU-T J.63 line 330"	[2][3]				
		B/G standard		-	2	4	deg
		L standard			2	4	deg

Multistandard hybrid IF processing

Table 1. Quick reference data ... continued

 $V_P = 5 V; T_{amb} = 25 \circ C.$

B _{video(-3dB)} α _{SC1}	-3 dB video bandwidth	trap bypass mode and	[4]	0	•		
α_{SC1}		sound carrier off; AC load: $C_L < 20 \text{ pF, } R_L > 1 \text{ k}\Omega$	<u></u>	0	8	-	MHz
	first sound carrier attenuation	M/N standard; f = f_{SC1} = 4.5 MHz; see <u>Figure 21</u>	<u>[4]</u>	38	-	-	dB
		B/G standard; f = f _{SC1} = 5.5 MHz; see <u>Figure 23</u>	<u>[4]</u>	35	-	-	dB
(S/N) _w	weighted signal-to-noise ratio	normal mode and sound carrier on; B/G standard; 50 % grey video signal; unified weighting filter (<i>"ITU-T J.61"</i>); see Figure 20	<u>[2][5]</u>	53	57	-	dB
PSRR _{CVBS}	power supply ripple rejection on pin CVBS	normal mode and sound carrier on; f _{ripple} = 70 Hz; video signal; grey level; positive and negative modulation; see <u>Figure 11</u>	[2]	14	20	-	dB
$\Delta I_{AFC} / \Delta f_{VIF}$	change of AFC current with VIF frequency	AFC TV mode	[6]	0.85	1.05	1.25	μA/kHz
Audio part							
V _{o(AF)(RMS)}	RMS AF output voltage	FM: QSS mode; 27 kHz FM deviation; 50 μs de-emphasis		430	540	650	mV
		AM: 54 % modulation		400	500	600	mV
THD	total harmonic distortion	FM: 50 μs de-emphasis; FM deviation: for TV mode 27 kHz and for radio mode 22.5 kHz		-	0.15	0.50	%
		AM: 54 % modulation; BP on; see <u>Figure 33</u>		-	0.5	1.0	%
f_3dB(AF)	AF cut-off frequency	W3[2] = 0; W3[4] = 0; without de-emphasis; FM window width = 237.5 kHz		80	100	-	kHz
(S/N) _{w(AF)}	AF weighted signal-to-noise ratio	"ITU-R BS.468-4"					
		FM: 27 kHz FM deviation; 50 μs de-emphasis; vision carrier unmodulated; FM PLL only		48	56	-	dB
		AM: BP off		44	50	-	dB
PSRR	power supply ripple rejection	f _{ripple} = 70 Hz; see <u>Figure 11</u>		14	20	-	dB

Unit

mV

m٧

m٧

μA/kHz

dB

V

V

dB

dB

dB dB

V

dB

dB

MHz

<mark>[8]</mark> 60

-

66

-

-

-

Multistandard hybrid IF processing

Symbol	Parameter	Conditions	I	Min	Тур	Max
V _{o(RMS)}	RMS output voltage	IF intercarrier single-ended to GND; see <u>Figure 9</u> and <u>Table 21</u>				
		B/G standard; SC1 on; SC2 off; internal BP via FM AGC	Ś	90	140	180
		L standard; without modulation; W7[5] = 0; internal BP + 6 dB	Ś	90	140	180
FM sound p	part					
V _{i(FM)(RMS)}	RMS FM input voltage	gain controlled operation; W1[1:0] = 10 or W1[1:0] = 11 or W1[1:0] = 01; see <u>Figure 9</u>	2	2	-	300
$\Delta I_{AFC} / \Delta f_{RIF}$	change of AFC current with RIF frequency	AFC radio mode	<u>[6]</u> (0.85	1.05	1.25
α_{AM}	AM suppression	referenced to 27 kHz FM deviation; 50 μs de-emphasis; AM: f = 1 kHz; m = 54 %	:	35	46	-
Digital TV s	signal processing					
Digital direc	t IF					
V _{o(dif)(p-p)}	peak-to-peak differential output voltage	between pin OUT2A and pin OUT2B	<u>[7]</u>			
		W4[7] = 0	-	•	1.0	1.1
		W4[7] = 1	-		0.50	0.55
G _{IF(max)}	maximum IF gain	output peak-to-peak level to input RMS level ratio	<u>[8]</u>	•	83	-
G _{IF(cr)}	control range IF gain		<u>[8]</u> (60	66	-
PSRR	power supply ripple rejection	residual spurious at nominal differential output voltage dependent on power supply ripple	<u>[8]</u>			
		f _{ripple} = 70 Hz	-	-	60	-
		f _{ripple} = 20 kHz	-	-	60	-
Digital low I	F					
V _{o(dif)(p-p)}	peak-to-peak differential output voltage	between pin OUT1A and pin OUT1B; W4[7] = 0	<u>[7]</u> -	•	2	-
G _{IF(max)}	maximum IF gain	output peak-to-peak level to input RMS level ratio	<u>[8]</u> _	•	89	-

Table 1. Quick reference data ... continued $V_P = 5 V$; $T_{amb} = 25 \circ C$.

TDA9897_TDA9898_4 **Product data sheet**

GIF(cr)

f_{synth}

control range IF gain

synthesizer frequency

see Table 34 and Table 35

Multistandard hybrid IF processing

Table 1. Quick reference data ...continued

 $V_P = 5 V; T_{amb} = 25 \circ C.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Φn(synth)	synthesizer phase noise	with 4 MHz crystal oscillator reference; f _{synth} = 31 MHz; f _{IF} = 36 MHz					
		at 1 kHz	[8]	89	99	-	dBc/Hz
		at 10 kHz	[8]	89	99	-	dBc/Hz
		at 100 kHz	[8]	98	102	-	dBc/Hz
		at 1.4 MHz	[8]	115	119	-	dBc/Hz
$\alpha_{ripple(pb)LIF}$	low IF pass-band ripple	6 MHz bandwidth		-	-	2.7	dB
		7 MHz bandwidth		-	-	2.7	dB
		8 MHz bandwidth		-	-	2.7	dB
α_{stpb}	stop-band attenuation	8 MHz band; f = 15.75 MHz		30	40	-	dB
α_{image}	image rejection	-10 MHz to 0 MHz; BP on		30	34	-	dB
C/N	carrier-to-noise ratio	at f _o = 4.9 MHz; V _{i(IF)} = 10 mV (RMS); see <u>Figure 37</u>	<u>[8][9][10]</u>	112	118	-	dBc/Hz
Reference f	requency input from external	source					

f _{ref}	reference frequency	W7[7] = 0	<u>[11]</u> _	4	-	MHz
V _{ref(RMS)}	RMS reference voltage	W7[7] = 0; see Figure 34 and Figure 46	15	150	500	mV

[1] Values of video and sound parameters can be decreased at V_P = 4.5 V.

[2] AC load; $C_L < 20 \text{ pF}$ and $R_L > 1 \text{ k}\Omega$. The sound carrier frequencies (depending on TV standard) are attenuated by the integrated sound carrier traps.

[3] Condition: luminance range (5 steps) from 0 % to 100 %. Measurement value is based on 4 of 5 steps.

[4] The sound carrier trap can be bypassed by setting the l²C-bus bit W2[0] to logic 0; see <u>Table 23</u>. In this way the full composite video spectrum appears at pin CVBS. The video amplitude is reduced to 1.1 V (p-p).

[5] Measurement using 200 kHz high-pass filter, 5 MHz low-pass filter and subcarrier notch filter ("ITU-T J.64").

[6] To match the AFC output signal to different tuning systems a current output is provided. The test circuit is given in Figure 19. The AFC steepness can be changed by resistors R1 and R2.

[7] With single-ended load for f_{IF} < 45 MHz $R_L \ge 1 \text{ k}\Omega$ and $C_L \le 5 \text{ pF}$ to ground and for f_{IF} = 45 MHz to 60 MHz R_L = 1 k Ω and $C_L \le 3 \text{ pF}$ to ground.

[8] This parameter is not tested during production and is only given as application information.

[9] Noise level is measured without input signal but AGC adjusted corresponding to the given input level.

[10] Set with AGC nominal output voltage as reference. For C/N measurement switch input signal off.

[11] The tolerance of the reference frequency determines the accuracy of VIF AFC, RIF AFC, FM demodulator center frequency, maximum FM deviation, sound trap frequency, LIF band-pass cut-off frequency, as well as the accuracy of the synthesizer.

Multistandard hybrid IF processing

5. Ordering information

Type number	Package	age						
	Name	Description	Version					
TDA9897HL/V3	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2					
TDA9897HN/V3	HVQFN48	plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body $7\times7\times0.85$ mm	SOT619-1					
TDA9898HL/V3	LQFP48	plastic low profile quad flat package; 48 leads; body $7 \times 7 \times 1.4$ mm	SOT313-2					
TDA9898HN/V3	HVQFN48	plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body $7 \times 7 \times 0.85$ mm	SOT619-1					

Multistandard hybrid IF processing

6. Block diagram

Multistandard hybrid IF processing

TDA9897_TDA9898_4
Product data sheet

NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

Multistandard hybrid IF processing

Multistandard hybrid IF processing

7. Pinning information

7.1 Pinning

Multistandard hybrid IF processing

7.2 Pin description

Table 3.	Pin de	escription
Symbol	Pin	Description
LFSYN2	1	loop filter synthesizer 2 (conversion synthesizer)
n.c.	2	not connected
IF3A	3	IF symmetrical input 3 for sound
IF3B	4	
CIFAGC	5	TDA9898: IF AGC capacitor; L standard
		TDA9897: not connected
IF1A	6	IF symmetrical input 1 for vision or digital
IF1B	7	
CTAGC	8	TAGC capacitor
IF2A	9	IF symmetrical input 2 for vision or digital
IF2B	10	
TOP2	11	TOP potentiometer for positive modulated standards and RSSI reference
PORT1	12	digital port function 1 or VIF AGC monitor output
LFVIF	13	loop filter VIF PLL
i.c.	14	internally connected; connect to ground
EXTFILO	15	output to external filter

Multistandard hybrid IF processing

Symbol	Pin	Description
MPP	16	multipurpose pin: VIF AGC or SIF AGC or FM AGC or TAGC or VIF AFC or FM AFC monitor output
EXTFILI	17	input from external filter
n.c.	18	not connected
LFFM	19	loop filter FM PLL
CDEEM	20	de-emphasis capacitor
EXTFMI	21	external FM input
GNDD	22	digital ground
SDA	23	I ² C-bus data input and output
SCL	24	I ² C-bus clock input
ADRSEL	25	address select
OUT1A	26	low IF or 2nd sound intercarrier symmetrical output
OUT1B	27	
CAF	28	Direct Current (DC) decoupling capacitor
OUT2A	29	1st Digital IF (DIF) symmetrical output
OUT2B	30	
AUD	31	audio signal output
BVS	32	I ² C-bus voltage select
CVBS	33	composite video signal output
GDS	34	additional video group delay select; leave open for default operation ^[1]
PORT2	35	digital port function 2
AGCDIN	36	AGC input for DIF amplifier for e.g. input from channel decoder AGC
n.c.	37	not connected
LFSYN1	38	loop filter synthesizer 1 (filter control synthesizer)
OPTXTAL	39	optional quartz input
GNDA	40	analog ground
GNDA	41	analog ground
PORT3	42	digital port function 3 or TAGC monitor output
V _P	43	supply voltage
VP	44	supply voltage
i.c.	45	internally connected; connect to ground
FREF	46	4 MHz reference input
TAGC	47	TAGC output
GND	48	ground; plateau connection

[1] Recommendation: Leave this pin open or use a capacitor to GND, as shown in the application diagrams in Figure 47, Figure 48 and Figure 49.

8. Functional description

8.1 IF input switch

Different signal bandwidth can be handled by using two signal processing chains with individual gain control.

Switch configuration allows independent selection of filter for analog VIF and for analog SIF (used at same time) or DIF.

The switch takes into account correct signal selection for TAGC in the event of VIF and DIF signal processing.

8.2 VIF demodulator

ATV demodulation using 6 MHz DVB window (band-pass) filter (for 6 MHz, 7 MHz or 8 MHz channel width).

IF frequencies adapted to enable the use of different filter configurations. The Nyquist processing is integrated. The integrated Nyquist processing provides also adjacent channel suppression. Sideband switch supplies selection of lower or upper sideband (e.g. for L-accent).

For optional use of standard Nyquist filter the integrated Nyquist processing can be switched off.

Equalizer provides optimum pulse response at different standards [e.g. to cope with higher demands for Liquid Crystal Display (LCD) TV].

Integrated sound traps.

Sound trap reference independent from received 2nd sound IF (reference taken from integrated reference synthesizer).

IF level selection provides an optimum adaptation of the demodulator to high linearity or low noise.

8.3 VIF AGC and tuner AGC

8.3.1 Mode selection of VIF AGC

Peak white AGC for positive modulation mode with adaptation for speed up and black level AGC (using proven system from TDA9886).

For negative modulation mode equal response times for increasing or decreasing input level (optimum for amplitude fading) **or** normal peak AGC **or** ultra fast peak AGC.

8.3.2 VIF AGC monitor

VIF AGC DC voltage monitor output (with expanded internal characteristic).

VIF AGC read out via I²C-bus (for IF level indication) with zero-calibration via TOP setting (TOP setting either via I²C-bus or via TOP potentiometer).

8.3.3 Tuner AGC

Independent integral tuner gain control loop (not nested with VIF AGC). Integral characteristic provides high control accuracy.

Accurate setting of tuner control onset (TOP) for integral tuner gain control loop via I^2C -bus.

For L standard, TAGC remains VIF AGC nested, as from field experience in the past this narrowband TAGC gives best performance.

Thus two switchable TAGC systems for negative/DIF and positive modulation implemented.

L standard tuner time constant switching integrated (= speed up function in the event of step into high input levels), to speed up settling time.

For TOP setting at L standard, additional adjustment via optional potentiometer or I²C-bus is provided.

Tuner AGC status bit provided.

8.4 DIF/SIF FM and AM sound AGC

External AGC control input for DIF. DIF includes direct IF and low IF.

Integrated gain control loop for SIF.

AGC control for FM SIF related to used SAW bandwidth.

Peak AGC control in the event of FM SIF.

Ultra fast SIF AGC time constant when VIF AGC set to ultra fast mode.

Slow average AGC control in the event of AM sound.

AM sound AGC related to AM sound carrier level.

Fast AM sound AGC in the event of fast VIF AGC (speed up).

SIF/FM AGC DC voltage monitor output with expanded internal characteristic.

8.5 Frequency phase-locked loop for VIF

Basic function as previous TDA9887 design.

PLL gating mode for positive and negative modulation, optional.

PLL optimized for either overmodulation or strong multipath.

Multistandard hybrid IF processing

8.6 DIF/SIF converter stage

Frequency conversion with sideband suppression.

Selection mode of upper or lower sideband for pass or suppression.

Suppression around zero for frequency conversion.

Conversion mode selection via synthesizer for DIF and radio mode or via VIF Frequency Phase-Locked Loop (FPLL) for TV QSS sound (FM/AM).

External BP filter (e.g. for 4.5 MHz) for additional filtering, optional.

Bypass mode selection for use of external filter.

Integrated SIF BP tracking filter for chroma suppression.

Integrated tracking filters for LIF.

Symmetrical output stages for direct IF, LIF and 2nd SIF (intercarrier signal).

Second narrowband gain control loop for 2nd SIF via FM PLL.

8.7 Mono sound demodulator

8.7.1 FM PLL narrowband demodulation

Additional external input for either TV or radio intercarrier signal.

FM carrier selection independent from VIF trap, because VIF trap uses reference via synthesizer.

FM wide and ultra wide mode with adapted loop bandwidth and different selectable FM acquisition window widths to cope with FM overmodulation conditions.

8.7.2 AM sound demodulation

AM sound envelope detector.

L and L-accent standard without SAW switching (done by sideband selection of SIF converter).

8.8 Audio amplifier

Different gain settings for FM sound to adapt to different FM deviation.

Switchable de-emphasis for FM sound.

Automatic mute function when FM PLL is unlocked.

Forced mute function.

Output amplifier for AM sound.

8.9 Synthesizer

The synthesizer supports SIF/DIF frequency conversion. A large set of synthesizer frequencies in steps of 0.5 MHz enables flexible combination of SAW filter and required conversion frequency.

Synthesizer loop internally adapted to divider ratio range for optimum phase noise requirement (loop bandwidth).

Synthesizer reference either via 4 MHz crystal or via an external source. Individual pins for crystal and external reference allows optimum interface definition and supports use of custom reference frequency offset.

8.10 I²C-bus transceiver and slave address

Four different I²C-bus device addresses to enable application with multi-IC use.

I²C-bus transceiver input ports can handle three different I²C-bus voltages.

Read-out functions as TDA9887 plus additional read out of VIF AGC and VIFLOCK, BLCKLEV and TAGC status.

Table 4. Slave address detection

Slave address	Selectable	address bit	Pin ADRSEL
	A3	A0	
MAD1	0	1	GND
MAD2	0	0	V _P
MAD3	1	1	resistor to GND
MAD4	1	0	resistor to V _P

9. I²C-bus control

Table 5. Slave addresses

For MAD activation via pin ADRSEL: see <u>Table 4</u>.

