

GV7704

Key Features

- Quad channel serial digital video receiver for HD and 3G video surveillance and HDcctv applications
- Quad rate operation: 270Mb/s, 540Mb/s, 1.485Gb/s, and 2.97Gb/s
- Supports HDcctv 1.0, HD-SDI (ST 292), 3G-SDI (ST 424), and SD-SDI (ST 259)*
- Four independent receiver channels with high performance cable equalization, with support for 50/75Ω coaxial and twisted pair cable transmission
- Integrated High Definition Visually Lossless CODEC (HD-VLC[™]) for extended cable reach:
 - HD over 550m of Belden 543945 CCTV coax at 270Mb/s
 - Full HD over 300m of Belden 543945 CCTV coax at 540Mb/s
 - HD over 150m of Cat-5e/6 UTP cable at 270Mb/s
- Serial digital loop-though output per channel
- Integrated audio de-embedder for the extraction of up to 4 channels of I²S serial digital audio at 32kHz, 44.1kHz and 48kHz sample rates, per video channel
- Supports both 720p and 1080p HD formats:
 - Full HD: 1080p50/59.94/60fps
 - HD: 1080p25/29.97/30fps
 - HD: 720p25/29.97/30/50/59.94/60fps
- Four 8/10-bit BT.1120 compliant output video interfaces, with embedded TRS and external HVF timing outputs
- Automatic independent detection of HD-SDI and HD-VLC video input data streams per channel
- Downstream ancillary data detection and extraction
- Automatic HDcctv Stream ID detection
- 4-wire Gennum Serial Peripheral Interface (GSPI 2.0) for external host command and control
- JTAG test interface
- 1.2V core voltage power supplies
- 1.8V digital I/O power supply
- Small footprint 169-BGA (11mm x 11mm)

- Low power operation, typically 810mW
- Wide operating temperature range: -20°C to + 85°C
- Pb-free and RoHS compliant

Applications

- Digital video recorders (DVR)
- Video servers
- Video multiplexers
- Video PC capture cards
- HDcctv peripherals

Coaxial Cable Application

Description

The GV7704 is a quad channel serial digital video receiver for High Definition component video. With integrated high performance cable equalizer technology, the GV7704 is capable of receiving compressed video at 270Mb/s or 540Mb/s, or uncompressed at 1.485Gb/s or 2.97Gb/s, over 75 Ω coaxial cable, or differentially over a 100 Ω twisted pair cable.

The GV7704 integrates the High Definition Visually Lossless CODEC (HD-VLC[™]) technology, which has been developed specifically to reduce the transmission data rate of HD video over both coaxial and unshielded twisted pair (UTP) cable. This is achieved by encoding the HD video, normally transmitted at a serial data rate of 1.485Gb/s, to the same rate as Standard Definition (SD) video, at 270Mb/s serial data rate.

At 270Mb/s, the effect of cable loss is greatly reduced, resulting in much longer cable transmission. For 75Ω

coaxial cable, cable reach can be extended up to 3x the normal reach when transmitting encoded HD at 270Mb/s. In typical video over coaxial installations, cable distances of up to 550m are possible.

Similarly, a 2.97Gb/s 3G signal can be transmitted at 540Mb/s using HD-VLC.

The GV7704 can also be configured to receive HD and 3G video over UTP cable, such as Cat-5e and Cat-6 cable, when HD-VLC encoded at 270Mb/s and 540Mb/s, respectively.

The device supports the reception of both 8-bit and 10-bit per pixel YCbCr 4:2:2 BT.1120 component digital video. A single 10-bit wide parallel digital video output bus per channel is provided, with associated pixel clock and timing signal outputs. The GV7704 supports direct interfacing of HD video formats conforming to ITU-R BT.709 and BT.1120-6 for 1125-line formats, and SMPTE ST 296 for 750-line formats. The GV7704 supports the extraction of ancillary data from the horizontal blanking of the input video data stream. Ancillary data packets can be accessed via the GSPI, allowing downstream communication from the video source to sink device. The GV7704 recognizes data packets formatted in compliance with the HDcctv 2.0 communications protocol.

The GV7704 features an audio de-embedding core, which provides the extraction of up to 4 channels of I²S serial digital audio from the ancillary data space of the input video data stream. The audio de-embedding core supports 32kHz, 44.1kHz, and 48kHz sample rates.

Packaged in a space saving 169 ball 11 x 11mm BGA, the GV7704 is ideal for high density, multi-channel video recorder architectures. Typically requiring only 810mW of power, the device does not require any special heat sinking or air flow, reducing the over cost of HD DVR designs.

*Frame structure with encoded HD only. Does not support SD/D1 video.