Slave ac	address Bit							
Name	Value	A6	A5	A4	A3	A2	A1	A0
MAD1	43h	1	0	0	0	0	1	1
MAD2	42h	1	0	0	0	0	1	0
MAD3	4Bh	1	0	0	1	0	1	1
MAD4	4Ah	1	0	0	1	0	1	0

Multistandard hybrid IF processing

9.1 Read format

Г

S	BYTE	1	А	BYTE	2	А	BYTI	Ξ3	NA	Р
	A6 to A0	R/W		D7 to	D0		D7 to	D0		
	slave address	; 1		data (I	R1)		data (R2)		
Fig 7.		naster to slave lave to maste format (sla	r	ansmits d	ata)		S = START A = acknow NA = not ac P = STOP c	ledge knowledge		001aad167
Table 6.	R1 - data rea	ad registe	r 1 bit	allocatio	n					
7	6	5		4	3		2	1		0
AFCWIN	BLCKLEV	CARRDE	T	AFC4	AFC3	1	AFC2	AFC1		PONR
Bit 7	Symbol AFCWIN	AFC wind	low <mark>[1]</mark>							
		1 = VC	O in ±0	1.6 MHz		dow <mark>[3]</mark>				
		1 = VC 0 = VC	O in ±0 O out o).8 MHz A	VEC wind Hz AFC	dow <mark>[3]</mark> windc)w[2]			
6	BLCKLEV	1 = VC 0 = VC	O in ±0 O out o O out o	0.8 MHz A of ±1.6 MI of ±0.8 MI	VEC wind Hz AFC	dow <mark>[3]</mark> windc)w[2]			
6	BLCKLEV	1 = VC $0 = VC$ $0 = VC$ black leve	O in ±0 O out o O out o el deteo	0.8 MHz A of ±1.6 MI of ±0.8 MI	AFC wind Hz AFC Hz AFC	dow <mark>[3]</mark> windc)w[2]			
6	BLCKLEV	1 = VC $0 = VC$ $0 = VC$ black leve $1 = blac$	O in ±0 O out o O out o el deteo ck leve	0.8 MHz A of ±1.6 MI of ±0.8 MI otion	NFC wind Hz AFC Hz AFC	dow <mark>[3]</mark> windc)w[2]			
6 5	BLCKLEV	1 = VC $0 = VC$ $0 = VC$ black leve $1 = blac$	O in ±0 O out o O out o el deteo ck leve black le	0.8 MHz A of ±1.6 MI of ±0.8 MI ction I detected evel detect	NFC wind Hz AFC Hz AFC	dow <mark>[3]</mark> windc)w[2]			
-	-	1 = VC $0 = VC$ $0 = VC$ black leve $1 = blac$ $0 = no$ FM carrie $1 = det$	O in ±0 O out o O out o el deteo ck leve black le r deteo ection	0.8 MHz A of ± 1.6 MI of ± 0.8 MI ction I detected evel detected ction ^[4]	AFC wind Hz AFC Hz AFC I ted is locked	dow <mark>[3]</mark> windc windc)w[2]	s than 6	dB b	elow gai
5	CARRDET	1 = VC $0 = VC$ $0 = VC$ black leve $1 = blac$ $0 = no$ FM carrie $1 = det$ controll $0 = no$	O in ±0 O out o O out o el detec ck leve black le r detec ection ed ran detecti	0.8 MHz A of ± 1.6 MI of ± 0.8 MI ction I detected evel detected ction ^[4] (FM PLL ge of FM on	AFC wind Hz AFC Hz AFC d teted is locked AGC)	dow ^[3] windc windc	bw ^[2] bw ^[3] level is les	s than 6	dB b	elow gai
-	CARRDET	1 = VC $0 = VC$ $0 = VC$ black leve $1 = blac$ $0 = no$ FM carrie $1 = det$ control	O in ±0 O out o O out o el detec ck leve black le r detec ection ed ran detecti	0.8 MHz A of ± 1.6 MI of ± 0.8 MI ction I detected evel detected ction ^[4] (FM PLL ge of FM on	AFC wind Hz AFC Hz AFC d teted is locked AGC)	dow ^[3] windc windc	bw ^[2] bw ^[3] level is les	s than 6	dB b	elow gai
5	CARRDET	1 = VC $0 = VC$ $0 = VC$ black leve $1 = blac$ $0 = no$ FM carrie $1 = det$ controll $0 = no$ automatic power-on	O in ±0 O out o O out o el detec black leve black leve ck leve black leve c detection ed ran detection c freque reset	0.8 MHz A of ± 1.6 MI of ± 0.8 MI ction I detected evel detected ction ^[4] (FM PLL ge of FM on ency cont	AFC wind Hz AFC Hz AFC d teted is locked AGC) rol; see	dow[3] windc windc	bw ^[2] bw ^[3] level is les		dB b	elow gair

[1] If no IF input is applied, then bit AFCWIN can be logic 1 due to the fact that the VCO is forced to the AFC window border for fast lock-in behavior.

[2] All standards except M/N standard.

[3] M/N standard.

[4] Typical time constant of FM carrier detection is 50 ms. The minimal recommended wait time for read out is 80 ms.

Multistandard hybrid IF processing

Bit				f <u>[1]</u>
AFC4	AFC3	AFC2	AFC1	
R1[4]	R1[3]	R1[2]	R1[1]	
0	1	1	1	≤ (f _{nom} – 187.5 kHz)
0	1	1	0	f _{nom} – 162.5 kHz
0	1	0	1	f _{nom} – 137.5 kHz
0	1	0	0	f _{nom} – 112.5 kHz
0	0	1	1	f _{nom} – 87.5 kHz
0	0	1	0	f _{nom} – 62.5 kHz
0	0	0	1	f _{nom} – 37.5 kHz
0	0	0	0	f _{nom} – 12.5 kHz
1	1	1	1	f _{nom} + 12.5 kHz
1	1	1	0	f _{nom} + 37.5 kHz
1	1	0	1	f _{nom} + 62.5 kHz
1	1	0	0	f _{nom} + 87.5 kHz
1	0	1	1	f _{nom} + 112.5 kHz
1	0	1	0	f _{nom} + 137.5 kHz
1	0	0	1	f _{nom} + 162.5 kHz
1	0	0	0	≥ (f _{nom} + 187.5 kHz

Table 8. Automatic frequency control bits

[1] In ATV mode f means vision intermediate frequency; in radio mode f means radio intermediate frequency.

Table 9. R2 - data read register 2 bit allocation

7	6	5	4	3	2	1	0
VIFLOCK	TAGC	VAGC5	VAGC4	VAGC3	VAGC2	VAGC1	VAGC0

Table 10. R2 - data read register 2 bit description

Bit	Symbol	Description
7	VIFLOCK	VIF PLL lock-in detection
		1 = VIF PLL is locked
		0 = VIF PLL is not locked
6	TAGC	tuner AGC
		1 = active
		0 = inactive
5 to 0	VAGC[5:0]	AGC level detector; VIF AGC in ATV mode, SIF AGC in radio mode and DIF AGC in DTV mode; see Table 11

NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

Bit						Typical	
VAGC5	VAGC4	VAGC3	VAGC2	VAGC1	VAGC0	∆V _{AGC(VIF)} (V)	
R2[5]	R2[4]	R2[3]	R2[2]	R2[1]	R2[0]	(•)	
1	1	1	1	1	1	0 (TOP)[1]	
1	1	1	1	1	0	-0.04	
1	1	1	1	0	1	-0.08	
1	1	1	1	0	0	-0.12	
1	1	1	0	1	1	-0.16	
1	1	1	0	1	0	-0.20	
1	1	1	0	0	1	-0.24	
1	1	1	0	0	0	-0.28	
1	1	0	1	1	1	-0.32	
1	1	0	1	1	0	-0.36	
1	1	0	1	0	1	-0.40	
1	1	0	1	0	0	-0.44	
1	1	0	0	1	1	-0.48	
1	1	0	0	1	0	-0.52	
1	1	0	0	0	1	-0.56	
1	1	0	0	0	0	-0.60	
1	0	1	1	1	1	-0.64	
1	0	1	1	1	0	-0.68	
1	0	1	1	0	1	-0.72	
1	0	1	1	0	0	-0.76	
1	0	1	0	1	1	-0.80	
1	0	1	0	1	0	-0.84	
1	0	1	0	0	1	-0.88	
1	0	1	0	0	0	-0.92	
1	0	0	1	1	1	-0.96	
1	0	0	1	1	0	-1.00	
1	0	0	1	0	1	-1.04	
1	0	0	1	0	0	-1.08	
1	0	0	0	1	1	-1.12	
1	0	0	0	1	0	-1.16	
1	0	0	0	0	1	-1.20	
1	0	0	0	0	0	-1.24	
0	1	1	1	1	1	-1.28	
0	1	1	1	1	0	-1.32	
0	1	1	1	0	1	-1.36	
0	1	1	1	0	0	-1.40	
0	1	1	0	1	1	-1.44	
0	1	1	0	1	0	-1.48	
0	1	1	0	0	1	-1.52	

NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

	AGC bitsc	ontinued				
Bit						Typical
VAGC5	VAGC4	VAGC3	VAGC2	VAGC1	VAGC0	∆V _{AGC(VIF)} (V)
R2[5]	R2[4]	R2[3]	R2[2]	R2[1]	R2[0]	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0	1	1	0	0	0	-1.56
0	1	0	1	1	1	-1.60
0	1	0	1	1	0	-1.64
0	1	0	1	0	1	-1.68
0	1	0	1	0	0	-1.72
0	1	0	0	1	1	-1.76
0	1	0	0	1	0	-1.80
0	1	0	0	0	1	-1.84
0	1	0	0	0	0	-1.88
0	0	1	1	1	1	-1.92
0	0	1	1	1	0	-1.96
0	0	1	1	0	1	-2.00
0	0	1	1	0	0	-2.04
0	0	1	0	1	1	-2.08
0	0	1	0	1	0	-2.12
0	0	1	0	0	1	-2.16
0	0	1	0	0	0	-2.20
0	0	0	1	1	1	-2.24
0	0	0	1	1	0	-2.28
0	0	0	1	0	1	-2.32
0	0	0	1	0	0	-2.36
0	0	0	0	1	1	-2.40
0	0	0	0	1	0	-2.44
0	0	0	0	0	1	-2.48
0	0	0	0	0	0	-2.52

[1] The reference of 0 (TOP) can be adjusted via TOPPOS[4:0] (register W10; see <u>Table 47</u> and <u>Table 45</u>) or via potentiometer at pin TOP2.

Multistandard hybrid IF processing

9.2 Write format

9.2.1 Subaddress

Table 12.	W0 - subado	W0 - subaddress register bit allocation								
7	6	5	4	3	2	1	0			
A7	A6	A5	A4	A3	A2	A1	A0			

Table 13. W0 - subaddress register bit description

Bit	Symbol	Description
7 to 4	A[7:4]	has to be set to logic 0
3 to 0	A[3:0]	subaddress; see Table 14

Table 14.Subaddress control bits

Bit				Mode
A3	A2	A1	A0	
0	0	0	0	subaddress for register W1
0	0	0	1	subaddress for register W2
0	0	1	0	subaddress for register W3
0	0	1	1	subaddress for register W4
0	1	0	0	subaddress for register W5
0	1	0	1	subaddress for register W6
0	1	1	0	subaddress for register W7
0	1	1	1	subaddress for register W8
1	0	0	0	subaddress for register W9
1	0	0	1	subaddress for register W10
1	0	1	0	subaddress for register W11

Multistandard hybrid IF processing

The regist	the register setting after power-on is not specified.									
Register	7	6	5	4	3	2	1	0		
W1 ^[1]	RADIO	STD1	STD0	TV	0	0	FM	EXTFIL		
W2 ^[2]	MOD	STD4	STD3	STD2	SB	PLL	GATE	TRAP		
W3 <mark>[3]</mark>	RESCAR	AMUTE	FMUTE	FMWIDE0	DEEMT	DEEM	AGAIN1	AGAIN0		
W4 <mark>[4]</mark>	VIFLEVEL	BP	MPPS1	MPPS0	AMMODE	IFIN1	IFIN0	VIFIN		
W5 <mark>5</mark>	FSFREQ1	FSFREQ0	SFREQ5	SFREQ4	SFREQ3	SFREQ2	SFREQ1	SFREQ0		
W6 <mark>6</mark>	TAGC1	TAGC0	AGC2	AGC1	FMWIDE1	TWOFLO	VIDEO1V7	DIRECT		
W7 <mark>[7]</mark>	EXTFILO	VAGC	SIFLEVEL	VIDLEVEL	PORT1	MODEP1	FILOUTBP	NYQOFF		
W8 <mark>8</mark>	FEATURE	AVIDRED	MODEP3	TAGCIN3	FORCESP	PORT3	PORT2	0		
W9 <mark>[9]</mark>	DAGCSLOPE	TAGCIS	TAGCTC	TOPNEG4	TOPNEG3	TOPNEG2	TOPNEG1	TOPNEG0		
W10 ^[10]	0	READTAGC	XPOTPOS	TOPPOS4	TOPPOS3	TOPPOS2	TOPPOS1	TOPPOS0		
W11[11]	0	0	OFFSETN	OFFSETP	BLACKAGC	GDEQ	VIFIN3	VIF31875		

Table 15. I²C-bus write register overview The register setting after power-on is not specified

[1] See Table 17 for detailed description of W1.

[2] See Table 23 for detailed description of W2.

[3] See Table 27 for detailed description of W3.

[4] See Table 29 for detailed description of W4.

[5] See Table 33 for detailed description of W5.

[6] See Table 37 for detailed description of W6.

[7] See <u>Table 40</u> for detailed description of W7.

[8] See Table 42 for detailed description of W8.

[9] See Table 44 for detailed description of W9.

[10] See Table 47 for detailed description of W10.

[11] See Table 50 for detailed description of W11.

9.2.2 Description of data bytes

Table 16. W1 - data write register bit allocation

7	6	5	4	3	2	1	0
RADIO	STD1	STD0	TV	0	0	FM	EXTFIL

Bit	Symbol	Description
7	RADIO	FM mode
		1 = radio
		0 = ATV/DTV
6 and 5	STD[1:0]	2nd sound IF; see Table 18 and Table 19
4	TV	TV mode
		1 = ATV QSS
		0 = DTV; direct IF or LIF; depends on setting of TV mode (W6[0])
3 and 2	-	0 = fixed value
1 and 0	FM and EXTFIL	FM and output switching; see Table 21

Table 17. W1 - data write register bit description

Multistandard hybrid IF processing

Bit		f FMPLL	Sound BP				
RADIO	MOD	STD1	STD0	FSFREQ1	FSFREQ0	(MHz)	
W1[7]	W2[7]	W1[6]	W1[5]	W5[7]	W5[6]	_	
0	1	0	0	Х	х	4.5	M/N standard
0	1	0	1	Х	Х	5.5	B/G standard
0	1	1	0	Х	Х	6.0	I standard
0	1	1	1	Х	Х	6.5	D/K standard
0	0	1	1	Х	Х	off	L/L-accent standard

Table 18 Intercarrier sound BP and FM PLL frequency select for ATV. QSS mode

Table 19. Intercarrier sound BP and FM PLL frequency select for radio

For description of bit MOD refer to Table 23 and bits FSFREQ[1:0] are described in Table 33.

Bit		f _{FMPLL}	Sound BP				
RADIO	MOD	STD1	STD0	FSFREQ1	FSFREQ0	(MHz)	
W1[7]	W2[7]	W1[6]	W1[5]	W5[7]	W5[6]		
1	1	Х	Х	0	0	4.5	M/N standard
1	1	Х	Х	0	1	5.5	B/G standard
1	1	Х	Х	1	0	6.0	I standard
1	1	Х	Х	1	1	6.5	D/K standard

Table 20. Intercarrier sound FM PLL frequency select for radio 10.7 MHz For description of bit MOD refer to Table 23 and for BP refer to Table 29.

Bit			f _{FMPLL} (MHz)
BP	MOD	RADIO	
W4[6]	W2[7]	W1[7]	
0	0	1	10.7

Multistandard hybrid IF processing

AMMODE	MOD	FM	EXTFIL	Audio			Signa	I at OUT1A and OUT1B	Mono sound		
				mode	node Input switch			Outpu	it switch		
W4[3]	W2[7]	W1[1]	W1[0]	-	FM input	AM input	Signal path	Input	Signal path	Demodulation via	
Х	1	0	0	FM	1	Х	internal	6	internal BP via FM AGC	internal BP	
Х	1	0	1	sound	2	Х	EXTFILI	7	internal BP	external BP	
Х	1	1	0		3	Х	EXTFMI	7	internal BP	external input	
Х	1	1	1		2	Х	EXTFILI	6	external BP via FM AGC	external BP	
0	0	0	0	AM	1	5	internal	6	internal BP + 6 dB	internal BP	
0	0	0	1	sound 1	Х	5	internal	7	internal BP	internal BP	
0	0	1	0		Х	5	internal	7	internal BP	internal BP	
0	0	1	1		2	5	EXTFILI	6	external BP	internal BP	
1	0	0	0	AM	2	4	EXTFILI	7	internal BP	external BP	
1	0	0	1	sound 2	Х	5	internal	7	internal BP	internal BP	
1	0	1	0		Х	5	internal	7	internal BP	internal BP	
1	0	1	1		2	4	EXTFILI	6	external BP	external BP	

Table 21.2nd intercarrier and sound I/O switchingSwitch input numbering in accordance with Figure 9.

Multistandard hybrid IF processing

Table 22.	W2 - data v	write register	bit allocatio	n					
7	6	5	4	3	2	1	0		
MOD	STD4	STD3	STD2	SB	PLL	GATE	TRAP		
Table 23.	W2 - data v	write register	bit descript	ion					
Bit	Symbol	Description	n						
7	MOD	modulation							
		1 = negat	ive; FM mon	o sound at A	TV				
		0 = positi	ve; AM mono	sound at A	ΓV				
6 to 4	STD[4:2]	vision IF; se	e Table 24						
3	SB	sideband for sound IF and digital low IF							
		1 = upper	r						
		0 = lower							
2	PLL	operating m	nodes; see <mark>Ta</mark>	ble 25					
1	GATE	PLL gating							
		1 = on; f _P	$_{\rm C}$ = f _{VIF} ± 175	5 kHz					
		0 = off							
0	TRAP	sound trap							
		1 = on							
		0 = bypas	SS						

Multistandard hybrid IF processing

Table 24.	Vision IF						
Bit						f _{VIF} (MHz)	Sideband
VIF31875	NYQOFF	MOD	STD4	STD3	STD2	TV = 1	in case of W7[0] = 0
W11[0][1]	W7[0]	W2[7]	W2[6]	W2[5]	W2[4]	(QSS)	w/[0] = 0
Х	Х	Х	0	0	0	38.0	low
Х	Х	Х	0	0	1	38.375	low
Х	Х	Х	0	1	0	38.875	low
Х	Х	Х	0	1	1	39.875	low
Х	Х	1	1	0	0	45.75	low
Х	Х	1	1	0	1	58.75	low
Х	Х	1	1	1	0	46.25	low
Х	Х	1	1	1	1	59.25	low
0	0	0	1	0	0	32.25	high
0	0	0	1	0	1	32.625	high
0	0	0	1	1	0	33.125	high
0	0	0	1	1	1	33.625	high
1	Х	0	1	0	0	31.875	high
Х	1	0	1	0	1	33.9	-
1	0	0	1	0	1	33.9	high
1	Х	0	1	1	0	35.0	high
1	Х	0	1	1	1	36.0	high

[1] Register W11 is logical AND protected by bit W8[7]. Therefore it is required to set W8[7] = 1 to enable pass of any W11 bit.