Functional Block Diagram

GV7704 Final Data Sheet PDS-060376

Rev.5 June 2016 www.semtech.com

Revision History

Version	ECO	PCN	Date	Description
5	031801		June 2016	Table 2-3: AC Electrical Characteristics VDD18_A, VDD18_D = $1.8V\pm5\%$ and T _A = -20° C to $+85^{\circ}$ C unless otherwise stated was updated
4	029083	_	March 2016	Updated to Final Data Sheet. Updated Table 2-3 with added Input Jitter Tolerance and changes to values in Rise/Fall Time, Rise/Fall Time Matching, and Output Total Jitter.
3	027518	_	September 2015	Updated to Preliminary Data Sheet. Updated Section 2.1, Section 2.2, Section 2.3, Section 4., and Figure 6-2. Added Figure 6-3. Various updates throughout document.
2	027065	_	July 2015	Updated cable reach values. Updated Table 2-2 and Table 2-3.
1	024435	_	March 2015	Updated Section 2.2, Section 2.3, Section 5., and Figure 6-1. Added Section 3., Section 4.11 and Section 4.12. Various updates throughout document.
0	021239		October 2014	New Document

Contents

1. Pin Out	5
1.1 GV7704 Pin Assignment	5
1.2 Pin Descriptions	6
2. Electrical Characteristics	13
2.1 Absolute Maximum Ratings	13
2.2 DC Electrical Characteristics	14
2.3 AC Electrical Characteristics	15
3. Input/Output Circuits	17
4. Detailed Description	
4.1 Functional Overview	
4.2 Serial Digital Inputs	
4.2.1 Input Termination Selection	19
4.2.2 Automatic Signal Rate Detection	19
4.3 Serial Digital Outputs	
4.3.1 Output Signal Interface Levels	
4.3.2 Serial Data Output Signal	
4.4 Video Functionality	21
4.4.1 Descrambling and Word Alignment	21
4.4.2 HD-VLC Decoding	21
4.4.3 High Definition Output Video Format	23
4.5 Parallel Video Data Outputs CHn_DOUT_[9:0]	28

4.6 PCLK Control	29
4.7 Stream ID Packet Extraction	29
4.8 Ancillary Data Extraction	
4.9 Audio Extraction	
4.9.1 Serial I2S Audio Data Format	
4.9.2 Audio Mute	
4.10 GSPI Host Interface	
4.10.1 CS Pin	
4.10.2 SDIN Pin	
4.10.3 SDOUT Pin	35
4.10.4 SCLK Pin	35
4.10.5 Command Word Description	35
4.10.6 Data Word Description	
4.10.7 GSPI Transaction Timing	
4.10.8 Single Read/Write Access	
4.10.9 Auto-increment Read/Write Access	
4.11 JTAG	
4.12 Power Supply and Reset Timing	40
5. Register Map	41
6. Application Information	51
6.1 Typical Application Circuit	51
7. Packaging Information	53
7.1 Package Dimensions	53
7.2 Recommended PCB Footprint	54
7.3 Marking Diagram	54
7.4 Solder Reflow Profile	55
7.5 Packaging Data	55
7.6 Ordering Information	

1. Pin Out

1.1 GV7704 Pin Assignment

	1	2	3	4	5	6	7	8	9	10	11	12	13
A	CH3_SDI	CH3_SDI	GND	CH3_SDO	ТСК	CH3_WCLK	CH2_WCLK	CH3_HOUT	CH3_PCLK	CH3_DOUT_5	CH3_DOUT_3	CH3_DOUT_1	CH3_DOUT_0
В	GND	GND	VDD18_A	CH3_SDO	TMS	CH3_ACLK	CH2_ACLK	CH3_VOUT	CH3_DOUT_8	CH3_DOUT_6	CH3_DOUT_4	CH3_DOUT_2	CH2_VOUT
с	N/C	N/C	VDD18_A	TDI	TDO	CH3_AOUT_1_2	CH2_AOUT_1_2	CH3_FOUT	CH3_DOUT_9	CH3_DOUT_7	CH2_HOUT	CH2_FOUT	CH2_PCLK
D	CH2_SDI	CH2_SDI	GND	TRST	EXT_FW	CH3_AOUT_3_4	CH2_AOUT_3_4	GND	GND	GND	CH2_DOUT_9	CH2_DOUT_8	CH2_DOUT_7
E	GND	GND	VDD18_A	VDD12_A	RSVD	GND	VDD18_D	VDD18_D	GND	GND	CH2_DOUT_6	CH2_DOUT_5	CH2_DOUT_4
F	CH2_SDO	CH2_SDO	VDD18_A	VDD12_A	GND	VDD12_D	VDD12_D	VDD12_D	VDD18_D	GND	CH2_DOUT_3	CH2_DOUT_2	CH2_DOUT_1
G	GND	GND	VDD18_A	VDD12_A	GND	VDD12_D	VDD12_D	VDD12_D	VDD18_D	GND	GND	CH1_HOUT	CH2_DOUT_0
н	CH1_SDO	CH1_SDO	VDD18_A	VDD12_A	GND	VDD12_D	VDD12_D	VDD12_D	VDD18_D	GND	CH1_VOUT	CH1_FOUT	CH1_PCLK
J	GND	GND	VDD18_A	VDD12_A	GND	GND	VDD18_D	VDD18_D	GND	GND	CH1_DOUT_9	CH1_DOUT_8	CH1_DOUT_7
к	CH1_SDI	CH1_SDI	GND	RESET	RSVD	CH0_WCLK	CH1_WCLK	GND	GND	GND	CH1_DOUT_6	CH1_DOUT_5	CH1_DOUT_4
L	RBIAS	VDD18_A	GND	SDIN	SDOUT	CH0_ACLK	CH1_ACLK	CH0_DOUT_2	CH0_DOUT_5	CH0_DOUT_8	CH1_DOUT_3	CH1_DOUT_2	CH1_DOUT_1
м	GND	GND	VDD18_A	CH0_SDO	ອ	CH0_AOUT_1_2	CH1_AOUT_1_2	CH0_DOUT_1	CH0_DOUT_4	CH0_DOUT_7	CH0_DOUT_9	CH0_VOUT	CH1_DOUT_0
N	CH0_SDI	CH0_SDI	GND	CH0_SDO	SCLK	CH0_AOUT_3_4	CH1_AOUT_3_4	CH0_DOUT_0	CH0_DOUT_3	CH0_DOUT_6	CH0_PCLK	CH0_HOUT	CH0_FOUT