Table 25. VIF PLL gating and detector mode

Bit		Gating and detector mode				
MOD	PLL					
W2[7]	W2[2]					
0	0	0 % gating in positive modulation mode ($W2[1] = 1$)				
0	1	36 % gating in positive modulation mode ($W2[1] = 1$)				
1	0	π mode on; optimized for overmodulation in negative modulation mode; f_{PC} = f_{VIF} \pm 175 kHz				
1	1	π mode off; optimized for multipath in negative modulation mode; f_{PC} = f_{VIF} \pm 175 kHz				

Multistandard hybrid IF processing

7	6	5	4	3	2	1	0			
RESCAR	AMUTE	FMUTE	FMWIDE0	DEEMT	DEEM	AGAIN1	AGAINO			
Table 27.	W3 - data wr	ite register	bit descripti	on						
Bit	Symbol	Descriptio	Description							
7	RESCAR	video gain correction for residual carrier								
		1 = 20 % residual carrier								
		0 = 10 %	residual carr	ier						
6	AMUTE	auto mute								
		1 = on								
		0 = off								
5	FMUTE	forced mut	9							
		1 = on								
		0 = off								
4	FMWIDE0	FM window (W6[3] = 0)								
		1 = 475 kHz; normal FM phase detector steepness								
		0 = 237.5	5 kHz; high FN	V phase det	ector steepr	iess				
3	DEEMT	de-emphasis time								
		1 = 50 μs	5							
		0 = 75 μs	\$							
2	DEEM	de-emphas	sis							
		1 = on								
		0 = off								
1 and 0	AGAIN[1:0]	audio gain								
		00 = 0 dl	3							
		01 = -6 dB								
		10 = -12	dB (only for F	-M mode)						
		11 = -18 dB (only for FM mode)								

Multistandard hybrid IF processing

7	6	5	4	3	2	1	0		
VIFLEVEL	BP	MPPS1	MPPS0	AMMODE	IFIN1	IFIN0	VIFIN		
Table 29.	W4 - data w	rite register	bit descrip	tion					
Bit	Symbol	Descriptio	n						
7	VIFLEVEL		iternal VIF n ; see <u>Table</u>	nixer input leve <u>30</u>	el (W1[4] =	1) and OUT1	I/OUT2		
		1 = reduc	ed ^[1]						
		0 = norm	al						
6 BP	BP	SIF/DIF BP							
		1 = on (b	it W6[0] = 0;	see <u>Table 37</u>					
		0 = bypas	SS						
5 and 4	MPPS[1:0]	AGC or AF	C output; se	e <u>Table 31</u>					
3	AMMODE	AM mode extension; see Table 21							
		1 = secor	nd selection	set					
		0 = first s	election set						
2 and 1	IFIN[1:0]	DIF/SIF inp	ut						
		00 = IF1A	√B input						
		01 = IF3A	√B input						
		10 = not	used						
		11 = IF2A	A/B input						
0	VIFIN	VIF input (V	V11[1] = 0)						
		1 = IF1A/	'B input						
		0 = IF2A/	'B input						

[1] Not recommended in combination with internal video level set to reduced (W7[4] = 1).

Table 30. List of output signals at OUT1 and OUT2

Bit		Output signal	Output signal at			
TV	DIRECT	FM	EXTFIL	OUT1A,	OUT2A,	
W1[4]	W6[0]	W1[1]	W1[0]	OUT1B	OUT2B	
0	0	х	X	low IF	off	
0	1	Х	Х	off	direct IF	
1	Х	0	0	intercarrier ^[1]	off	
1	Х	0	1	intercarrier ^[2]	off	
1	Х	1	0	intercarrier ^[2]	off	
1	Х	1	1	intercarrier ^[1]	off	

[1] Intercarrier output level based on wideband AGC of SIF amplifier.

[2] Intercarrier output level based on narrowband AGC of FM amplifier.

Multistandard hybrid IF processing

Bit		Pin MPP output mode		
VAGC				
W7[6]				
0	х	0	0	gain control voltage of FM PLL
0	Х	0	1	gain control voltage of SIF amplifier
0	Х	1	0	TAGC monitor voltage
0	0	1	1	AFC current output, VIF PLL
0	1	1	1	AFC current output, radio mode
1	Х	0	0	gain control voltage of VIF amplifier

Table 31 Output mode at pin MPP for ATV or radio mode

7	6	5	4	3	2	1	0
FSFREQ1	FSFREQ0	SFREQ5	SFREQ4	SFREQ3	SFREQ2	SFREQ1	SFREQ0

Table 33. W5 - data write register bit description

Bit	Symbol	Description
7 and 6	FSFREQ[1:0]	DTV filter or sound trap selection for video
		ATV ; sound trap; TV = 1; see <u>Table 16</u> and <u>Table 17</u>
	00 = M/N standard (4.5 MHz)	
		01 = B/G standard (5.5 MHz)
		10 = I standard (6.0 MHz)
	11 = D/K and L/L-accent standard (6.5 MHz)	
		DTV (low IF) ; upper BP cut-off frequency; TV = 0; see <u>Table 16</u> and <u>Table 17</u>
		00 = 7.0 MHz
		01 = 8.0 MHz
		10 = 9.0 MHz
		11 = recommended mode for direct IF; W6[0] = 1
5 to 0	SFREQ[5:0]	synthesizer frequencies; see Table 34 and Table 35

Multistandard hybrid IF processing

Bit						f _{synth} (MHz	
SFREQ5	SFREQ4	SFREQ3	SFREQ2	SFREQ1	SFREQ0		
W5[5]	W5[4]	W5[3]	W5[2]	W5[1]	W5[0]		
1	1	1	1	1	1	22.0	
1	1	1	1	1	0	22.5	
1	1	1	1	0	1	23.0	
1	1	1	1	0	0	23.5	
1	1	1	0	1	1	24.0	
1	1	1	0	1	0	24.5	
1	1	1	0	0	1	25.0	
1	1	1	0	0	0	25.5	
1	1	0	1	1	1	26.0	
1	1	0	1	1	0	26.5	
1	1	0	1	0	1	27.0	
1	1	0	1	0	0	27.5	
1	1	0	0	1	1	28.0	
1	1	0	0	1	0	28.5	
1	1	0	0	0	1	29.0	
1	1	0	0	0	0	29.5	
1	0	1	1	1	1	30.0	
1	0	1	1	1	0	30.5	
1	0	1	1	0	1	31.0	
1	0	1	1	0	0	31.5	
1	0	1	0	1	1	32.0	
1	0	1	0	1	0	32.5	
1	0	1	0	0	1	33.0	
1	0	1	0	0	0	33.5	
1	0	0	1	1	1	34.0	
1	0	0	1	1	0	34.5	
1	0	0	1	0	1	35.0	
1	0	0	1	0	0	35.5	
1	0	0	0	1	1	36.0	
1	0	0	0	1	0	36.5	
1	0	0	0	0	1	37.0	
1	0	0	0	0	0	37.5	
0	1	1	1	1	1	38.0	
0	1	1	1	1	0	38.5	
0	1	1	1	0	1	39.0	
0	1	1	1	0	0	39.5	
0	1	1	0	1	1	40.0	
0	1	1	0	1	0	40.5	
0	1	1	0	0	1	41.0	

Table 34. DIF/SIF synthesizer frequencies (using bit TWOFLO = 0)

NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

Bit						f _{synth} (MHz)
SFREQ5	SFREQ4	SFREQ3	SFREQ2	SFREQ1	SFREQ0	
W5[5]	W5[4]	W5[3]	W5[2]	W5[1]	W5[0]	
0	1	1	0	0	0	41.5
0	1	0	1	1	1	42.0
0	1	0	1	1	0	42.5
0	1	0	1	0	1	43.0
0	1	0	1	0	0	43.5
0	1	0	0	1	1	44.0
0	1	0	0	1	0	44.5
0	1	0	0	0	1	45.0
0	1	0	0	0	0	45.5
0	0	1	1	1	1	46.0
0	0	1	1	1	0	46.5
0	0	1	1	0	1	47.0
0	0	1	1	0	0	47.5
0	0	1	0	1	1	48.0
0	0	1	0	1	0	48.5
0	0	1	0	0	1	49.0
0	0	1	0	0	0	49.5
0	0	0	1	1	1	50.0
0	0	0	1	1	0	50.5
0	0	0	1	0	1	51.0
0	0	0	1	0	0	51.5
0	0	0	0	1	1	52.0
0	0	0	0	1	0	52.5
0	0	0	0	0	1	53.0
0	0	0	0	0	0	53.5

 Table 34.
 DIF/SIF synthesizer frequencies (using bit TWOFLO = 0) ...continued

Table 35. DIF/SIF synthesizer frequency for Japan (using bit TWOFLO = 1)

Bit						f _{synth} (MHz)
SFREQ5	SFREQ4	SFREQ3	SFREQ2	SFREQ1	SFREQ0	
W5[5]	W5[4]	W5[3]	W5[2]	W5[1]	W5[0]	
1	1	0	0	1	0	57

NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

7	6	5	4	3	2	1	0	
TAGC1	TAGC0	AGC2	AGC1	FMWIDE1	TWOFLO	VIDEO1V7	DIRECT	
Fable 37	. W6 - data	ı write regist	er bit desc	ription				
Bit	Symbol	Description	l					
7 and 6	TAGC[1:0]	tuner AGC n	node <mark>[1]</mark>					
		00 = TAG	C integral lo	oop mode; all c	urrents off			
		01 = TAG	C integral lo	oop mode; sou	rce current o	ff		
		10 = TAG	C integral lo	oop mode				
		11 = TAGO signals	C derived fr	om IF AGC; re	commended	for positive m	odulated	
5 and 4	AGC[2:1]	AGC mode a	and behavio	or; see <u>Table 3</u>	<u>8</u>			
3	FMWIDE1	FM window						
		1 = 1 MHz	Z					
		0 = see <u>Ta</u>	able 27 bit F	MWIDE0				
2	TWOFLO	synthesizer	frequency s	selection				
		1 = Japan	mode (57 l	MHz)				
		0 = synthe	esizer mode	9				
1	VIDEO1V7	video output see <u>Table 22</u>		tion; sound ca	rrier trap set	to on (W2[0] =	: 1);	
		1 = 1.7 V at CVBS						
		0 = 2.0 V	at CVBS					
0	DIRECT	direct IF at E	DTV mode;	TV set to DTV	(W1[4] = 0);	see Table 16	and	
		1 = direct	IF output					
		0 = low IF	output					

[1] In TAGC integral loop mode the pin TAGC provides sink and source currents for control. TakeOver Point (TOP) is set via register TOPNEG W9[4:0].

Bit				VIF AGC	SIF AGC	
MOD	FORCESP	AGC2	AGC1	mode	mode	
W2[7]	W8[3]	W6[5]	W6[4]			
0	0	0	0	normal	normal	
0	0	0	1	minimum gain	minimum gain	
0	0	1	0	normal	normal	
0	0	1	1	normal	fast	
0	1	Х	Х	fast	fast	
1	Х	0	0	normal	normal	
1	Х	0	1	minimum gain	minimum gain	
1	Х	1	0	2nd	normal	
1	Х	1	1	2nd fast	fast	

Table 38. AGC mode and behavior

Multistandard hybrid IF processing

7	6	5	4	3	2	1	0		
EXTFILO	VAGC	SIFLEVEL	VIDLEVEL	PORT1	MODEP1	FILOUTBP	NYQOFF		
Table 40.			bit descripti	on					
Bit	Symbol	Description	l						
7	EXTFILO	mute of outp	out buffer of pi	n EXTFILC)				
		1 = mute							
		0 = norma	al						
6	VAGC	gain control	voltage of VIF	amplifier a	at pin MPP; s	see Table 31			
5	SIFLEVEL	SIF level rec	SIF level reduction						
		1 = internal SIF level is reduced by 6 dB (only for AM sound)							
		0 = interna	al SIF level is	normal					
4	VIDLEVEL	video level reduction							
		1 = internal video level is reduced by 6 dB ^[1]							
		0 = internal video level is normal							
3	PORT1	output state; port 1 mode selection set to logic output port (W7[2] = 1)							
		1 = output port is HIGH (external pull-up resistor needed)							
		0 = output	port is LOW						
2	MODEP1	port 1 mode selection; pin PORT1							
		1 = logic output port; level controlled by bit PORT1 (W7[3])							
		0 = monitor output of VIF AGC voltage							
1	FILOUTBP	external filte	r output signa	I source; se	ee Figure 9				
		1 = signal for external filter is obtained behind internal BP filter							
		0 = signal	for external fi	lter is obtai	ned behind S	SIF mixer			
0	NYQOFF	internal Nyq	uist processir	ıg; see <mark>Tab</mark>	le 24				
		1 = internal Nyquist processing off ^[2]							
		0 = interna	al Nyquist pro	cessing on					

[1] Not recommended in combination with internal IF level set to reduced (W4[7] = 1).

[2] At internal Nyquist processing off (W7[0] = 1) it is mandatory to set the internal video level to normal (W7[4] = 0).

Multistandard hybrid IF processing

7	6	5	4	3	2	1	0			
FEATURE	AVIDRED	MODEP3	TAGCIN3	FORCESP	PORT3	PORT2	0			
Fable 42.	W8 - data w	rite register	bit descrip	tion						
Bit	Symbol	Description	Description							
7	FEATURE	feature enal	ble							
			e PORT2; P ster W11[7:0	ORT3 monitor)] enabled	output of T	AGC voltage a	and data			
				oin PORT2 and 1[7:0] = 0000		3 set to high-o	ohmic;			
6	AVIDRED	automatic re	eduction of in	nternal video le	evel for PC	/ SC < 11.0 dE	3			
		1 = enabl	ed							
		0 = disab	ed							
5	MODEP3	port 3 mode selection; pin PORT3								
		1 = logic output port; level controlled by bit PORT3 (W8[2])								
		0 = monit	or output of	TAGC voltage						
4	TAGCIN3	TAGC IF input selection; feature enable set to enable (W8[7] = 1)								
		1 = IF3A :								
		0 = IF1A selection		out or IF2A and	d IF2B input	depends on '	√IF inpu			
3	FORCESP	VIF AGC ar (W2[7] = 0)	Id SIF AGC	fast mode acti	vation; mod	ulation setting				
		1 = forced	ł							
		0 = autom	natic; depend	dent on video	level					
2	PORT3			able set to ena tput port (W8[{		= 1); port 3 mo	ode			
		1 = outpu	t port is HIG	H (external pu	II-up resisto	r needed)				
		0 = outpu	t port is LOV	V						
1	PORT2	output state	; feature ena	able set to ena	ble (W8[7] =	= 1)				
		1 = outpu	t port is HIG	H (external pu	ll-up resisto	r needed)				
		0 = outpu	t port is LOV	V						
0	-	0 = fixed va	ue							
NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

Table 43.	43. W9 - data write register bit allocation								
7	6	5	4	3	2	1	0		
DAGCSLO	OPE TAGCIS	TAGCTC	TOPNEG4	TOPNEG3	TOPNEG2	TOPNEG1	TOPNEG0		
Table 44. W9 - data write register bit description									
Bit	Symbol	Description							
7	DAGCSLOPE	AGCDIN inp	ut characteristic	; see <u>Figure 44</u>					
		1 = high voltage for high gain							
		0 = low vol	tage for high ga	in					
6	TAGCIS	tuner AGC IF	input (TOP1)						
		1 = inverse	e to VIF input						
		0 = aligned	to VIF input						
5	TAGCTC	tuner AGC cl	narge current (T	OP1)					
		1 = high							
		0 = norma	l						
4 to 0	TOPNEG[4:0]	TOP adjustm see <u>Table 45</u>	•	oop mode (TOP	1); recommend	ed for negative r	nodulation;		

Table 45. Tuner takeover point adjustment bits W9[4:0]

Bit	TOP adjustment				
TOPNEG4 TOPNEG3		TOPNEG2	TOPNEG1	TOPNEG0	(dBµV)[1]
W9[4]	W9[3]	W9[2]	W9[1]	W9[0]	
1	1	1	1	1	98.5 typical
:	:	:	:	:	see Figure 13
1	0	0	0	0	79.3 <mark>[2]</mark>
:	:	:	:	:	see Figure 13
0	0	0	0	0	59.6 typical

[1] Average step size is 1.255 dB typical.

[2] See Table 53 for parameter tuner takeover point accuracy ($\alpha_{acc(set)TOP}$).

Table 46. W10 - data write register bit allocation

7	6	5	4	3	2	1	0
0	READTAGC	XPOTPOS	TOPPOS4	TOPPOS3	TOPPOS2	TOPPOS1	TOPPOS0

Table 47. W10 - data write register bit description

Bit	Symbol	Description
7	-	0 = fixed value
6	READTAGC	signal source for TAGC read-out on R2[6]
		1 = inverse to used TAGC detector (integral or IF based)
		0 = aligned to used TAGC detector (integral or IF based)

Multistandard hybrid IF processing

	WIU- data write it	egister bit descriptioncommued
Bit	Symbol	Description
5	XPOTPOS	TOP derived from IF AGC via I ² C-bus or potentiometer (TOP2)
		1 = TOP adjustment by external potentiometer at pin TOP2
		0 = see <u>Table 48</u>
4 to 0	TOPPOS[4:0]	TOP adjustment for TAGC derived from IF AGC (TOP2); recommended for positive modulation; see Table 48

Table 47. W10 - data write register bit description ...continued

Table 48. Tuner takeover point adjustment bits W10[4:0]

Bit	TOP adjustment				
TOPPOS4	TOPPOS3	TOPPOS2	TOPPOS1	TOPPOS0	(dBµV)
W10[4]	W10[3]	W10[2]	W10[1]	W10[0]	
1	1	1	1	1	99.0 typical
:	:	:	:	:	see Figure 13
1	0	0	0	0	78.5 <mark>[1]</mark>
:	:	:	:	:	see Figure 13
0	0	0	0	0	56.9 typical

[1] See Table 53 for parameter tuner takeover point accuracy ($\alpha_{acc(set)TOP2}$).

Table 49. W11 - data write register bit allocation

7	6	5	4	3	2	1	0
0	0	OFFSETN	OFFSETP	BLACKAGC	GDEQ	VIFIN3	VIF31875

Table 50. W11 - data write register bit description[1]

Bit	Symbol	Description
7 and 6	-	0 = fixed value
5	OFFSETN	VIF PLL offset sink current (approximately 0.6 µA)
		1 = enabled (requires W11[4] = 0)
		0 = disabled
4	OFFSETP	VIF PLL offset source current (approximately 0.6 µA)
		1 = enabled (requires W11[5] = 0)
		0 = disabled
3	BLACKAGC	black level AGC
		1 = disabled
		0 = enabled
2	GDEQ	activate group delay equalizer
		1 = on (if pin 34 is open-circuit)
		1 = off (if pin 34 is connected to ground)
		0 = off (if pin 34 is open-circuit)
		0 = on (if pin 34 is connected to ground)
1	VIFIN3	VIF input selection
		1 = IF3A and IF3B input
		0 = IF1A and IF1B input or IF2A and IF2B input depends on VIF input selection (W4[0])

Multistandard hybrid IF processing

W11 - data write register bit description ^[1] continued				
Symbol	Description			
VIF31875	VIF frequency selection for global ATV application inclusive DVB-T; see Table 24			
	1 = 31.875 MHz			
	0 = 32.250 MHz			
	Symbol			

[1] Register W11 is logical AND protected by bit W8[7]. Therefore it is required to set W8[7] = 1 to enable pass of any W11 bit.

10. Limiting values

Table 51. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

	Devenueter	Conditions	N/1:00	Max	11
Symbol	Parameter	Conditions	Min	Max	Unit
VP	supply voltage		-	5.5	V
Vn	voltage on any other pin	all pins except ground	0	VP	V
t _{sc}	short-circuit time	to ground or V_P	-	10	S
T _{stg}	storage temperature		-40	+150	°C
T _{amb}	ambient temperature		-20	+70	°C
T _{case}	case temperature	TDA9898HL (LQFP48)	-	105	°C
		TDA9898HN (HVQFN48)	-	115	°C
		TDA9897HL (LQFP48)	-	105	°C
		TDA9897HN (HVQFN48)	-	115	°C
V _{esd}	electrostatic discharge voltage	human body model	<u>[1]</u> -	±3000	V
		machine model	[2] _	115	V

[1] Class 2 according to JESD22-A114.

[2] Class B according to EIA/JESD22-A115.

11. Thermal characteristics

Table 52. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; 2 layer board		
	TDA9898HL (LQFP48)		67	K/W
	TDA9898HN (HVQFN48)		48	K/W
	TDA9897HL (LQFP48)		67	K/W
	TDA9897HN (HVQFN48)		48	K/W
R _{th(j-c)}	thermal resistance from junction to case			
	TDA9898HL (LQFP48)		19	K/W
	TDA9898HN (HVQFN48)		10	K/W
	TDA9897HL (LQFP48)		19	K/W
	TDA9897HN (HVQFN48)		10	K/W

Multistandard hybrid IF processing

12. Characteristics

12.1 Analog TV signal processing

Table 53. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply; pin $V_{\rm F}$	5					
VP	supply voltage		<u>[1]</u> 4.5	5.0	5.5	V
lP	supply current	ATV QSS; B/G standard; sound carrier trap on; sound BP on	-	-	175	mA
Power-on reset	:					
V _{P(POR)}	power-on reset supply voltage	for start of reset at decreasing supply voltage	^[2] 2.5	3.0	3.5	V
		for end of reset at increasing supply voltage; I ² C-bus transmission enable	[2] _	3.3	4.4	V
VIF amplifier;	pins IF1A and IF1B or pins I	F2A and IF2B or pins IF3A an	d IF3B			
VI	input voltage		-	1.95	-	V
R _{i(dif)}	differential input resistance		<u>[3]</u> _	2	-	kΩ
C _{i(dif)}	differential input capacitance		<u>[3]</u> _	3	-	pF
V _{i(IF)(RMS)}	RMS IF input voltage	lower limit at –1 dB video output signal	-	60	100	μV
		upper limit at +1 dB video output signal	150	190	-	mV
		permissible overload	[4]	-	320	mV
ΔG_{IF}	IF gain variation	difference between picture and sound carrier; within AGC range; $\Delta f = 5.5 \text{ MHz}$	-	0.7	-	dB
G _{VIF(cr)}	control range VIF gain		60	66	-	dB
f_3dB(VIF)I	lower VIF cut-off frequency		-	15	-	MHz
f_3dB(VIF)u	upper VIF cut-off frequency	,	-	80	-	MHz
VIF PLL and tr	ue synchronous video demo	odulator ^[5]				
V _{LFVIF}	voltage on pin LFVIF (DC)		0.9	-	3.6	V
f _{VCO(max)}	maximum VCO frequency	$f_{VCO} = 2f_{PC}$	120	140	-	MHz
f _{VIF}	VIF frequency	see Table 24	-	-	-	MHz
$\Delta f_{\text{VIF(dah)}}$	digital acquisition help VIF	related to f _{VIF}				
	frequency window	all standards except M/N	-	±2.3	-	MHz
		M/N standard	-	±1.8	-	MHz

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{acq}	acquisition time		[6]	-	30	ms
V _{lock(min)} (RMS)	RMS minimum lock-in voltage	measured on active IF input pins; maximum IF gain; negative modulation mode W2[7] = 1 and PLL set to overmodulation mode W2[2] = 0 and W2[1] = 0	-	30	70	μV
T _{cy(dah)}	digital acquisition help cycle time		-	64	-	μs
t _{w(dah)}	digital acquisition help pulse width		64	-	-	μs
I _{pul(acq)} VIF	VIF acquisition pulse current	sink or source	21	-	33	μΑ
K _{O(VIF)}	VIF VCO steepness	$\Delta f_{VIF} / \Delta V_{LFVIF}$	-	26	-	MHz/V
K _{D(VIF)}	VIF phase detector steepness	ΔI_{VPLL} / $\Delta \phi_{\text{VCO(VIF)}}$	-	33	-	μA/rad
I _{offset(VIF)}	VIF offset current		-1	0	+1	μA
Video output 2	V; pin CVBS <u>[7]</u>					
Normal mode (s	sound carrier trap active) and s	sound carrier on				
V _{o(video)(p-p)}	peak-to-peak video output voltage	positive or negative modulation; W6[1] = 0; see Figure 10				
		W4[7] = 0; W7[4] = 0	1.7	2.0	2.3	V
		W4[7] = 1; W7[4] = 0	1.7	2.0	2.3	V
		W4[7] = 0; W7[4] = 1	1.7	2.0	2.3	V
$\Delta V_{o(CVBS)}$	CVBS output voltage difference	difference between L and B/G standard; W3[7] = 0				
		W4[7] = 0; W7[4] = 0	-240	-	+240	mV
		W4[7] = 1; W7[4] = 0	-240	-	+240	mV
		W4[7] = 0; W7[4] = 1	-240	-	+240	mV
		difference between I and B/G standard; 20 % residual carrier at I standard; W3[7] = 1				
		W4[7] = 0; W7[4] = 0	-100	-	+100	mV
		W4[7] = 1; W7[4] = 0	-100	-	+100	mV
		W4[7] = 0; W7[4] = 1	-100	-	+100	mV
V _{video} /V _{sync}	video voltage to sync voltage ratio		2.0	2.33	2.75	

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{syncl}	sync level voltage	W4[7] = 0; W7[4] = 0		1.0	1.2	1.4	V
		W4[7] = 1; W7[4] = 0		0.9	1.2	1.5	V
		W4[7] = 0; W7[4] = 1		0.9	1.2	1.5	V
V _{clip(video)u}	upper video clipping voltage			V _P – 1.2	V_P-1	-	V
V _{clip(video)} I	lower video clipping voltage			-	0.4	0.9	V
R _O	output resistance		[3]	-	-	30	Ω
bias(int)	internal bias current (DC)	for emitter-follower		1.5	2.0	-	mA
lsink(o)(max)	maximum output sink current	AC and DC		1	-	-	mA
I _{source(o)(max)}	maximum output source current	AC and DC		3.9	-	-	mA
ΔV _{o(CVBS)}	CVBS output voltage	50 dB gain control		-	-	0.5	dB
	difference	30 dB gain control		-	-	0.1	dB
$\Delta V_{blt}/V_{CVBS}$	black level tilt to CVBS voltage ratio	negative modulation		-	-	1	%
$\Delta V_{blt(v)}/V_{CVBS}$	vertical black level tilt to CVBS voltage ratio	worst case in L standard; vision carrier modulated by test line [Vertical Interval Test Signal (VITS)] only		-	-	3	%
G _{dif}	differential gain	"ITU-T J.63 line 330"	[8]				
		B/G standard		-	-	5	%
		L standard		-	-	7	%
φdif	differential phase	"ITU-T J.63 line 330"	[8]				
		B/G standard		-	2	4	deg
		L standard		-	2	4	deg
(S/N) _w	weighted signal-to-noise ratio	B/G standard; 50 % grey video signal; unified weighting filter (<i>"ITU-T J.61"</i>); see Figure 20	<u>[9]</u>	53	57	-	dB
(S/N) _{unw}	unweighted signal-to-noise ratio	M/N standard; 50 IRE grey video signal; see Figure 20		47	51	-	dB
V _{PC(rsd)(RMS)}	RMS residual picture carrier voltage	fundamental wave and harmonics		-	2	5	mV
∆f _{PC(p-p)}	peak-to-peak picture carrier frequency variation	3 % residual carrier; 50 % serration pulses; L standard	[3]	-	-	12	kHz

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Δφ	phase difference	0 % residual carrier; 50 % serration pulses; L standard; L-gating = 0 %	<u>[3]</u>	-	-	3	%
$\alpha_{H(video)}$	video harmonics suppression	AC load: C_L < 20 pF, R_L > 1 k Ω	<u>[10]</u>	35	40	-	dB
α _{sp}	spurious suppression		[11]	40	-	-	dB
PSRR _{CVBS}	power supply ripple rejection on pin CVBS	f _{ripple} = 70 Hz; video signal; grey level; positive and negative modulation; see <u>Figure 11</u>		14	20	-	dB
M/N standard	inclusive Korea; see <u>Figure 21[1</u>	2]					
$\alpha_{ripple(resp)f}$	frequency response ripple	0.5 MHz to 2.5 MHz		-1.5	-	+1	dB
		2.5 MHz to 3.6 MHz		-2	-	+1	dB
		3.6 MHz to 3.8 MHz		-3	-	+1	dB
		3.8 MHz to 4.2 MHz		-16	-	+1	dB
α _{SC1}	first sound carrier	$f = f_{SC1} = 4.5 \text{ MHz}$		38	-	-	dB
	attenuation	$f = f_{SC1} \pm 60 \text{ kHz}$		29	-	-	dB
α_{SC2}	second sound carrier attenuation	$f = f_{SC2} = 4.724 \text{ MHz}$		25	-	-	dB
		$f = f_{SC2} \pm 60 \text{ kHz}$		16	-	-	dB
t _{d(grp)} CC	color carrier group delay time	f = 3.58 MHz; including transmitter pre-correction; see <u>Figure 22</u>	[13]	-75	-50	+75	ns
B/G standard;	see Figure 23 ^[12]						
$\alpha_{ripple(resp)f}$	frequency response ripple	0.5 MHz to 3.2 MHz		-1.5	-	+1	dB
		3.2 MHz to 4.5 MHz		-3	-	+1	dB
		4.5 MHz to 4.8 MHz		-5	-	+1	dB
		4.8 MHz to 5 MHz		-12	-	+1	dB
α _{SC1}	first sound carrier	$f = f_{SC1} = 5.5 \text{ MHz}$		35	-	-	dB
	attenuation	$f = f_{SC1} \pm 60 \text{ kHz}$		26	-	-	dB
α_{SC2}	second sound carrier	$f = f_{SC2} = 5.742 \text{ MHz}$		25	-	-	dB
	attenuation	$f = f_{SC2} \pm 60 \text{ kHz}$		16	-	-	dB
$\alpha_{SC(NICAM)}$	NICAM sound carrier attenuation	$\label{eq:f_car(NICAM)} \begin{split} f_{car(NICAM)} &= 5.85 \mbox{ MHz}; \\ f &= f_{car(NICAM)} \pm 250 \mbox{ kHz} \end{split}$		12	-	-	dB
α	attenuation	$f = f_{(N+1)ch} = 7 \text{ MHz}$		21	-	-	dB
		$f = f_{(N+1)ch} \pm 750 \text{ kHz}$		5	-	-	dB
t _{d(grp)CC}	color carrier group delay time	f = 4.43 MHz; including transmitter pre-correction; see Figure 24	[13]	-75	-10	+75	ns

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I standard; see	e <u>Figure 25^[12]</u>						
α _{ripple(resp)} f	frequency response ripple	0.5 MHz to 3.2 MHz		-1.5	-	+1	dB
		3.2 MHz to 4.5 MHz		-2	-	+1	dB
		4.5 MHz to 5 MHz		-4	-	+1	dB
		5 MHz to 5.5 MHz		–12	-	+1	dB
α _{SC1}	first sound carrier	$f = f_{SC1} = 6.0 \text{ MHz}$		35	-	-	dB
	attenuation	$f = f_{SC1} \pm 60 \text{ kHz}$		26	-	-	dB
$\alpha_{SC(NICAM)}$	NICAM sound carrier attenuation	$f_{car(NICAM)} = 6.55 \text{ MHz};$ $f = f_{car(NICAM)} \pm 250 \text{ kHz}$		12	-	-	dB
t _{d(grp)} CC	color carrier group delay time	f = 4.43 MHz; see <u>Figure 26</u>	<u>[13]</u>	-75	-15	+75	ns
D/K standard;	see Figure 27 ^[12]						
$\alpha_{ripple(resp)f}$	frequency response ripple	0.5 MHz to 3.1 MHz		-1.5	-	+1	dB
		3.1 MHz to 4.5 MHz		-2	-	+1	dB
		4.5 MHz to 4.8 MHz		-4	-	+1	dB
		4.8 MHz to 5.1 MHz		-6	-	+1	dB
α_{SC1}	first sound carrier attenuation	$f = f_{SC1} = 6.5 \text{ MHz}$		35	-	-	dB
		$f = f_{SC1} \pm 60 \text{ kHz}$		26	-	-	dB
$\alpha_{SC2(us)}$	second sound carrier	$f = f_{SC2} = 6.742 \text{ MHz}$		25	-	-	dB
	attenuation (upper side)	$f = f_{SC2} \pm 60 \text{ kHz}$		16	-	-	dB
$\alpha_{SC2(Is)}$	second sound carrier	$f = f_{SC2} = 6.258 \text{ MHz}$		25	-	-	dB
	attenuation (lower side)	$f = f_{SC2} \pm 60 \text{ kHz}$		16	-	-	dB
$\alpha_{SC(NICAM)}$	NICAM sound carrier attenuation	$f_{car(NICAM)} = 5.85 \text{ MHz};$ $f = f_{car(NICAM)} \pm 250 \text{ kHz}$		6	-	-	dB
t _{d(grp)} CC	color carrier group delay time	f = 4.28 MHz; including transmitter pre-correction; see <u>Figure 28</u>	[13]	-50	0	+100	ns
L standard; se	e <u>Figure 29^[12]</u>						
$\alpha_{ripple(resp)f}$	frequency response ripple	0.5 MHz to 3.2 MHz		-1.5	-	+1	dB
		3.2 MHz to 4.5 MHz		-2	-	+1	dB
		4.5 MHz to 4.8 MHz		-4	-	+1	dB
		4.8 MHz to 5.3 MHz		-12	-	+1	dB
$\alpha_{SC(NICAM)}$	NICAM sound carrier attenuation	$\label{eq:fcar(NICAM)} \begin{split} f_{car(NICAM)} &= 5.85 \mbox{ MHz}; \\ f &= f_{car(NICAM)} \pm 250 \mbox{ kHz} \end{split}$		5	-	-	dB
α _{SC(AM)}	AM sound carrier	$f = f_{SC(AM)} = 6.5 \text{ MHz}$		38	-	-	dB
	attenuation	$f = f_{SC(AM)} \pm 30 \text{ kHz}$		29	-	-	dB
t _{d(grp)} CC	color carrier group delay time	f = 4.28 MHz; including transmitter pre-correction; see <u>Figure 30</u>		-75	-5	+75	ns

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	-	Тур	Max	Unit
Video output 1	.7 V; pin CVBS; see Figure 5	<u>0</u> , optional CVBS buffer at se	etting W6[1] = 1			
Normal mode (s	ound carrier trap active) and s	ound carrier on					
V _{o(video)(p-p)}	peak-to-peak video output voltage	positive or negative modulation; W6[1] = 1; see <u>Figure 10</u>					
		W4[7] = 0; W7[4] = 0	1.44	1 [,]	1.7	1.96	V
		W4[7] = 1; W7[4] = 0	1.44	1 [,]	1.7	1.96	V
		W4[7] = 0; W7[4] = 1	1.44	1 [.]	1.7	1.96	V
V _{syncl}	sync level voltage	W4[7] = 0; W7[4] = 0	1.0		1.2	1.4	V
		W4[7] = 1; W7[4] = 0	0.9		1.2	1.5	V
		W4[7] = 0; W7[4] = 1	0.9		1.2	1.5	V
Video output 1	.1 V; pin CVBS						
Trap bypass mo	de and sound carrier off[12]						
V _{o(video)(p-p)}	peak-to-peak video output voltage	see Figure 10	-		1.1	-	V
V _{syncl}	sync level voltage		-		1.5	-	V
V _{clip(video)} u	upper video clipping voltage		V _P -	- 1.2 \	V _P – 1	-	V
V _{clip(video)I}	lower video clipping voltage		-	(0.4	0.9	V
B _{video(-3dB)}	-3 dB video bandwidth	AC load: $C_L < 20 \text{ pF}$, $R_L > 1 \Omega$	6	٤	8	-	MHz
(S/N) _w	weighted signal-to-noise ratio	B/G standard; 50 % grey video signal; unified weighting filter (<i>"ITU-T J.61"</i>); see Figure 20	<u>[9]</u> 54	-		-	dB
(S/N) _{unw}	unweighted signal-to-noise ratio	M/N standard; 50 IRE grey video signal; see <u>Figure 20</u>	<u>9</u> 47	ţ	51	-	dB
VIF AGC							
Pin MPP							
Vmonitor(VIFAGC)	VIF AGC monitor voltage		<u>[3]</u> 0.5	-	-	4.5	V
V _{AGC}	AGC voltage	see Figure 12; V _{i(IF)} set to					
		1 mV (60 dBµV)	2.0	-	-	2.5	V
		10 mV (80 dBμV)	2.4	-		3.0	V
		200 mV (106 dBµV)	3.0	-	•	VP	V