Figure 1-1: GV7704 Pin Out

1.2 Pin Descriptions

Table 1-1: GV7704 Pin Descriptions

Pin Number	Name	Туре	Description
Analog High-Sp	eed Inputs		
N1, N2	CH0_SDI, CH0_SDI	Analog High-Speed Input	Differential high-speed data input 0. (75 Ω nominal input impedance)
K1, K2	CH1_SDI, CH1_SDI	Analog High-Speed Input	Differential high-speed data input 1. (75 Ω nominal input impedance)
D1, D2	CH2_SDI, CH2_SDI	Analog High-Speed Input	Differential high-speed data input 2. (75 Ω nominal input impedance)
A1, A2	CH3_SDI, CH3_SDI	Analog High-Speed Input	Differential high-speed data input 3. (75 Ω nominal input impedance)
Analog High-Sp	eed Outputs		
N4, M4	CH0_SDO, CH0_SDO	Analog High-Speed Output	Differential high-speed test output 0. (75 Ω nominal output impedance)
H1, H2	CH1_SDO, CH1_SDO	Analog High-Speed Output	Differential high-speed test output 1. (75 Ω nominal output impedance)
F1, F2	CH2_SDO, CH2_SDO	Analog High-Speed Output	Differential high-speed test output 2. (75 Ω nominal output impedance)
A4, B4	CH3_SDO, CH3_SDO	Analog High-Speed Output	Differential high-speed test output 3. (75 Ω nominal output impedance)
Analog Bias			
L1	RBIAS	Input/Output	External 10k Ω resistor for bias reference. Connect the resistor to ground.
Digital Video O	utputs		
			Parallel digital video output.
L8, L9, L10, M8, M9, M10, M11,	CH0_DOUT_[9:0]	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE).
N8, N9, N10			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.

Pin Number	Name	Туре	Description
			Horizontal blanking output.
N12	CH0_HOUT	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Vertical blanking output.
M12	CH0_VOUT	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Frame indication output.
N13	CH0_FOUT	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Pixel clock output (148.5MHz or 148.5/1.001 MHz).
N11	CH0_PCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Parallel digital video output.
J[11:13], K[11:13],	CH1_DOUT_[9:0]	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
L[11:13], M13			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Horizontal blanking output.
G12	CH1_HOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Vertical blanking output.
H11	CH1_VOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Frame indication output.
H12	CH1_FOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.

Pin Number	Name	Туре	Description
			Pixel clock output (148.5MHz or 148.5/1.001 MHz).
H13	CH1_PCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Parallel digital video output.
D[11:13], E[11:13],	CH2_DOUT_[9:0]	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
F[11:13], G13			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Horizontal blanking output.
C11	CH2_HOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Vertical blanking output.
B13	CH2_VOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Frame indication output.
C12	CH2_FOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Pixel clock output (148.5MHz or 148.5/1.001 MHz).
C13	CH2_PCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Parallel digital video output.
A[10:13], B[9:12], C9, C10	CH3_DOUT_[9:0]	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
5,5,123, 09, 010			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Horizontal blanking output.
A8	CH3_HOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.

Pin Number	Name	Туре	Description
			Vertical blanking output.
B8	CH3_VOUT	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Frame indication output.
C8	CH3_FOUT	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
			Pixel clock output (148.5MHz or 148.5/1.001 MHz).
A9	CH3_PCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE).
			Drive strength may be adjusted using register PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL_REG.
Digital Audio Ou	itputs		
			Channel 0 word clock (32kHz, 44.1kHz, or 48kHz).
K6	CH0_WCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 0 I ² S Audio clock (64 x word clock).
L6	CH0_ACLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 0 I ² S Audio output 1 & 2.
M6	CH0_AOUT_1_2	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 0 I ² S Audio output 3 & 4.
N6	CH0_AOUT_3_4	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 1 word clock (32kHz, 44.1kHz, or 48kHz).
K7	CH1_WCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 1 I ² S Audio clock (64 x word clock).
L7	CH1_ACLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).