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
resp	response time	increasing VIF step; negative modulation	<u>[14]</u>				
		normal mode		-	100	-	μs/dB
		2nd mode		-	9	-	μs/dB
		fast 2nd mode		-	3	-	μs/dB
		increasing VIF step; positive modulation	[14]				
		normal mode		-	100	-	μs/dB
		fast mode		-	5	-	μs/dB
		decreasing VIF step; negative modulation	[14]				
		normal mode		-	70	-	μs/dB
		2nd mode		-	250	-	μs/dB
		2nd mode (speed-up)	[15]	-	20	-	μs/dB
		fast 2nd mode		-	80	-	μs/dB
		fast 2nd mode (speed-up)	[15]	-	6	-	μs/dB
		decreasing VIF step; positive modulation	[14]				
		20 dB		-	900	-	ms
		normal mode		-	180	-	ms/dB
		fast mode; W8[3] = 1		-	3	-	ms/dB
		fast mode (speed-up)	[16]	-	24	-	ms/dB
Xth(fast)VIF	VIF fast mode threshold	L standard		-10	-6	-2	dB
∆V _{VAGC(step)}	VIF AGC voltage difference (step)	see <u>Table 11</u>		-	40	-	mV/bit
Pin CIFAGC							
ch(max)	maximum charge current	L standard; normal mode; W8[3] = 0		75	100	125	μΑ
		L standard; fast mode; W8[3] = 1		-	2.0	-	mA
ch(add)	additional charge current	L standard: in the event of missing VITS pulses and no white video content		-	100	-	nA
dch	discharge current	L standard; normal mode; W8[3] = 0		-	35	-	nA
		L standard; fast mode; W8[3] = 1 or speed-up		-	1.4	-	μΑ

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Tuner AGC; pin	TAGC						
TAGC integral loc see <u>Table 44</u> and		C is current output; applicable for	r nega	ative modu	ulation on	ly; unmodu	ulated VIF
Vi(IF)(RMS)	RMS IF input voltage	for TOP1; at starting point of tuner AGC takeover; I _{sink(TAGC)} = 100 μA					
		W9[4:0] = 0 0000		-	59.6	-	dBμV
		W9[4:0] = 1 0000		-	78.3	-	dBμV
		W9[4:0] = 1 1111		-	98.5	-	dBμV
$\alpha_{acc(set)}$ TOP1	TOP1 setting accuracy			-2	-	+2	dB
I _{source}	source current	TAGC charge current					
		W9[5] = 0		0.20	0.33	0.45	μΑ
		W9[5] = 1		1.6	2.5	3.4	μΑ
		fast mode activated by internal level detector; W9[5] = 0		7	11	15	μΑ
		fast mode activated by internal level detector; W9[5] = 1		60	90	120	μΑ
l _{sink}	sink current	TAGC discharge current; V _{TAGC} = 1 V		375	500	625	μA
$\Delta \alpha_{acc(set)TOP1} / \Delta T$	TOP1 setting accuracy variation with temperature	W9[4:0] = 1 0000		-	0.006	0.02	dB/K
RL	load resistance		[3]	50	-	-	MΩ
V _{sat(u)}	upper saturation voltage	pin operating as current output		$V_P - 0.3$	-	-	V
V _{sat(I)}	lower saturation voltage	pin operating as current output		-	-	0.3	V
α _{th(fast)} AGC	AGC fast mode threshold	activated by internal fast AGC detector; I^2 C-bus setting corresponds to W9[4:0] = 1 0000	<u>[3]</u>	6	8	10	dB
t _d	delay time	before activating; $V_{i(IF)}$ below $\alpha_{th(fast)AGC}$		40	60	80	ms

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

	d on VIF AGC (W6[7:6] = 11); tive modulation); see <u>Table 4</u> RMS IF input voltage	TAGC is voltage output; applie 7, Figure 13 and Figure 14 for TOP2; at starting point of tuner AGC takeover; $V_{TAGC} = 3.5 V$ $R_{TOP2} = 22 k\Omega \text{ or}$ W10[5:0] = 00 0000	able for TV	mode: positiv	e modulatio	n and
V _{i(IF)(RMS)}	RMS IF input voltage	of tuner AGC takeover; $V_{TAGC} = 3.5 V$ $R_{TOP2} = 22 k\Omega \text{ or}$				
			-	56.9	-	dBμV
		$R_{TOP2} = 10 \text{ k}\Omega \text{ or}$ W10[5:0] = 01 0000	-	78.5	-	dBμV
		$R_{TOP2} = 0 \ k\Omega$	-	98	-	dBμV
		W10[5:0] = 01 1111	-	99	-	dBμV
α _{acc(set)} TOP2	TOP2 setting accuracy		-8	-	+8	dB
$\Delta \alpha_{acc(set)TOP2} / \Delta T$	TOP2 setting accuracy variation with temperature	$V_{TAGC} = 3.5 V$	-	0.03	0.07	dB/K
Vo	output voltage	no tuner gain reduction	4.5	-	VP	V
		maximum tuner gain reduction	0.2	-	0.6	V
$\Delta G_{slip}(TAGC)$	TAGC slip gain offset	tuner gain voltage from 0.6 V to 3.5 V	3	5	8	dB
TOP adjust 2; pi	n TOP2; IF based TAGC loc	op mode; see <mark>Figure 14</mark>				
V _{TOP2}	voltage on pin TOP2 (DC)	pin open-circuit	-	3.5	-	V
RI	input resistance		-	27	-	kΩ
R _{TOP2}	resistance on pin TOP2	adjustment of VIF AGC based TAGC loop				
		W10[5] = 1; external resistor operation	0	-	22	kΩ
		W10[5] = 0; forced I^2 C-bus operation	100	-	-	kΩ
Pin CTAGC						
V _{CTAGC}	voltage on pin CTAGC		<u>3</u> 0.2	-	$0.55V_{P}$	V
IL .	leakage current	sink or source	<u>[3]</u>	-	10	nA
R _O	output resistance	equivalent time constant resistance	<u>[3]</u>	10	-	MΩ
Pin MPP output	characteristic					
General						
V _{sat(u)}	upper saturation voltage		V _P –	$0.8 V_P - 0.5$	-	V
V _{sat(I)}	lower saturation voltage		-	0.5	0.8	V
I _{o(max)}	maximum output current	sink or source	<u>[3]</u> 350	-	-	μΑ
R _O	output resistance		[3] _	1.3	3	kΩ

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
AGC monitor (voltage output)						
Gv	voltage gain	voltage on pin MPP to internal control voltage; see <u>Table 31</u>	[17]				
		VIF AGC; see Figure 12		-	6	-	dB
		SIF AGC; see Figure 16		-	6	-	dB
		FM AGC; see Figure 15		-	6	-	dB
		TAGC; see Figure 12		-	0	-	dB
AFC monitor (c	current output)						
I _o	output current	sink or source; see <u>Figure 17</u> and <u>Figure 18</u>	<u>[18][19]</u>				
		100 kHz VIF deviation		80	-	160	μA
		200 kHz VIF deviation		160	200	240	μA
		1.5 MHz VIF deviation		160	-	240	μA
AFC TV mode							
$\Delta I_{AFC} / \Delta f_{VIF}$	change of AFC current with VIF frequency		<u>[19]</u>	0.85	1.05	1.25	μA/kH
f _{VIFacc(dig)}	digital accuracy of VIF frequency	read-out via l ² C-bus; R1[4:1] = f_0 ; $f_{ref} = 4$ MHz	[20]	-20	-	+20	kHz
f _{VIFacc(a)}	analog accuracy of VIF frequency	$I_{AFC} = 0 \text{ A}; f_{ref} = 4 \text{ MHz}$	[20]	-20	-	+20	kHz
AFC radio mod	le						
$\Delta I_{AFC} / \Delta f_{RIF}$	change of AFC current with RIF frequency		<u>[19]</u>	0.85	1.05	1.25	μA/kH
f _{RIFacc(dig)}	digital accuracy of RIF frequency	read-out via l ² C-bus; R1[4:1] = f ₀ ; f _{ref} = 4 MHz	[20]	-10	-	+10	kHz
f _{RIFacc(a)}	analog accuracy of RIF frequency	$I_{AFC} = 0 \text{ A}; f_{ref} = 4 \text{ MHz}$	[20]	-10	-	+10	kHz
Pin PORT1 or	pin PORT3 operating as volta	age monitor					
V _{sat(u)}	upper saturation voltage			$V_P - 0.8$	$V_P - 0.5$	-	V
V _{sat(I)}	lower saturation voltage			-	0.5	0.8	V
I _{o(max)}	maximum output current	sink or source	[3]	10	-	-	μΑ
R _O	output resistance		[3]	-	1.3	3	kΩ
G _v	voltage gain	voltage ratio: pin PORT1 to internal VIF AGC voltage	<u>[3][17]</u>	-	6	-	dB
		voltage ratio: pin PORT3 to internal TAGC voltage	<u>[3][17]</u>	-	0	-	dB
SIF amplifier;	pins IF1A and IF1B or pins IF	2A and IF2B or pins IF3A a	nd IF3E	5			
VI	input voltage			-	1.95	-	V
TDA9897_TDA9898_4						© NXP B.V. 200	9. All rights reserv
Product data sh	eet	Rev. 04 — 25 May 2009					49 of 1

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 24</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.375$ MHz; $f_{SC} = 32.875$ MHz; PC / SC = 13 dB; $f_{AF} = 400$ Hz); input level $V_{i(IF)} = 10$ mV (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation: Vestigial SideBand (VSB); residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; internal Nyquist slope switched on (W7[0] = 0); measurements taken in test circuit of Figure 51; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{i(dif)}	differential input resistance		-	2	-	kΩ
C _{i(dif)}	differential input capacitance		-	3	-	pF
Vi(SIF)(RMS)	RMS SIF input voltage	FM mode; –3 dB at intercarrier output pins OUT1A and OUT1B; without FM AGC; see <u>Table 21</u>	-	60	100	μV
		AM mode; –3 dB at AF output pin AUD	-	40	70	μV
		FM mode; +1 dB at intercarrier output pins OUT1A and OUT1B; without FM AGC; see <u>Table 21</u>	150	190	-	mV
		AM mode; +1 dB at AF output pin AUD	70	140	-	mV
		permissible overload	-	-	320	mV
G _{SIF(cr)}	control range SIF gain	FM and AM mode	60	66	-	dB
f_3dB(SIF)I	lower SIF cut-off frequency		-	7	-	MHz
f_3dB(SIF)u	upper SIF cut-off frequency		-	80	-	MHz
SIF AGC dete	ctor; pin MPP; see <u>Figure 16</u>					
t _{resp}	response time	increasing or decreasing SIF step of 20 dB; AM mode; fast AGC				
		increasing	-	8	-	ms
		decreasing	-	10	-	ms
		increasing or decreasing SIF step of 20 dB; AM mode; slow AGC				
		increasing	-	65	-	ms
		decreasing	-	125	-	ms
		increasing or decreasing SIF step of 20 dB; FM mode; normal AGC				
		increasing	-	0.09	-	ms
		decreasing	-	28	-	ms
		increasing or decreasing SIF step of 20 dB; FM mode; fast AGC				
		increasing	-	0.03	-	ms

Product data sheet

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{AGC(SIF)}	SIF AGC voltage	FM mode				
		$V_{SIF} = 100 \ \mu V$	1.2	-	2.1	V
		V _{SIF} = 10 mV	2.4	-	3.2	V
		V _{SIF} = 140 mV	3.1	-	VP	V
		AM mode				
		$V_{SIF} = 100 \ \mu V$	1.4	-	2.3	V
		V _{SIF} = 10 mV	2.6	-	3.4	V
		V _{SIF} = 70 mV	3.2	-	VP	V
Conversion	synthesizer PLL; pin LFSYN2 (radio mode)				
LFSYN2	voltage on pin LFSYN2		1	-	3	V
Ko	VCO steepness	$\Delta f_{VCO} / \Delta V_{LFSYN2}$	-	31	-	MHz/V
K _D	phase detector steepness	$\Delta I_{LFSYN2} / \Delta \phi_{VCO};$ see <u>Table 57</u> ; f _{VCO} selection:				
		22 MHz to 29.5 MHz	-	32	-	μA/rad
		30 MHz to 37.5 MHz	-	38	-	μA/rac
		38 MHz to 45.5 MHz	-	47	-	μA/rac
		46 MHz to 53.5 MHz	-	61	-	μA/rac
		57 MHz	-	61	-	μA/rad
o(PD)	phase detector output current	sink or source; f _{VCO} selection:				
		22 MHz to 29.5 MHz	-	200	-	μΑ
		30 MHz to 37.5 MHz	-	238	-	μΑ
		38 MHz to 45.5 MHz	-	294	-	μΑ
		46 MHz to 53.5 MHz	-	384	-	μΑ
		57 MHz	-	384	-	μΑ
Ψn(synth)	synthesizer phase noise	with 4 MHz crystal oscillator reference; f _{synth} = 31 MHz; f _{IF} = 36 MHz				
		at 1 kHz	<u>[3]</u> 89	99	-	dBc/H
		at 10 kHz	<u>[3]</u> 89	99	-	dBc/H
		at 100 kHz	<u>[3]</u> 98	102	-	dBc/H
		at 1.4 MHz	<u>3</u> 115	119	-	dBc/H
Χ _{sp}	spurious suppression	multiple of Δf = 500 kHz	<u>[3]</u> 50	-	-	dBc
L	leakage current	synthesizer spurious performance > 50 dBc	<u>[3]</u> _	-	10	nA

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
PSRR	power supply ripple rejection	residual spurious at nominal differential output voltage dependent on power supply ripple at 70 Hz; see <u>Figure 11</u>	-	50	-	dB
Single referen	ce QSS intercarrier mixer; pi	ns OUT1A and OUT1B				
V _{OUT1A}	voltage on pin OUT1A (DC)		1.8	2.0	2.2	V
V _{OUT1B}	voltage on pin OUT1B (DC)		1.8	2.0	2.2	V
l _{bias(int)}	internal bias current (DC)	for emitter-follower	2.0	2.5	-	mA
lsink(o)(max)	maximum output sink current	DC and AC	1.4	1.7	-	mA
source(o)(max)	maximum output source current	DC and AC; with external resistor to GND	3.0	-	-	mA
R _O output resistance	output active; single-ended to GND	-	-	25	Ω	
		output inactive; internal resistance to GND	-	800	-	Ω
V _{o(RMS)} RMS	RMS output voltage	IF intercarrier single-ended to GND; B/G standard; SC1 on; SC2 off; see <u>Figure 9</u> and <u>Table 21</u>				
		internal BP via FM AGC	90	140	180	mV
		internal BP	90	170	230	mV
		IF intercarrier single-ended to GND; L standard; without modulation; see <u>Figure 9</u> and <u>Table 21</u>				
		W7[5] = 0; internal BP + 6 dB	90	140	180	mV
		W7[5] = 1; internal BP + 6 dB	45	70	90	mV
		W7[5] = 0; internal BP	45	70	90	mV
		W7[5] = 1; internal BP	20	35	45	mV
–3dB(ic)u	upper intercarrier cut-off frequency	internal sound band-pass off	11	15	-	MHz
α_{image}	image rejection	band-pass off; –8 MHz to 0 MHz	24	28	-	dB
Vinterf(RMS)	RMS interference voltage	fundamental wave and harmonics	-	2	5	mV

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 24</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.375$ MHz; $f_{SC} = 32.875$ MHz; PC / SC = 13 dB; $f_{AF} = 400$ Hz); input level $V_{i(IF)} = 10$ mV (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation: Vestigial SideBand (VSB); residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; internal Nyquist slope switched on (W7[0] = 0); measurements taken in test circuit of Figure 51; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AM intercarrie	er from pin EXTFILI to pins O	UT1A and OUT1B				
G	gain	IF intercarrier; L standard; without modulation	-	5	-	dB
Band-pass mo	ode					
f _c	center frequency	QSS mode; BP selection for standard				
		M/N	-	4.7	-	MHz
		B/G	-	5.75	-	MHz
		I	-	6.25	-	MHz
		D/K	-	6.25	-	MHz
		L/L-accent	-	6.05	-	MHz
		radio mode; BP selection for standard				
		M/N	-	4.7	-	MHz
		B/G	-	5.75	-	MHz
			-	6.25	-	MHz
		D/K	-	6.25	-	MHz
: –3dB(BP)u	upper BP cut-off frequency		f _c + 0.5	f _c + 0.65	f _c + 0.8	MHz
: –3dB(BP)l	lower BP cut-off frequency		$f_c - 0.5$	$f_{c} - 0.65$	$f_c - 0.8$	MHz
α _{stpb}	stop-band attenuation		20	30	-	dB
XCC	color carrier attenuation	QSS mode; BP selection for standard				
		M/N; f _{CC} = 3.58 MHz	15	23	-	dB
		B/G; f _{CC} = 4.43 MHz	22	30	-	dB
		l; f _{CC} = 4.43 MHz	20	28	-	dB
		D/K; f _{CC} = 4.28 MHz	20	28	-	dB
		L/L-accent; f _{CC} = 4.28 MHz	20	28	-	dB
External filter	output; pin EXTFILO					
V _{EXTFILO}	voltage on pin EXTFILO (DC)		1.8	2.0	2.2	V
VEXTFILO(p-p)	peak-to-peak voltage on pin EXTFILO	IF intercarrier; SC1 on; SC2 off	420	620	820	mV
		IF intercarrier; L standard; without modulation				
		W7[5] = 0	210	310	410	mV
		W7[5] = 1	105	155	205	mV
o(max)	maximum output current	AC and DC	1	-	-	mA