Pin Number	Name	Туре	Description
			Channel 1 I ² S Audio output 1 & 2.
M7	CH1_AOUT_1_2	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 1 I ² S Audio output 3 & 4.
N7	CH1_AOUT_3_4	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 2 word clock (32kHz, 44.1kHz, or 48kHz).
A7	CH2_WCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 2 I ² S Audio clock (64 x word clock).
B7	CH2_ACLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 2 I ² S Audio output 1 & 2.
C7	CH2_AOUT_1_2	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 2 I ² S Audio output 3 & 4.
D7	CH2_AOUT_3_4	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 3 word clock (32kHz, 44.1kHz, or 48kHz).
A6	CH3_WCLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 3 I ² S Audio clock (64 x word clock).
B6	CH3_ACLK	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 3 I ² S Audio output 1 & 2.
C6	CH3_AOUT_1_2	Output	High impedance when signal is not present or user disables th lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).
			Channel 3 I ² S Audio output 3 & 4.
D6	CH3_AOUT_3_4	Output	High impedance when signal is not present or user disables the lane (DISABLE_VIDEO_LANE) or user disables audio (DISABLE_AUDIO).

Pin Number	Name	Туре	Description
JTAG Interface			
B5	TMS	Input	Dedicated JTAG pin – Test Mode Select. This pin is used to control the operation of the JTAG test. Schmitt Trigger Input with Pull-Up. If JTAG is not used this pin may be left floating.
C4	TDI	Input	Dedicated JTAG pin – Test data input. This pin is used to shift JTAG test data into the device. Schmitt Trigger Input with Pull-Up. If JTAG is not used this pin may be left floating.
C5	TDO	Output	Dedicated JTAG pin – Test data output. This pin is used to shift results from the device.
A5	ТСК	Input	Dedicated JTAG pin – Serial data clock signal. This pin is the JTAG clock. Schmitt Trigger Input. If JTAG is not used this pin must be pulled LOW.
D4	TRST	Input	Dedicated JTAG pin – Test Reset. When set LOW, the JTAG logic will be reset. Schmitt Trigger Input with Pull-Up. If JTAG is not used this pin must be pulled LOW.
General I/O and H	ost Interface		
K4	RESET	Input	Digital active–low reset input. Used to reset the internal. operating conditions to default settings. Schmitt Trigger Input.
M5	<u>CS</u>	Input	Used to initiate and terminate GSPI commands. Active-low.
L4	SDIN	Input	Serial input data, clocked in on the rising edge of SCLK.
L5	SDOUT	Output	Serial data output. Only used in GSPI mode. Clocked out on the falling edge of SCLK. Drive strength may be adjusted using register GSPI_SDOUT_DRV_STRENGTH_SEL_REG.
N5	SCLK	Input	Serial clock. The rising edge is used to latch the SDIN bits and th falling edge to drive SDOUT bits.
D5	EXT_FW	Input	External firmware loading control: When HIGH, indicates to the GV7704 that the host will downloa firmware to the GV7704. When LOW, indicates to the GV7704 to boot with internal firmware.

Pin Number	Name	Туре	Description
	Hume	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Supply Pins			
B3, C3, E3, F3, G3, H3, J3, L2, M3	VDD18_A	Power	Analog 1.8V Power Supply. Connect to 1.8V.
E7, E8, F9, G9, H9, J7, J8	VDD18_D	Power	Digital 1.8V Power Supply. Connect to 1.8V.
E4, F4, G4, H4, J4	VDD12_A	Power	Analog 1.2V Power Supply. Connect to 1.2V.
F6, F7, F8, G6, G7, G8, H6, H7, H8	VDD12_D	Power	Digital 1.2V Power Supply. Connect to 1.2V.
A3, B1, B2, D3, D8, D9, D10, E1, E2, E6, E9, E10, F5, F10, G1, G2, G5, G10, G11, H5, H10, J1, J2, J5, J6, J9, J10, K3, K8, K9, K10, L3, M1, M2, N3	GND	Power	Connect to GND.
C1, C2	N/C	_	Do not Connect.
E5, K5	RSVD	_	Connect to GND.

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 2-1: Absolute Maximum Ratings

Parameter	Value
1.8V I/O and Analog Supply Voltage	–0.5V to +2.5V DC
1.2V Analog and Core Supply Voltage	–0.3V to +1.5V DC
DC Input Voltage, VIN (Not to exceed 2.5V)	–0.5V to (VDD18 + 0.5V)
DC Output Voltage, VOUT (Not to exceed 2.5V)	–0.5V to (VDD18 + 0.5V)
Input ESD Voltage (HBM)	2kV
Input ESD Voltage (CDM)	500V
Storage Temperature Range (T _S)	-50°C to 125°C
Operating Temperature Range (T _A)	-20°C to 85°C
Solder Reflow Temperature (4s)	260°C

Note: Absolute Maximum Ratings are those values beyond which damage may occur. Functional operation outside of the ranges shown in the AC and DC Electrical Characteristics is not guaranteed.