TDA9897_TDA9898_4
Product data sheet

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 24</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.375$ MHz; $f_{SC} = 32.875$ MHz; PC / SC = 13 dB; $f_{AF} = 400$ Hz); input level $V_{i(IF)} = 10$ mV (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation: Vestigial SideBand (VSB); residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; internal Nyquist slope switched on (W7[0] = 0); measurements taken in test circuit of Figure 51; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
FM PLL dem	nodulator					
f _{FMPLL}	FM PLL frequency	see Table 18 and Table 20	-	4.5	-	MHz
			-	5.5	-	MHz
			-	6.0	-	MHz
			-	6.5	-	MHz
			-	10.7	-	MHz
FM PLL filter	; pin LFFM					
V _{LFFM}	voltage on pin LFFM	$f_{FMPLL} = 4.5 \text{ MHz}$	1.5	1.9	3.3	V
		$f_{FMPLL} = 5.5 \text{ MHz}$	1.5	2.2	3.3	V
		$f_{FMPLL} = 6.0 MHz$	1.5	2.35	3.3	V
		$f_{FMPLL} = 6.5 MHz$	1.5	2.5	3.3	V
		$f_{FMPLL} = 10.7 \text{ MHz}$	1.5	2.3	3.3	V
T _{cy(dah)}	digital acquisition help cycle time		-	64	-	μs
t _{w(dah)}	digital acquisition help pulse width		-	16	-	μs
I _{o(dah)}	digital acquisition help	sink or source				
、 <i>,</i>	output current	W3[4] = 0; W6[3] = 0; FM window width = 237.5 kHz	14	18	22	μΑ
		W3[4] = 1; W6[3] = 0; FM window width = 475 kHz	28	36	44	μΑ
		W3[4] = 0; W6[3] = 1; FM window width = 1 MHz	14	18	22	μΑ
		W3[4] = 1; W6[3] = 1; FM window width = 1 MHz	28	36	44	μΑ
K _{D(FM)}	FM phase detector	$\Delta I_{FMPLL} / \Delta \phi_{VCO(FM)}$				
	steepness	W3[4] = 0; W6[3] = 0; FM window width = 237.5 kHz	-	5.5	-	μA/rad
		W3[4] = 1; W6[3] = 0; FM window width = 475 kHz	-	14.5	-	μA/rad
		W3[4] = 0; W6[3] = 1; FM window width = 1 MHz	-	5.5	-	μA/rad
		W3[4] = 1; W6[3] = 1; FM window width = 1 MHz	-	14.5	-	μA/rad

TDA9897_TDA9898_4

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
K _{O(FM)}	FM VCO steepness	Δf_{FMPLL} / ΔV_{LFFM}				
		f < 10 MHz	-	3.3	-	MHz/\
		f = 10.7 MHz	-	5.9	-	MHz/\
I _{offset(FM)}	FM offset current	W6[3] = 0; W3[4] = 0	-1.5	0	+1.5	μΑ
		W6[3] = 0; W3[4] = 1	-2.5	0	+2.5	μΑ
FM intercarrier in	nput; pins EXTFMI and EXTFI	LI; see <mark>Figure 9</mark>				
Z _i	input impedance	AC-coupled via 4 pF	-	20	-	kΩ
Vi(FM)(RMS)	RMS FM input voltage	gain controlled operation; W1[1:0] = 10 or W1[1:0] = 11 or W1[1:0] = 01	2	-	300	mV
V _{lock(min)} (RMS)	RMS minimum lock-in voltage	W1[1:0] = 10 or W1[1:0] = 11 or W1[1:0] = 01	-	-	1.5	mV
V _{det(FM)} min(RMS)	RMS minimum FM carrier detection voltage	W1[1:0] = 10 or W1[1:0] = 11 or W1[1:0] = 01	-	-	1.8	mV
FM demodulator	part; audio output; pin AUD					
V _{o(AF)(RMS)}	RMS AF output voltage	QSS mode; 25 kHz FM deviation; 75 µs de-emphasis	400	500	600	mV
		QSS mode; 27 kHz FM deviation; 50 µs de-emphasis	430	540	650	mV
		QSS mode; 55 kHz FM deviation; 50 µs de-emphasis	900	-	1300	mV
		radio mode; 22.5 kHz FM deviation; 75 μs de-emphasis	360	450	540	mV
$\Delta V_{o(AF)} / \Delta T$	AF output voltage variation with temperature		-	1.1 × 10 ⁻³	$7 imes 10^{-3}$	dB/K
THD	total harmonic distortion	50 μs de-emphasis; FM deviation: for TV mode 27 kHz and for radio mode 22.5 kHz	-	0.15	0.50	%

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
$\Delta f_{AF(max)}$	maximum AF frequency deviation	THD < 2 %; pre-emphasis off; f_{AF} = 400 Hz	<u>[21]</u>			
		W3[1:0] = 00 (audio gain = 0 dB)	±55	-	-	kHz
		W3[1:0] = 01 (audio gain = -6 dB)	±110	-	-	kHz
		W3[1:0] = 10 (audio gain = -12 dB)	±170	-	-	kHz
		W3[1:0] = 11 (audio gain = -18 dB) and W3[4] = 1 (FM window width = 475 kHz)	±380	-	-	kHz
AF(max)	maximum AF frequency	THD < 2 %; pre-emphasis off	<u>[3]</u>			
		FM window width = 237.5 kHz; –6 dB audio gain; FM deviation 100 kHz	15	-	-	kHz
		FM window width = 475 kHz; –18 dB audio gain; FM deviation 300 kHz	15	-	-	kHz
: –3dB(AF)	AF cut-off frequency	W3[2] = 0; W3[4] = 0; without de-emphasis; FM window width = 237.5 kHz	80	100	-	kHz
(S/N) _{w(AF)}	AF weighted signal-to-noise ratio	27 kHz FM deviation; 50 μs de-emphasis; vision carrier unmodulated; FM PLL only; <i>"ITU-R BS.468-4"</i>	48	56	-	dB
(S/N) _{unw(AF)}	AF unweighted signal-to-noise ratio	radio mode (10.7 MHz); 22.5 kHz FM deviation; 75 μs de-emphasis	-	58	-	dB
V _{SC(rsd)} (RMS)	RMS residual sound carrier voltage	fundamental wave and harmonics; without de-emphasis	-	-	2	mV
X _{AM}	AM suppression	referenced to 27 kHz FM deviation; 50 μs de-emphasis; AM: f = 1 kHz; m = 54 %	35	46	-	dB
PSRR	power supply ripple rejection	f _{ripple} = 70 Hz; see <mark>Figure 11</mark>	14	20	-	dB

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Audio amplifi	ier						
Audio output;	pin AUD						
R _O	output resistance		[3]	-	-	300	Ω
Vo	output voltage			2.0	2.4	2.7	V
RL	load resistance	AC-coupled	[3]	10	-	-	kΩ
		DC-coupled	[3]	100	-	-	kΩ
CL	load capacitance		[3]	-	-	1	nF
V _{o(AF)(RMS)}	RMS AF output voltage	25 kHz FM deviation; 75 μs de-emphasis; see <u>Table 27</u>					
		0 dB		400	500	600	mV
		6 dB		-	250	-	mV
		–12 dB		-	125	-	mV
		–18 dB		-	62.5	-	mV
		AM; m = 54 %; see <u>Table 27</u>					
		0 dB		400	500	600	mV
		–6 dB		-	250	-	mV
f _{–3dB(AF)u}	upper AF cut-off frequency	W3[2] = 0 (without de-emphasis)	[22]	-	150	-	kHz
f _{–3dB(AF)} I	lower AF cut-off frequency	W3[2] = 0 (without de-emphasis)	[23]	-	20	-	Hz
α _{mute}	mute attenuation	of AF signal		70	-	-	dB
ΔV_{jmp}	jump voltage difference (DC)	switching AF output to mute state or vice versa; activated by digital acquisition help W3[6] = 1 or via W3[5]		-	±50	±150	mV
PSRR	power supply ripple rejection	f _{ripple} = 70 Hz; see Figure 11		14	20	-	dB
De-emphasis	network; pin CDEEM						
Vo	output voltage			-	2.4	-	V
R _O	output resistance	W3[3:2] = 11 (50 μs de-emphasis)		8.5	-	14	kΩ
		W3[3:2] = 01 (75 μs de-emphasis)		13	-	21	kΩ
V _{AF(RMS)}	RMS AF voltage	f_{AF} = 400 Hz; V _{o(AF)} = 500 mV (RMS); 0 dB attenuation		-	170	-	mV

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AF decoupling						
Pin CAF						
V _{dec}	decoupling voltage (DC)	f _{FMPLL} = 4.5 MHz	1.5	1.9	3.3	V
		f _{FMPLL} = 5.5 MHz	1.5	2.2	3.3	V
		f _{FMPLL} = 6.0 MHz	1.5	2.35	3.3	V
		f _{FMPLL} = 6.5 MHz	1.5	2.5	3.3	V
		f _{FMPLL} = 10.7 MHz	1.5	2.3	3.3	V
IL	leakage current	ΔV_{AUD} < ±50 mV (p-p); 0 dB attenuation	-	-	±25	nA
I _{o(max)}	maximum output current	sink or source	1.15	1.5	1.85	μA
FM operation	[24][25]					
Single referen	ce QSS AF performance; pin AL	ID <u>[26]</u>				
(S/N) _{w(SC1)}	first sound carrier weighted signal-to-noise ratio	PC / SC1 > 40 dB at pins IF1A and IF1B or IF2A and IF2B; 27 kHz FM deviation; BP off; <i>"ITU-R BS.468-4"</i>				
		black picture	45	50	-	dB
		white picture	45	50	-	dB
		6 kHz sine wave (black-to-white modulation)	43	47	-	dB
		250 kHz square wave (black-to-white modulation)	45	50	-	dB

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Single reference	ce QSS AF performance with	external FM demodulator connect	ed to OUT1A	and OUT	1B <mark>[27]</mark>	
(S/N) _{w(SC1)}	first sound carrier weighter signal-to-noise ratio	d PC / SC1 > 40 dB at pins IF1A and IF1B or IF2A and IF2B; 27 kHz FM deviation; BP off; <i>"ITU-R BS.468-4"</i>				
		black picture	53	58	-	dB
		white picture	50	53	-	dB
		6 kHz sine wave (black-to-white modulation)	44	48	-	dB
		250 kHz square wave (black-to-white modulation)	40	45	-	dB
		sound carrier subharmonics; f = 2.75 MHz ± 3 kHz	45	51	-	dB
		sound carrier subharmonics; f = 2.87 MHz ± 3 kHz	46	52	-	dB
(S/N) _{w(SC2)}	second sound carrier weighted signal-to-noise ratio	with external reference FM demodulator; PC / SC2 > 40 dB at pins IF1A and IF1B or IF2A and IF2B; 27 kHz (54 % FM deviation); BP off; <i>"ITU-R BS.468-4"</i>				
		black picture	48	55	-	dB
		white picture	46	51	-	dB
		6 kHz sine wave (black-to-white modulation)	42	46	-	dB
		250 kHz square wave (black-to-white modulation)	29	34	-	dB
		sound carrier subharmonics; f = 2.75 MHz ± 3 kHz	44	50	-	dB
		sound carrier subharmonics; f = 2.87 MHz ± 3 kHz	45	51	-	dB
AM operation						
L standard; pin	AUD					
V _{o(AF)(RMS)}	RMS AF output voltage	54 % modulation	400	500	600	mV
DA9897_TDA9898_4					© NXP B.V. 200	9. All rights rese
Product data sh	eet	Rev. 04 — 25 May 2009				59 of '

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
THD	total harmonic distortion	54 % modulation; BP on; see <u>Figure 33</u>		-	0.5	1.0	%
B _{AF(-3dB)}	-3 dB AF bandwidth			12	18	-	kHz
(S/N) _{w(AF)}	AF weighted	"ITU-R BS.468-4"					
	signal-to-noise ratio	BP on		38	42	-	dB
		BP off		44	50	-	dB
		composite IF; PC / SC = 10 dB; VIF modulation = color bar; <i>"ITU-R BS.468-4"</i> ; SAW filter application see Figure 47; BP on		-	40	-	dB
Reference freq	uency						
General							
f _{ref}	reference frequency		[28]	-	4	-	MHz
Reference frequ	ency generation with crystal;	oin OPTXTAL					
Voptxtal	voltage on pin OPTXTAL (DC)	pin open-circuit		2.3	2.6	2.9	V
R _i	input resistance		[3]	-	2	-	kΩ
R _{rsn(xtal)}	crystal resonance resistance			-	-	200	Ω
C _{pull}	pull capacitance		[29]	-	-	-	pF
R _{swoff(OPTXTAL)}	switch-off resistance on pin OPTXTAL	to switch off crystal input by external resistor wired between pin OPTXTAL and GND		0.22	-	4.7	kΩ
I _{swoff}	switch-off current	$R_{swoff(OPTXTAL)} = 0.22 \ k\Omega$		-	-	5000	μΑ
		$R_{swoff(OPTXTAL)} = 3.3 \ k\Omega$		-	500	-	μA
Reference frequ	ency input from external source	ce; pin OPTXTAL					
Voptxtal	voltage on pin OPTXTAL (DC)	pin open-circuit		2.3	2.6	2.9	V
R _i	input resistance		[3]	-	2	-	kΩ
V _{ref(RMS)}	RMS reference voltage			80	-	400	mV
R _O	output resistance	of external reference signal source	<u>[3]</u>	-	2	4.7	kΩ
C _{dec}	decoupling capacitance	to external reference signal source	<u>[3]</u>	22	100	-	pF
Reference frequ	ency input from external source	ce; pin FREF					
V _{FREF}	voltage on pin FREF (DC)	pin open-circuit		2.2	2.5	2.8	V
R _i	input resistance		[3]	50	-	-	kΩ
f _{ref}	reference frequency		[28]	-	4	-	MHz
DA9897_TDA9898_4						© NXP B.V. 200	Q All rights

Multistandard hybrid IF processing

Table 53. Characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ref(RMS)}	RMS reference voltage	see Figure 34	15	150	500	mV
R _O	output resistance	of external reference signal source; AC-coupled	-	-	4.7	kΩ
C _{dec}	decoupling capacitance	to external reference signal source	22	100	-	pF
R _{swoff(FREF)}	switch-off resistance on pin FREF	to switch off reference signal input by external resistor wired between pin FREF and GND	3.9	-	27	kΩ
swoff	switch-off current	$R_{swoff(FREF)} = 3.9 \ k\Omega$	-	-	100	μΑ
		$R_{swoff(FREF)} = 22 \ k\Omega$	-	25	-	μΑ
Group delay s	elect; pin GDS; see <mark>Figure 2</mark>	4 and Table 50				
V _{GDS}	voltage on pin GDS	pin open-circuit	-	VP	-	V
sink(I)	input sink current	pin connected to V_{P}	-	-	1	μA
I _{source(I)}	input source current	pin connected to GND	-	-	72	μΑ
VI	input voltage	GDEQ on; W11[2] = 0; pin connected to GND	0	-	0.46V _P	V
		GDEQ on; W11[2] = 1; pin open-circuit	0.58V _P	-	VP	V
		GDEQ off; W11[2] = 1; pin connected to GND	0	-	0.46V _P	V
		GDEQ off; W11[2] = 0; pin open-circuit	0.58V _P	-	VP	V
I ² C-bus transo	ceiver <u>^[30]</u>					
Address select	; pin ADRSEL					
VADRSEL	voltage on pin ADRSEL	pin open-circuit	-	$0.5V_{P}$	-	V
	(DC)	for address select				
		MAD1; pin connected to GND	0	-	$0.04V_{P}$	V
		MAD3; pin connected to GND via R _{ADRSEL}	0.20V _P	-	0.34V _P	V
		MAD4; pin connected to V _P via R _{ADRSEL}	0.66V _P	-	0.80V _P	V
		MAD2; pin connected to V _P	0.96V _P	-	VP	V
۲ _i	input resistance		[3] _	31	-	kΩ
RADRSEL	resistance on pin ADRSEL	·	42.3	47	51.7	kΩ
² C-bus voltage	e select; pin BVS					
V _{BVS}	voltage on pin BVS (DC)	pin open-circuit	-	0.52V _P	-	V
l _{sink(I)}	input sink current	pin connected to V_P	-	-	10	μA
I _{source(I)}	input source current	pin connected to GND	-	-	60	μΑ
DA9897_TDA9898_4					© NXP B.V. 2009.	

Multistandard hybrid IF processing

Table 53. Characteristics ... continued

 $V_P = 5 V$; $T_{amb} = 25 \circ C$; see <u>Table 24</u> for input frequencies; B/G standard is used for the specification ($f_{PC} = 38.375$ MHz; $f_{SC} = 32.875$ MHz; PC / SC = 13 dB; $f_{AF} = 400$ Hz); input level $V_{i(IF)} = 10$ mV (RMS) (sync level for B/G; peak white level for L); IF input from 50 Ω via broadband transformer 1 : 1; video modulation: Vestigial SideBand (VSB); residual carrier for B/G is 10 % and for L is 3 %; video signal in accordance with "ITU-T J.63 line 17 and line 330" or "NTC-7 Composite"; internal Nyquist slope switched on (W7[0] = 0); measurements taken in test circuit of Figure 51; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VI	input voltage	$V_{CC(I2C-bus)} = 5.0 \text{ V};$ pin connected to V_P		0.88V _P	-	VP	V
		V _{CC(I2C-bus)} = 3.3 V; pin open-circuit		0.46V _P	-	0.58V _P	V
		V _{CC(I2C-bus)} = 2.5 V; pin connected to GND		0	-	0.12V _P	V
² C-bus trans	ceiver; pins SCL and SDA ^[31]						
V _{IH}	HIGH-level input voltage	$V_{CC(I2C-bus)} = 5.0 V$	[32]	$0.6V_{P}$	-	VP	V
		$V_{CC(I2C-bus)} = 3.3 V$	[33]	2.3	-	VP	V
		$V_{CC(I2C-bus)} = 2.5 V$	[33]	1.75	-	VP	V
V _{IL}	LOW-level input voltage	$V_{CC(I2C-bus)} = 5.0 V$	[32]	-0.3	-	+0.3V _P	V
		$V_{CC(I2C-bus)} = 3.3 V$	[33]	-0.3	-	+1.0	V
		$V_{CC(I2C-bus)} = 2.5 V$	[33]	-0.3	-	+0.75	V
Ін	HIGH-level input current			-10	-	+10	μA
IIL	LOW-level input current			-10	-	+10	μA
V _{OL}	LOW-level output voltage	I _{OL} = 3 mA; for data transmission (SDA)		-	-	0.4	V
f _{SCL}	SCL clock frequency			0	-	400	kHz
Pins PORT1	or PORT2 or PORT3 operating	g as open-collector output	port				
V _{OL}	LOW-level output voltage	I = 2 mA (sink)		-	-	0.4	V
l _{sink(o)}	output sink current	PORT1					
		W7[3] = 0		-	-	3	mA
		W7[3] = 1		-	-	10	μΑ
		PORT2; W8[7] = 1					
		W8[1] = 0		-	-	3	mA
		W8[1] = 1		-	-	10	μA
		PORT3; W8[7] = 1					
		W8[2] = 0		-	-	3	mA
		W8[2] = 1		-	-	10	μΑ
V _{OH}	HIGH-level output voltage			-	-	V _P + 0.5	V

[1] Values of video and sound parameters can be decreased at V_P = 4.5 V.

[2] Condition for secure POR is a rise or fall time greater than 2 μ s.

[3] This parameter is not tested during the production and is only given as application information for designing the receiver circuit.

[4] Level headroom for input level jumps during gain control setting.

NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

[5] B_{LF(-3dB)} = 100 kHz (damping factor d = 1.7; calculated with sync level within gain control range). Calculation of the VIF PLL filter by using the following formulae:

 $B_{LF(-3dB)} = K_O K_D R$, valid for d \geq 1.2

$$d = \frac{l}{2} R \sqrt{2\pi K_O K_D C}$$

with the following parameters:

K_O = VCO steepness (Hz/V),

 K_D = phase detector steepness (A/rad),

R = loop filter serial resistor (Ω),

C = loop filter serial capacitor (F),

 $B_{LF(-3dB)} = -3 \text{ dB LF}$ bandwidth (Hz),

d = damping factor.

- [6] The VCO frequency offset related to the PC frequency is set to 1 MHz with white picture video modulation.
- [7] AC load; $C_L < 20 \text{ pF}$ and $R_L > 1 \text{ k}\Omega$. The sound carrier frequencies (depending on TV standard) are attenuated by the integrated sound carrier traps.
- [8] Condition: luminance range (5 steps) from 0 % to 100 %. Measurement value is based on 4 of 5 steps.
- [9] Measurement using 200 kHz high-pass filter, 5 MHz low-pass filter and subcarrier notch filter ("ITU-T J.64").
- [10] Modulation VSB; sound carrier off; $f_{video} > 0.5$ MHz.
- [11] Sound carrier on; f_{video} = 10 kHz to 10 MHz.
- [12] The sound carrier trap can be bypassed by setting the l²C-bus bit W2[0] to logic 0; see <u>Table 23</u>. In this way the full composite video spectrum appears at pin CVBS. The video amplitude is reduced to 1.1 V (p-p).
- [13] Measurement condition: with transformer, transmitter pre-correction on; reference is at 1 MHz.
- [14] The response time is valid for a VIF input level range from 200 μV to 70 mV.
- [15] AGC response time increased if no AGC event occurs during two lines at minimum.
- [16] AGC response time increased if video level falls below half of selected level.

[17] Load applied to output pin causes signal loss. The resulting gain can be calculated by using $G_{v(load)} = G_v + 20 log \left(\frac{R_L}{R_O + R_L}\right)$.

- [18] See Figure 19 to smooth current pulses.
- [19] To match the AFC output signal to different tuning systems a current output is provided. The test circuit is given in Figure 19. The AFC steepness can be changed by different applications of resistors R1 and R2.
- [20] The AFC value of the VIF and RIF frequency is generated by using digital counting methods. The used counter resolution is provided with an uncertainty of ±1 bit corresponding to ±25 kHz. This uncertainty of ±25 kHz has to be added to the frequency accuracy parameter.
- [21] Measured with an FM deviation of 25 kHz and the typical AF output voltage of 500 mV (RMS). The audio signal processing stage provides headroom of 6 dB with THD < 1.5 %. The I²C-bus bits W3[0] and W3[1] control the AF output signal amplitude from 0 dB to -18 dB in steps of -6 dB. Reducing the audio gain for handling a frequency deviation of more than 55 kHz avoids AF output signal clipping.
- [22] Amplitude response depends on dimensioning of FM PLL loop filter.
- [23] The lower AF cut-off frequency depends on the value of the capacitor at pin CAF. A value of C_{AF1} = 470 nF leads to $f_{-3dB(AF)I} \approx 20$ Hz and C_{AF1} = 220 nF leads to $f_{-3dB(AF)I} \approx 40$ Hz.
- [24] For all signal-to-noise measurements the used VIF modulator has to meet the following specifications:
 - a) Incidental phase modulation for black-to-white jump less than 0.5 degrees.
 - b) QSS AF performance, measured with the television demodulator AMF2 (audio output, weighted signal-to-noise ratio) better than 60 dB (at deviation 27 kHz) for 6 kHz sine wave black-to-white video modulation.
 - c) Picture-to-sound carrier ratio PC / SC1 = 13 dB (transmitter).
- [25] The PC / SC ratio is calculated as the addition of TV transmitter PC / SC1 ratio and SAW filter PC / SC1 ratio. This PC / SC ratio is necessary to achieve the weighted signal-to-noise values as noted. A different PC / SC ratio will change these values.
- [26] Measurement condition is SC1 / SC2 \ge 7 dB.
- [27] The differential QSS signal output on pins OUT1A and OUT1B is analyzed by a test demodulator TDA9820. The signal-to-noise ratio of this device is better than 60 dB. The measurement is related to an FM deviation of ±27 kHz and in accordance with "ITU-R BS.468-4".

Multistandard hybrid IF processing

- [28] The tolerance of the reference frequency determines the accuracy of VIF AFC, RIF AFC, FM demodulator center frequency, maximum FM deviation, sound trap frequency, LIF band-pass cut-off frequency, as well as the accuracy of the synthesizer.
- [29] The value of C_{pull} determines the accuracy of the resonance frequency of the crystal. It depends on the used type of crystal.
- [30] The AC characteristics are in accordance with the I²C-bus specification for fast mode (maximum clock frequency is 400 kHz). Information about the I²C-bus can be found in the brochure *"The I²C-bus and how to use it"* (order number 9398 393 40011).
- [31] The SDA and SCL lines will not be pulled down if V_P is switched off.
- [32] The threshold is dependent on V_P .
- [33] The threshold is independent of V_P .

Table 54. Examples to the FM PLL filter

B _{LF(-3dB)} (kHz)	C _s (nF)	C _{par} (pF)	${\sf R}_{\sf s}$ (k Ω)	Comment
200	2.2	100	8.2	recommended for single-carrier-sound, FM narrow
410	2.2	47	5.6	recommended for single-carrier-sound, FM wide
110	2.2	470	5.6	recommended for two-carrier-sound, FM narrow
210	2.2	47	8.2	used for test circuit

Table 55. Input frequencies and carrier ratios (examples)

Symbol	Parameter	B/G standard	M/N standard	L standard	L-accent standard	Unit
f _{PC}	picture carrier frequency	38.375	38.375	38.375	33.625	MHz
f _{SC1}	sound carrier frequency 1	32.825	33.825	31.825	40.125	MHz
f _{SC2}	sound carrier frequency 2	32.583	-	-	-	MHz
PC / SC1	picture to first sound carrier ratio	13	7	10	10	dB
PC / SC2	picture to second sound carrier ratio	20	-	-	-	dB

NXP Semiconductors

TDA9897; TDA9898

NXP Semiconductors

TDA9897; TDA9898

Multistandard hybrid IF processing

Characteristics of digital and analog radio AFC is mirrored with respect to center frequency when lower sideband is used (W2[3] = 0).

(1) RIF AFC via I²C-bus.

- (2) FM carrier detection via I²C-bus.
- (3) RIF AFC average current.
- (4) Reading via I²C-bus.
- (5) Average; RC network at pin MPP.

Fig 18. Typical analog and digital AFC characteristic for RIF

Multistandard hybrid IF processing

- (5) TOP-adjusted tuner output level.
- (6) TOP-adjusted VIF amplifier input level.
- (7) Minimum antenna input level at -1 dB video level.

Fig 35. Front-end level diagram

12.2 Digital TV signal processing

Table 56. Characteristics

 $V_P = 5 V_{1}^{(1]}; T_{amb} = 25 °C; 8 MHz system; see Table 33 and Table 34; CW test input signal is used for specification;$ $<math>V_{i(IF)} = 10 mV (RMS); f_{IF} = 36 MHz$ for low IF output of 5 MHz; IF input from 50 Ω via broadband transformer 1 : 1; gain controlled amplifier adjusted to typical specified output level; measurements taken in test circuit of Figure 51 with 4 MHz crystal oscillator reference; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
IF amplifier; I	F1A and IF1B or IF2A ar	nd IF2B or pins IF3A and IF3	В				
VI	input voltage			1.8	1.93	2.2	V
R _{i(dif)}	differential input resistance		[2]	-	2	-	kΩ
C _{i(dif)}	differential input capacitance		[2]	-	3	-	pF
G _{IF(cr)}	control range IF gain		[2]	60	66	-	dB
DTV different	ial output; pins OUT1A,	OUT1B, OUT2A and OUT2B					
Vo	output voltage	pin open-circuit		1.8	2.0	2.2	V
I _{bias(int)}	internal bias current (DC)	for emitter-follower		2.0	2.5	-	mA
Isink(o)(max)	maximum output sink current	DC and AC; see Figure 36	<u>[3]</u>	1.4	1.7	-	mA
Isource(o)(max)	maximum output source current	DC and AC; see Figure 36	<u>[3]</u>	6.0	-	-	mA
R _O	output resistance	differential; output active	[2]	-	-	50	Ω
		output inactive; internal resistance to GND	[2]	-	800	-	Ω
V _{i(IF)(RMS)}	RMS IF input voltage	minimum input sine wave level for nominal output level		-	70	100	μV
		maximum input sine wave level for nominal output level		130	170	-	mV
		permissible overload	[2]	-	-	320	mV
Direct IF; pins	s OUT2A and OUT2B						
G _{IF(max)}	maximum IF gain	output peak-to-peak level to input RMS level ratio	[2]	-	83	-	dB
V _{o(dif)(p-p)}	peak-to-peak differential output	between pin OUT2A and pin OUT2B	<u>[4]</u>				
	voltage	W4[7] = 0		-	1.0	1.1	V
		W4[7] = 1		-	0.50	0.55	V
C/N	carrier-to-noise ratio	at f _o = 33.4 MHz; see <u>Figure 37</u>	<u>[2][5][6]</u>				
		$V_{i(IF)} = 10 \text{ mV} (RMS)$		115	124	-	dBc/Hz
		$V_{i(IF)} = 0.5 \text{ mV} (RMS)$		90	104	-	dBc/Hz
α _{IM}	intermodulation suppression	input signals: $f_i = 47.0 \text{ MHz}$ and 57.5 MHz; output signals: $f_o = 36.5 \text{ MHz}$ or 68.0 MHz; see Figure 38	[2]				
		W4[7] = 0		40	-	-	dB
		W4[7] = 1		40	-	-	dB

Multistandard hybrid IF processing

Table 56. Characteristics ...continued

 $V_P = 5 V_{11}^{(11)}; T_{amb} = 25 °C; 8 MHz system; see Table 33 and Table 34; CW test input signal is used for specification;$ $<math>V_{i(IF)} = 10 mV (RMS); f_{IF} = 36 MHz$ for low IF output of 5 MHz; IF input from 50 Ω via broadband transformer 1 : 1; gain controlled amplifier adjusted to typical specified output level; measurements taken in test circuit of Figure 51 with 4 MHz crystal oscillator reference; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{IF(-1dB)} I	lower –1 dB IF cut-off frequency		[2]	-	7	-	MHz
f_3dB(IF)u	upper IF cut-off	W4[7] = 0	[4]	60	-	-	MHz
	frequency	W4[7] = 1	[7]	60	-	-	MHz
PSRR	power supply ripple rejection	residual spurious at nominal differential output voltage dependent on power supply ripple	[2]				
		f _{ripple} = 70 Hz		-	60	-	dB
		f _{ripple} = 20 kHz		-	60	-	dB
Low IF outpu	t signal; pins OUT1A and	d OUT1B; differential					
G _{IF(max)}	maximum IF gain	output peak-to-peak level to input RMS level ratio	[2]	-	89	-	dB
f _{synth}	synthesizer frequency	see Table 34 and Table 35		-	-	-	MHz
V _{o(dif)(p-p)}	peak-to-peak	W4[7] = 0	[4]	-	2	-	V
	differential output voltage	W4[7] = 1	<u>[4]</u>	-	1	-	V
PSRR	power supply ripple rejection	residual spurious at nominal differential output voltage dependent on power supply ripple	[2]				
		f _{ripple} = 70 Hz		-	50	-	dB
		f _{ripple} = 20 kHz		-	30	-	dB
$lpha_{ m ripple(pb)LIF}$	low IF pass-band	6 MHz bandwidth		-	-	2.7	dB
	ripple	7 MHz bandwidth		-	-	2.7	dB
		8 MHz bandwidth		-	-	2.7	dB
B _{-3dB}	-3 dB bandwidth	BP off	[4]	11	15	-	MHz
		6 MHz bandwidth	[4]	-	7.8	-	MHz
		7 MHz bandwidth	[4]	-	8.8	-	MHz
		8 MHz bandwidth	[4]	-	9.8	-	MHz
α_{stpb}	stop-band attenuation	6 MHz band; f = 11.75 MHz		30	40	-	dB
		6 MHz band; f = 20 MHz		28	35	-	dB
		7 MHz band; f = 13.75 MHz		30	40	-	dB
		7 MHz band; f = 20 MHz		28	35	-	dB
		8 MHz band; f = 15.75 MHz		30	40	-	dB
		8 MHz band; f = 20 MHz		28	35	-	dB

Multistandard hybrid IF processing

Table 56. Characteristics ...continued

 $V_P = 5 V_{11}^{(11)}; T_{amb} = 25 °C; 8 MHz system; see Table 33 and Table 34; CW test input signal is used for specification;$ $<math>V_{i(IF)} = 10 mV (RMS); f_{IF} = 36 MHz$ for low IF output of 5 MHz; IF input from 50 Ω via broadband transformer 1 : 1; gain controlled amplifier adjusted to typical specified output level; measurements taken in test circuit of Figure 51 with 4 MHz crystal oscillator reference; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$\Delta t_{d(grp)}$	group delay time	from 1 MHz to 2 MHz	[2]	-	90	200	ns
	variation	from 2 MHz to end of band with a bandwidth of	[2]				
		6 MHz		-	90	160	ns
		7 MHz		-	90	160	ns
		8 MHz		-	90	160	ns
α_{image}	image rejection	-10 MHz to 0 MHz					
		BP on		30	34	-	dB
		BP off		24	28	-	dB
C/N	carrier-to-noise ratio	at f _o = 4.9 MHz; see <u>Figure 37</u>	[2][5][6]				
		$V_{i(IF)} = 10 \text{ mV} (RMS)$		112	118	-	dBc/Hz
		$V_{i(IF)} = 0.5 \text{ mV} (RMS)$		90	104	-	dBc/Hz
α _{H(ib)}	in-band harmonics suppression	low IF = multiple of 1.31 MHz; $f_i = f_{synth} + 1.31$ MHz; see Figure 40	[2]				
		W4[7] = 0		40	-	-	dB
		W4[7] = 1		40	-	-	dB
α _{IM}	intermodulation suppression	input signals: $f_i = f_{synth} + 4.7 \text{ MHz and}$ $f_{synth} + 5.3 \text{ MHz}$; output signals: $f_0 = 4.1 \text{ MHz or}$ 5.9 MHz; see Figure 39	[2]				
		W4[7] = 0		40	-	-	dB
		W4[7] = 1		40	-	-	dB
α _{sp(ib)}	in-band spurious suppression	single-ended AC load; $R_L = 1 k\Omega$; $C_L = 5 pF$; 1 MHz to end of band; BP on	[2]	50	-	-	dB
$\alpha_{sp(ob)}$	out-band spurious suppression	single-ended AC load; R _L = 1 k Ω ; C _L = 5 pF; BP on		50	-	-	dB
IF AGC control	; pin AGCDIN						
I _{sink(i)(max)}	maximum input sink current		[2]	-	-	2	μΑ
V _{i(max)}	maximum input voltage		[2]	-	-	V _P	V
V _{AGCDIN}	voltage on pin AGCDIN		[2]	0	-	3	V
$\Delta G_{IF} / \Delta V_{AGCDIN}$	change of IF gain with voltage on pin AGCDIN	V_{AGCDIN} = 0.8 V to 2.2 V		-	-45	-	dB/V