2.2 DC Electrical Characteristics

Table 2-2: DC Electrical Characteristics

 $T_A = -20^{\circ}C$ to $+85^{\circ}C$ unless otherwise stated

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
1 2)/ Supply Current	1	270Mb/s	_	172	_	mA	
+1.2V Supply Current	I _{1V2}	1.485Gb/s	_	250	_	mA	
10)/ Sumply Comment	1	270Mb/s	_	440		mA	
+1.8V Supply Current	I _{1V8}	1.485Gb/s	—	456	_	mA	
+1.8V Power Supply Range	VDD18	At the device pin (nominal ±5%)	1.71	1.8	1.89	V	
+1.2V Power Supply Range	VDD12	At the device pin (nominal ±5%)	1.14	1.2	1.26	V	
External RBIAS Resistor	_		9.9	10	10.1	kΩ	
	_	0-200kHz	—	—	100	mV _{pp}	1
Power Supply Noise Mask +1.2V		200kHz to 1MHz	_		100	mV _{pp}	1
		>1MHz	_		100	mV _{pp}	1
	_	0 to 200kHz	_		10	mV _{pp}	1
Power Supply Noise Mask +1.8V		200kHz to 1MHz	_		30	mV _{pp}	1
		>1MHz	_		100	mV _{pp}	1
		270Mb/s, All Cable Drivers Enabled	_	950	1030	mW	
		270Mb/s, All Cable Drivers Disabled	_	810	910	mW	
		540Mb/s All Cable Drivers Enabled	—	1065	1180	mW	
Total Power Consumption	P _{total}	540Mb/s All Cable Drivers Disabled	—	925	1040	mW	
Total Power Consumption	' total	1.485Gb/s, All Cable Drivers Enabled	—	1070	1160	mW	
		1.485Gb/s, All Cable Drivers Disabled	—	900	1020	mW	
		2.97Gb/s, All Cable Drivers Enabled	_	1200	1370	mW	
		2.97Gb/s, All Cable Drivers Disabled		1030	1200	mW	
Digital Logic Issue	V _{IL}	Input LOW	-0.3	_	0.63	V	
Digital Logic Input	V _{IH}	Input HIGH	1.17	_	1.89	V	

Table 2-2: DC Electrical Characteristics (Continued)

 $T_A = -20^{\circ}C$ to $+85^{\circ}C$ unless otherwise stated

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
	V _{OL}	Output LOW		—	0.45	V	2
Digital Logic Output	V _{OH}	Output HIGH	1.35	_	_	V	2
	C _{LOAD}	148.5MHz	_	—	12	pF	

Notes:

1. Using recommended supply decoupling. See Figure 6-1: Typical Application Circuit (Part 1).

2. All digital outputs.

2.3 AC Electrical Characteristics

Table 2-3: AC Electrical Characteristics

VDD18_A, VDD18_D = 1.8V \pm 5% and T_A = -20°C to +85°C unless otherwise stated

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Input Conditions							
	_	1MHz to 5MHz	23	_	_	dB	
Input Return Loss	_	5MHz to 1.485GHz	12	—	_	dB	
	_	1.485GHz to 2.25GHz	10	—	—	dB	
	_	Data rate = 270Mb/s	0.29	_	—	UI	
Input Jitter Tolerance	_	Data rate = 540Mb/s	0.29	—	_	UI	
input sitter tolerance	_	Data rate = 1.485Gb/s	0.20	—	—	UI	
	_	Data rate = 2.97Gb/s	0.20	_	—	UI	
Clock and Data Output Co	nditions						
Output PCLK Clock Frequency	f _{PCLK}		_	148.5 or 148.5/ 1.001	_	MHz	
SDO Output Impodance	_	75 Ω single-ended	66	75	84	Ω	
SDO Output Impedance	_	100 Ω differential	88	100	112	Ω	
	_	1MHz to 5MHz	25	_	_	dB	
Output Return loss	_	5MHz to 1.485GHz	6	_	_	dB	
	_	1.485GHz to 2.25GHz	6	_	_	dB	
	_	75 Ω single-ended	0.36	0.8	0.9	V _{pp}	
Amplitude		100 Ω differential	0.36	0.8	0.9	V _{ppd}	

Table 2-3: AC Electrical Characteristics (Continued)

VDD18_A, VDD18_D = 1.8V \pm 5% and T_A = -20°C to +85°C unless otherwise stated

Parameter	Symbol	Conditions	Min	Тур	Мах	Units	Notes
	_	100Ω differential 20% - 80%	_	85	95	ps	
Rise/Fall Time	_	75Ω single-ended 20% - 80%	_	102	150	ps	
Rise/Fall Time Mismatch	_	20% - 80%	_	_	50	ps	
Overshoot	_				10	%	
	_	Data rate = 270Mb/s	_	0.08	—	UI _{pp}	
Output Tatal littar	_	Data rate = 540Mb/s	_	0.1	—	UI _{pp}	
Output Total Jitter		Data rate = 1.485Gb/s	_	0.12	_	UI _{pp}	
	_	Data rate = 2.97Gb/s	_	0.17	_	UI _{pp}	
GSPI Digital Control							
GSPI Read/Write Clock Frequency	_		_	_	55	MHz	
Reset Time	_		10	_	_	ms	
Register Access Time	_		_	_	300	ns	

3. Input/Output Circuits

Figure 3-3: Serial Input Receiver

Rev.5 June 2016 www.semtech.com

4. Detailed Description

4.1 Functional Overview

The GV7704 is a low cost, quad channel HD-VLC receiver of compressed or uncompressed high-definition video. With integrated cable equalizer technology, the GV7704 is capable of receiving compressed video at 270Mb/s or 540Mb/s, or uncompressed video at 1.485Gb/s or 2.97Gb/s over 75 Ω coaxial cable. Compressed signals can also be received differentially over 100 Ω twisted pair cable.

The High Definition Visually Lossless CODEC (HD-VLC[™]) technology is integrated in order to reduce the transmission data rate of HD video over both coaxial and unshielded twisted pair (UTP) cable. This is achieved by encoding the HD-SDI video, normally transmitted at a serial data rate of 1.485Gb/s, to the same rate as Standard Definition (SD-SDI) video, at 270Mb/s serial data rate. This provides extended cable reach for HD video up to 550m over Belden 543945 CCTV coax or 150m over Cat-5e/6 UTP cable. Similarly, 3G-SDI normally transmitted at 2.97Gb/s can be encoded down to 540Mb/s.

The GV7704 features an audio de-embedding core, which provides the extraction of up to 4 channels of I²S serial digital audio from the ancillary data space of the input video data stream. The audio de-embedding core supports 32kHz, 44.1kHz and 48kHz sample rates.

The device supports the reception of both 8-bit and 10-bit per pixel YCbCr 4:2:2 BT.1120 component digital video. A single 10-bit wide parallel digital video output bus per channel is provided, with associated pixel clock and H/V/F timing signal inputs.

The GV7704 supports the extraction of ancillary data from the horizontal blanking of the input video data stream. Ancillary data packets can be accessed via the GSPI, allowing downstream communication from the video source to sink device. The GV7704 recognizes data packets formatted in compliance with the HDcctv 2.0 communications protocol.

The device includes a 4-wire Gennum Serial Peripheral Interface (GSPI 2.0) for external host command and control. All read or write access to the GV7704 is initiated and terminated by the application host processor. The host interface is provided to allow optional configuration of some of the functions and operating modes of the GV7704.

4.2 Serial Digital Inputs

The GV7704 can accept up to four separate channels of serial digital input signals compliant with ITU-R BT.709, and ITU-R BT.1120-6. The four differential input channels are CH0_SDI/CH0_SDI, CH1_SDI/CH1_SDI, CH2_SDI/CH2_SDI and CH3_SDI/CH3_SDI.

The GV7704 integrates adaptive 75 Ω coaxial cable equalizer technology which is capable of >50dB for HD-VLC encoded input signals and >35dB for HD uncompressed signals.

Data Rate	Belden 543945 CCTV Coaxial	Cat-5e/6 UTP
HD data @ 1.485Gb/s	150m	N/A
HD-VLC encoded data @ 270Mb/s	550m	150m
3G data @ 2.97Gb/s	50m	N/A
HD-VLC encoded data @ 540Mb/s	300m	75m*
*The a sucht as l		

Table 4-1: Typical Cable Length Performance

*Theoretical

The Serial Data Signal may be connected to the input pins of any of the four channels in either a differential or single ended configuration. Only AC coupling of the inputs is supported, as the SDI and \overline{SDI} inputs are internally biased at approximately 1.8V.

Note: The serial data output should be disabled to achieve maximum SDI cable reach.

4.2.1 Input Termination Selection

Each of the four channels can be individually configured to work in either 50Ω or 75Ω input termination. Please refer to Register Map for details.

4.2.2 Automatic Signal Rate Detection

The device is able to automatically detect the rate of the incoming video signal. There are four data rates which are supported:

- HD-VLC encoded 270Mb/s (including 270x1.001Mb/s)
- HD-VLC encoded 540Mb/s (including 540x1.001Mb/s)
- HD-SDI 1.485Gb/s (including 1.485/1.001Gb/s)
- 3G-SDI 2.97Gb/s (including 2.97/1.001Gb/s)

The detected rate is indicated by bits SD_HDB, THREEG_HDB, and OUT_THREEG_HDB in register GEN_VIDEO_CFG_0_REG which specify whether the incoming signal is HD-VLC encoded (270Mb/s), HD-VLC encoded (540Mb/s), HD (1.485Gb/s), or 3G (2.97Gb/s). Table 4-2 describes how these three bits are used in combination to indicate the input signal rate.

Table 4-2: Input Rate Detection

Rate	GEN_VIDEO_CFG_0_REG				
ndle	SD_HDB	THREEG_HDB	OUT_THREEG_HDB		
HD 1.485Gb/s	0	0	0		
HD-VLC 270Mb/s	1	0	0		
3G 2.97Gb/s	0	1	1		
HD-VLC 540MB/s	1	0	1		

4.3 Serial Digital Outputs

The GV7704's serial data output pins, SDO and \overline{SDO} , provide complementary outputs, each capable of driving at least 800mV into a 75 Ω single-ended load.

Compliance with all requirements defined in Section 4.3.1 through Section 4.3.2 is guaranteed when measured across a 75Ω terminated load at the output of 1m of Belden 543945 cable, including the effects of the BNC and coaxial cable connection, except where otherwise stated.