Table 56. Characteristics ...continued

 $V_P = 5 V_{11}^{(11)}; T_{amb} = 25 °C; 8 MHz system; see Table 33 and Table 34; CW test input signal is used for specification;$ $<math>V_{i(IF)} = 10 mV (RMS); f_{IF} = 36 MHz$ for low IF output of 5 MHz; IF input from 50 Ω via broadband transformer 1 : 1; gain controlled amplifier adjusted to typical specified output level; measurements taken in test circuit of Figure 51 with 4 MHz crystal oscillator reference; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Tuner AGC; pin	TAGC						
TAGC integral lo	op mode (W6[7:6] = 10)	; TAGC is current output; unmo	odulate	d IF; see <u>Ta</u>	able 44 and	Figure 13	
V _{i(IF)(RMS)}	RMS IF input voltage	at starting point of tuner AGC takeover; I _{sink(TAGC)} = 100 μA					
		W9[4:0] = 0 0000		-	59.6	-	dBµV
		W9[4:0] = 1 0000		-	78.3	-	dBµV
		W9[4:0] = 1 1111		-	98.5	-	dBµV
$\alpha_{acc(set)}$ TOP	TOP setting accuracy			-2	-	+2	dB
I _{source}	source current	TAGC charge current					
		normal mode; W9[5] = 0		0.20	0.33	0.45	μA
		normal mode; W9[5] = 1		1.6	2.5	3.4	μA
		fast mode activated by internal level detector; W9[5] = 0		7	11	15	μΑ
		fast mode activated by internal level detector; W9[5] = 1		60	90	120	μΑ
l _{sink}	sink current	TAGC discharge current; $V_{TAGC} = 1 V$		375	500	625	μΑ
$\Delta \alpha_{acc(set)TOP} / \Delta T$	TOP setting accuracy variation with temperature	I _{sink(TAGC)} = 100 μA; W9[4:0] = 1 0000	[2]	-	0.006	0.02	dB/K
RL	load resistance		[2]	50	-	-	MΩ
V _{sat(u)}	upper saturation voltage	pin operating as current output	[2]	$V_P - 0.3$	-	-	V
V _{sat(I)}	lower saturation voltage	pin operating as current output	[2]	-	-	0.3	V
$lpha_{th(fast)AGC}$	AGC fast mode threshold	activated by internal fast AGC detector; I ² C-bus setting corresponds to W9[4:0] = 1 0000	[2]	6	8	10	dB
t _d	delay time	before activating; $V_{i(\text{IF})}$ below $\alpha_{th(fast)AGC}$	[2]	40	60	80	ms
Filter synthesiz	er PLL; pin LFSYN1						
V _{LFSYN1}	voltage on pin LFSYN1			1.0	-	3.5	V
Ko	VCO steepness	Δf_{VCO} / ΔV_{LFSYN1}		-	3.75	-	MHz/V
K _D	phase detector steepness	ΔI_{LFSYN1} / $\Delta \phi_{VCO}$		-	9	-	μA/rad
I _{sink(o)} PD(max)	maximum phase detector output sink current			-	-	65	μΑ

TDA9897_TDA9898_4

Multistandard hybrid IF processing

Table 56. Characteristics ...continued

 $V_P = 5 V_{11}^{(11)}; T_{amb} = 25 \,^{\circ}C; 8 \text{ MHz system; see } Table 33 \text{ and } Table 34; CW test input signal is used for specification;} V_{i(IF)} = 10 \text{ mV (RMS)}; f_{IF} = 36 \text{ MHz for low IF output of } 5 \text{ MHz; IF input from } 50 \,\Omega \text{ via broadband transformer } 1 : 1; gain controlled amplifier adjusted to typical specified output level; measurements taken in test circuit of Figure 51 with 4 MHz crystal oscillator reference; unless otherwise specified.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Isource(o)PD(max)	maximum phase detector output source current			-	-	65	μΑ
Conversion sy	nthesizer PLL; pin LFS	YN2					
V _{LFSYN2}	voltage on pin LFSYN2			1	-	3	V
Ko	VCO steepness	$\Delta f_{VCO} / \Delta V_{LFSYN2}$		-	31	-	MHz/V
K _D	phase detector steepness	$ \Delta I_{LFSYN2} / \Delta \phi_{VCO}; \\ see Table 57; \\ f_{VCO} selection: $					
		22 MHz to 29.5 MHz		-	32	-	μA/rad
		30 MHz to 37.5 MHz		-	38	-	μA/rad
		38 MHz to 45.5 MHz		-	47	-	μA/rad
		46 MHz to 53.5 MHz		-	61	-	μA/rad
		57 MHz		-	61	-	μA/rad
I _{o(PD)}	phase detector output current	sink or source; f _{VCO} selection:					
		22 MHz to 29.5 MHz		-	200	-	μA
		30 MHz to 37.5 MHz		-	238	-	μA
		38 MHz to 45.5 MHz		-	294	-	μA
		46 MHz to 53.5 MHz		-	384	-	μA
		57 MHz		-	384	-	μA
Φn(synth)	synthesizer phase noise	f _{synth} = 31 MHz; f _{IF} = 36 MHz					
		at 1 kHz	[2]	89	99	-	dBc/Hz
		at 10 kHz	[2]	89	99	-	dBc/Hz
		at 100 kHz	[2]	98	102	-	dBc/Hz
		at 1.4 MHz	[2]	115	119	-	dBc/Hz
		$f_{synth} = 40 \text{ MHz};$ $f_{IF} = 44 \text{ MHz};$ external 4 MHz reference signal of 265 mV (RMS) and phase noise better than 120 dBc/Hz; see Figure 46					
		at 1 kHz	[2]	89	96	-	dBc/Hz
		at 10 kHz	[2]	89	100	-	dBc/Hz
		at 100 kHz	[2]	96	100	-	dBc/Hz
		at 1.4 MHz	[2]	115	118	-	dBc/Hz
α _{sp}	spurious suppression	multiple of $\Delta f = 500 \text{ kHz}$	[2]	50	-	-	dBc
IL	leakage current	synthesizer spurious performance > 50 dBc	[2]	-	-	10	nA

Multistandard hybrid IF processing

Table 56. Characteristics ...continued

 $V_P = 5 V_{11}^{(11)}; T_{amb} = 25 °C; 8 MHz system; see Table 33 and Table 34; CW test input signal is used for specification;$ $<math>V_{i(IF)} = 10 mV (RMS); f_{IF} = 36 MHz$ for low IF output of 5 MHz; IF input from 50 Ω via broadband transformer 1 : 1; gain controlled amplifier adjusted to typical specified output level; measurements taken in test circuit of Figure 51 with 4 MHz crystal oscillator reference; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Reference free	luency						
General							
f _{ref}	reference frequency		[8]	-	4	-	MHz
Reference frequ	uency generation with c	ystal; pin OPTXTAL					
V _{OPTXTAL}	voltage on pin OPTXTAL (DC)	pin open-circuit		2.3	2.6	2.9	V
R _i	input resistance		[2]	-	2	-	kΩ
R _{rsn(xtal)}	crystal resonance resistance			-	-	200	Ω
C _{pull}	pull capacitance		[9]	-	-	-	pF
R _{swoff(OPTXTAL)}	switch-off resistance on pin OPTXTAL	to switch off crystal input by external resistor wired between pin OPTXTAL and GND		0.22	-	4.7	kΩ
I _{swoff}	switch-off current	$R_{swoff(OPTXTAL)} = 0.22 \ k\Omega$		-	-	5000	μΑ
		$R_{swoff(OPTXTAL)} = 3.3 \ k\Omega$		-	500	-	μΑ
Reference frequ	uency input from externa	al source; pin OPTXTAL					
V _{OPTXTAL}	voltage on pin OPTXTAL (DC)	pin open-circuit		2.3	2.6	2.9	V
R _i	input resistance		[2]	-	2	-	kΩ
V _{ref(RMS)}	RMS reference voltage			80	-	400	mV
R _O	output resistance	of external reference signal source	[2]	-	2	4.7	kΩ
C _{dec}	decoupling capacitance	to external reference signal source	[2]	22	100	-	pF
Reference frequ	uency input from externa	al source; pin FREF					
V _{FREF}	voltage on pin FREF (DC)	pin open-circuit		2.2	2.5	2.8	V
R _i	input resistance		[2]	50	-	-	kΩ
f _{ref}	reference frequency		[8]	-	4	-	MHz
V _{ref(RMS)}	RMS reference voltage	see Figure 46		15	150	500	mV
R _O	output resistance	of external reference signal source; AC-coupled		-	-	4.7	kΩ
C _{dec}	decoupling capacitance	to external reference signal source		22	100	-	pF

Table 56. Characteristics ... continued

 $V_P = 5 V_{1}^{(1]}; T_{amb} = 25 \circ C; 8 MHz system; see <u>Table 33</u> and <u>Table 34</u>; CW test input signal is used for specification;$ $<math>V_{i(IF)} = 10 \text{ mV} (RMS); f_{IF} = 36 \text{ MHz}$ for low IF output of 5 MHz; IF input from 50 Ω via broadband transformer 1 : 1; gain controlled amplifier adjusted to typical specified output level; measurements taken in test circuit of <u>Figure 51</u> with 4 MHz crystal oscillator reference; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{swoff(FREF)}$	switch-off resistance on pin FREF	to switch off reference signal input by external resistor wired between pin FREF and GND	3.9	-	27	kΩ
I _{swoff}	switch-off current	$R_{swoff(FREF)} = 3.9 \ k\Omega$	-	-	100	μΑ
		$R_{swoff(FREF)} = 22 \ k\Omega$	-	25	-	μΑ

[1] Some parameters can be decreased at $V_P = 4.5$ V.

[2] This parameter is not tested during production and is only given as application information.

[3] Output current can be increased by application of single-ended resistor from each output pin to GND. Recommended resistor value is minimum 1 kΩ.

[4] With single-ended load for $f_{IF} < 45$ MHz $R_L \ge 1$ k Ω and $C_L \le 5$ pF to ground and for $f_{IF} = 45$ MHz to 60 MHz $R_L = 1$ k Ω and $C_L \le 3$ pF to ground.

[5] Noise level is measured without input signal but AGC adjusted corresponding to the given input level.

- [6] Set with AGC nominal output voltage as reference. For C/N measurement switch input signal off.
- [7] With single-ended load $R_L \geq 1 \ k\Omega$ and $C_L \leq 5 \ pF$ to ground.
- [8] The tolerance of the reference frequency determines the accuracy of VIF AFC, RIF AFC, FM demodulator center frequency, maximum FM deviation, sound trap frequency, LIF band-pass cut-off frequency, as well as the accuracy of the synthesizer.
- [9] The value of C_{pull} determines the accuracy of the resonance frequency of the crystal. It depends on the used type of crystal.

Table 57. Conversion synthesizer PLL; loop filter dimensions^[1]

f _{VCO} (MHz)	R _{LFSYN2} (kΩ)[2]	C _{LFSYN2} (nF)
22 to 29.5	1.5	4.7
30 to 37.5	1.8	4.7
38 to 45.5	2.2	4.7
46 to 53.5	2.7	4.7
57	3.3	4.7

[1] Calculation of the PLL loop filter by using the following formulae:

$$B_{LF(-3dB)} = \frac{K_O}{N} K_D R_{LFSYN2}$$
, valid for d \ge 1.2

$$d = \frac{1}{2} R_{LFSYN2} \sqrt{2\pi \frac{K_O}{N} K_D C_{LFSYN2}}$$

with the following parameters: $K_{O} = VCO$ steepness (Hz/V),

N = divider ratio:
$$N = \frac{f_{VCO}}{0.5 MHz}$$

$$\begin{split} & \mathsf{K}_\mathsf{D} = \mathsf{phase} \ \mathsf{detector} \ \mathsf{steepness} \ (\mathsf{A}/\mathsf{rad}), \\ & \mathsf{R}_\mathsf{LFSYN2} = \mathsf{synthesizer} \ \mathsf{loop} \ \mathsf{filter} \ \mathsf{serial} \ \mathsf{resistor} \ (\Omega), \\ & \mathsf{C}_\mathsf{LFSYN2} = \mathsf{synthesizer} \ \mathsf{loop} \ \mathsf{filter} \ \mathsf{serial} \ \mathsf{capacitor} \ (\mathsf{F}), \\ & \mathsf{B}_\mathsf{LF}(\mathsf{-}\mathsf{3dB}) = -\mathsf{3} \ \mathsf{dB} \ \mathsf{LF} \ \mathsf{bandwidth} \ (\mathsf{Hz}), \\ & \mathsf{d} = \mathsf{damping} \ \mathsf{factor}. \end{split}$$

[2] If more than one frequency range is used in the application, then the smallest resistor value should be applied.

TDA9897 TDA9898 4

Multistandard hybrid IF processing

13. Application information

Fig 47. Application diagram of TDA9897 and TDA9898; ATV/DVB-T

TDA9897; TDA9898

TDA9897; TDA9898

TDA9897; TDA9898

Multistandard hybrid IF processing

14. Test information

- (2) Switch-off resistor connected if crystal is not used.
- (3) Use of crystal is optional.
- (4) Application depends on synthesizer frequency; see Table 57.
- (5) Application of FM PLL loop filter; see <u>Table 54</u>.
- (6) Capacitor connected only for TDA9898.
- (7) Pull-up resistor connected only for port function.

Fig 51. Test circuit of TDA9897 and TDA9898

TDA9897; TDA9898

Multistandard hybrid IF processing

15. Package outline

Fig 52. Package outline SOT313-2 (LQFP48)

Multistandard hybrid IF processing

SOT619-1

HVQFN48: plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body 7 x 7 x 0.85 mm

Fig 53. Package outline SOT619-1 (HVQFN48)

Multistandard hybrid IF processing

16. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

16.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

16.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

16.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

16.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 54</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 58 and 59

Table 58. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C) Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 59. Lead-free process (from J-STD-020C)

Package thickness (mm)	ickness (mm) Package reflow temperature (°C)				
	Volume (mm ³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 54.

Multistandard hybrid IF processing

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

17. Soldering of through-hole mount packages

17.1 Introduction to soldering through-hole mount packages

This text gives a very brief insight into wave, dip and manual soldering.

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

17.2 Soldering by dipping or by solder wave

Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing. Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.

The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature $(T_{stg(max)})$. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

17.3 Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 °C and 400 °C, contact may be up to 5 seconds.

Multistandard hybrid IF processing

17.4 Package related soldering information

Table 60. Suitability of through-hole mount IC packages for dipping and wave soldering

Package	Soldering method				
	Dipping	Wave			
CPGA, HCPGA	-	suitable			
DBS, DIP, HDIP, RDBS, SDIP, SIL	suitable	suitable ^[1]			
PMFP ^[2]	-	not suitable			

[1] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.

[2] For PMFP packages hot bar soldering or manual soldering is suitable.

18. Abbreviations

Table 61. Abbreviat	ions
Acronym	Description
ADC	Analog-to-Digital Converter
AFC	Automatic Frequency Control
AGC	Automatic Gain Control
ATV	Analog TV
BP	Band-Pass
CW	Continuous Wave
DAC	Digital-to-Analog Converter
DC	Direct Current
DIF	Digital Intermediate Frequency
DSP	Digital Signal Processor
DTV	Digital TV
DVB	Digital Video Broadcasting
DVB-C	Digital Video Broadcasting-Cable
DVB-T	Digital Video Broadcasting-Terrestrial
EMI	Electro-Magnetic Interference
ESD	ElectroStatic Discharge
FPLL	Frequency Phase-Locked Loop
I/O	Input/Output
IC	Integrated Circuit
IF	Intermediate Frequency
LCD	Liquid Crystal Display
LIF	Low Intermediate Frequency
MAD	Module Address
NB	NarrowBand
NICAM	Near Instantaneous Companded Audio Multiplex
PLL	Phase-Locked Loop
POR	Power-On Reset
QSS	Quasi Split Sound

Product data sheet

TDA9897; TDA9898

Multistandard hybrid IF processing

Table 61.	Abbreviations continued	
Acronym	Description	
RIF	Radio Intermediate Frequency	
RSSI	Received Signal Strength Indication	
SAW	Surface Acoustic Wave	
SC	Sound Carrier	
SIF	Sound Intermediate Frequency	
TAGC	Tuner Automatic Gain Control	
TOP	TakeOver Point	
VCO	Voltage-Controlled Oscillator	
VIF	Vision Intermediate Frequency	
VITS	Vertical Interval Test Signal	

19. Revision history

Table 62. Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes		
TDA9897_TDA9898_4	20090525	Product data sheet	-	TDA9897_TDA9898_3		
Modifications:	 Specificatio 	n of features for V3 version				
TDA9897_TDA9898_3	20080111	Product data sheet	-	TDA9897_TDA9898_2		
TDA9897_TDA9898_2	20070411	Product data sheet	-	TDA9897_TDA9898_1		
TDA9897_TDA9898_1	20060922	Product data sheet	-	-		

20. Legal information

20.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

20.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

20.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

21. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TDA9897_TDA9898_4

Multistandard hybrid IF processing

22. Contents

1	General description 1
2	Features 1
2.1	General
2.2	Analog TV processing 1
2.3	Digital TV processing 2
2.4	FM radio mode 3
3	Applications 3
4	Quick reference data 3
5	Ordering information 7
6	Block diagram 8
7	Pinning information 12
7.1	Pinning
7.2	Pin description 13
8	Functional description 15
8.1	IF input switch 15
8.2	VIF demodulator
8.3	VIF AGC and tuner AGC 15
8.3.1	Mode selection of VIF AGC 15
8.3.2	VIF AGC monitor 15
8.3.3	Tuner AGC
8.4	DIF/SIF FM and AM sound AGC 16
8.5	Frequency phase-locked loop for VIF 16
8.6 8.7	DIF/SIF converter stage
8.7.1	Mono sound demodulator
8.7.2	FM PLL narrowband demodulation
8.8	Audio amplifier
8.9	Synthesizer
8.10	l ² C-bus transceiver and slave address 18
9	I ² C-bus control
9.1	Read format 19
9.2	Write format
9.2.1	Subaddress
9.2.2	Description of data bytes 24
10	Limiting values 39
11	Thermal characteristics 39
12	Characteristics 40
12.1	Analog TV signal processing
12.2	Digital TV signal processing 78
13	Application information
14	Test information 94
15	Package outline 95
16	Soldering of SMD packages
16.1	Introduction to soldering
16.2	Wave and reflow soldering 97

16.3	Wave soldering
16.4	Reflow soldering
17	Soldering of through-hole mount packages. 99
17.1	Introduction to soldering through-hole mount
	packages 99
17.2	Soldering by dipping or by solder wave 99
17.3	Manual soldering 99
17.4	Package related soldering information 100
18	Abbreviations 100
19	Revision history 101
20	Legal information 102
20.1	Data sheet status 102
20.2	Definitions 102
20.3	Disclaimers
20.4	Trademarks 102
21	Contact information 102
22	Contents 103

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 May 2009 Document identifier: TDA9897_TDA9898_4