Figure 4-1 illustrates this requirement.

Figure 4-1: BNC and Coaxial Cable Connection

4.3.1 Output Signal Interface Levels

The Serial Data Output signals (SDO and SDO pins), of the device meet the amplitude requirements as defined in ITU-R BT.656 and BT.1120 for an unbalanced generator (single-ended).

These requirements are met across all ambient temperature and power supply operating conditions described in 2. Electrical Characteristics.

4.3.2 Serial Data Output Signal

The device supports two output termination modes (75 Ω and 50 Ω). The user can program the SDO_50_EN_REG to make that selection, on a per channel basis. Please refer to Register Map for details.

4.3.2.1 Serial Data Output Signal Procedure

To enable the serial data output, the user must do a series of GSPI write transactions. The order is very important and must be followed exactly. The sequence is as shown below:

- 1. Write 03 to the POWER_UP_DRIVER_REG
- 2. Write 01 to the P2S_CLK_EN_REG
- 3. Write 01 to the TX_WORD_CLK_ENABLE_REG
- 4. Write 01 to the CDR_TX_CLK_EN_REG
- 5. Write 01 to the P2S_RSTB_REG
- 6. Write 09 to the DATALANE_FIFO_CTRL_REG
- 7. Write 08 to the DATALANE_FIFO_CTRL_REG

Please refer to Section 5. Register Map for detailed register information.

Refer to Section 4.10 for GSPI timing requirements.

Note: The serial data output should be disabled to achieve maximum SDI cable reach.

4.4 Video Functionality

4.4.1 Descrambling and Word Alignment

The GV7704 performs NRZI to NRZ decoding and data descrambling according to ITU-R BT.1120, and word aligns the data to TRS sync words.

The GV7704 carries out descrambling and word alignment to enable the detection of TRS sync words. When two consecutive valid TRS words (SAV and EAV), with the same bit alignment have been detected, the device word-aligns the data to the TRS ID words.

Note: Both 8-bit and 10-bit TRS headers are identified by the device.

4.4.2 HD-VLC Decoding

The GV7704 integrates the High Definition Visually Lossless CODEC (HD-VLC) decoder for extended reach video reception. When used in conjunction with the GV7700 HD-VLC transmitter, HD video transmission can be extended significantly over existing HD serial digital video systems. HD-VLC is based on a simple visually lossless implementation of the Dirac compression tool kit (<u>http://diracvideo.org/</u>) The visually lossless decoder is used to reduce the video bandwidth, using a very low latency mode, from a transmission rate of 1.485Gb/s (HD-SDI) to 270Mb/s (SD-SDI).

At a data rate of 270Mb/s, the serial digital encoded HD video can be transmitted over longer runs of coaxial cable. Table 4-3 below shows a comparison of cable distances between HD video transmission at 1.485Gb/s and HD-VLC encoded at 270Mb/s for various common coaxial cable types.

Cable Type	HD-VLC: 270Mb/s (m)	HD-VLC: 540Mb/s (m)	HD-SDI: 1.485Gb/s (m)	3G-SDI: 2.97Gb/s (m)
Belden 1694A / Canare L-4.5CHD	710	400	230	80
Belden 543945	550	300	150	50
KW-Link SYV 75-5	500	275	140	50
Canare L-3C2V	300	160	95	30
KW-Link SYV 75-3	300	160	85	30

Table 4-3: Cable Reach for Various Cable Types (In Metres)

Note: These values apply for new, properly terminated cables. Actual performance may vary.

Note 1: Longer cable reach performance at both 3G and 540M is possible; up to 100m at 3G and 400m at 540M can be achieved using Belden 543945. However, GV7704 lock times can increase significantly at these cable ranges, and may exceed the lock time requirements of the intended application.

Note 2: The serial data output should be disabled to achieve maximum SDI cable reach.

After transmission over the coaxial cable, the 270Mb/s or 540Mb/s serial data is recovered using the GV7704 and the data is decoded back into the native HD or 3G format. The encoding and decoding process has a total latency of 12-14 HD/3G lines which makes the CODEC ideal for low latency real-time applications. Table 4-4 below shows the total encode/decode latency through the GV7704 and the GV7700.

Video Format	Delay (µs)	Delay (HD/3G Lines)
1080p25	422.2	11.9
1080p29.97	368.8	12.4
1080p30	368.4	12.4
1080p50	211.1	11.9
1080p59.94	184.4	12.4
1080p60	184.2	12.4
720p25	635.1	11.9
720p29.97	546.6	12.2
720p30	546.6	12.2
720p50	368.6	13.8
720p59.94	324.2	14.5
720p60	324.2	14.5

Table 4-4: Encode and Decode Total Latency (GV7704 + GV7700)

The 270Mb/s data stream uses the same timing and frame structure as Standard Definition SDI (SD-SDI), and can be monitored using standard SD-SDI test equipment to check signal integrity. However, the data contained within the active picture area of the

SD-SDI stream contains only encoded HD packets. The HD video content can only be viewed after the HD-VLC decoding process.

When the GV7704 is HD-VLC encoding video formats at "true" 30 or 60 frames per second, the 270Mb/s (540Mb/s) serial data input will actually be incoming at a rate of 270x1.001Mb/s (540x1.001Mb/s). This multiplication factor is to account for the fractional increase in the original HD video frame rate. For all other HD frame rates, the incoming serial data will be exactly 270Mb/s.

4.4.3 High Definition Output Video Format

ITU-R BT.1120 describes the serial and parallel format for 1080-line interlaced and progressive digital video. The field/frame blanking period (V), the line blanking period (H), and the field identification (F), are embedded as digital timing codes (TRS) within the video. After deserialization, a single 10-bit bus carrying the C'B, Y', C'R, Y', etc. data pattern is output on the 10-bit parallel data interface, operating at a pixel clock rate of 148.5MHz or 148.5/1.001MHz.

For 3G formats the parallel interface uses a DDR pixel clock at 148.5MHz or 148.5/1.001MHz.

The following figures show horizontal and vertical timing for 1080-line interlaced systems.

Figure 4-3: Multiplexed Luma and Chroma Over One Video Line - 1080i

Interlaced	60 or 60/1.001 Hz	50Hz
H1	560	1440
H2	4400	5280

4.4.3.1 High Definition 1080p Output Formats

ITU-R BT.1120 also includes progressive scan formats with 1080 active lines, with Y'C'_BC'_R 4:2:2 sampling at pixel rates of 74.25MHz or 74.25/1.001 MHz. The following diagrams show horizontal and vertical timing for 1080-line progressive systems. The GV7704 provides a 10-bit multiplexed output interface, doubling the pixel clock output rate to 148.5MHz or 148.5/1.001 MHz.

Rev.5 June 2016 www.semtech.com

Figure 4-5: Multiplexed Luma and Chroma Over One Video Line - 1080p

Progressive	30Hz, 30/1.001Hz, 60Hz, 60/1.001Hz	25Hz or 50Hz	24Hz or 24/1.001Hz
H1	560	1440	1660
H2	4400	5280	5500

Table 4-6: 1080-line Progressive Horizontal Timing

4.4.3.2 High Definition 720p Output Formats

The Society of Motion Picture and Television Engineers (SMPTE) defines the standard for progressive scan 720-line HD image formats. SMPTE ST 296-2001 specifies the representation for 720p digital Y'C'_BC'_R 4:2:2 signals at pixel rates of 74.25MHz or 74.25/1.001 MHz. The GV7704 provides a 10-bit multiplexed output interface, doubling the pixel clock output rate to 148.5MHz or 148.5/1.001 MHz.

Figure 4-6: 720p Digital Vertical Timing

The frame rate determines the horizontal timing, which is shown in Table 4-7.

Frame Rate	H = 1 Sample Number	H = 0 Sample Number	Total Samples Per Line
25	2560	0	7920
30 or 30/1.001	2560	0	6600
50	2560	0	3960
60 or 60/1.001	2560	0	3300

4.4.3.3 BT.656 Video Output Timing Mode

By default, the 10-bit parallel video output will contain two embedded TRS words, as defined in ITU-R BT.1120. Some commercially available CODEC devices cannot detect the presence of the double TRS in the HD video stream, and require that the 8/10-bit HD video contain only one TRS word, as per the ITU-R BT.656 Standard Definition format. When the BT656_ENABLE bit is HIGH, the GV7704 will re-format the parallel video

output to conform with BT.656 embedded TRS. The device will replace all data words from the second TRS, line number and line CRC with blanking values, as shown in Figure 4-7. Note that when BT.656 output mode is enabled, any embedded ancillary data in the horizontal balking will remain unchanged, and will not be contiguous from the EAV. This is shown in Figure 4-8 below.

Figure 4-7: BT.656 Video Output Timing

CHn_DOUT_[9:0] 🕅 3FFh 🕺 000h 👋 000h 💥 EAV	200h	040h 200h	040h	200h	040h	200h	040h	200h	040h	200h	040h	000h	040h	3FFh	040h	3FFh	040h
		Inserted Blanking Words						Ancillary Data									

Figure 4-8: Ancillary Data in BT.656 Video Output Timing Mode

4.4.3.4 3G-SDI 1080p Input Formats

The Society of Motion Picture and Television Engineers (SMPTE) defines the standard for 3G-SDI image formats in ST 425. The GV7700 supports 1080p50/60 Y'C'BC'R 4:2:2 8/10 bit. For 3G formats the parallel interface uses a DDR pixel clock at 148.5MHz or 148.5/1.001MHz.

Figure 4-9: 20-bit Mapping Structure for 1920 x 1080 50/60Hz Progressive 4:2:2 (Y'C'_BC'_R) 8/10-bit Signals

Table 4-8: 1080p Y'C'_BC'_R 4:2:0 & 4:2:2 10-bit Bit Structure Mapping

Data Stream		Bit Number								
Data Stream	9	8	7	6	5	4	3	2	1	0
DS1		Y'[9:0]								
DS2		C' _B C' _R [9:0]								

Note: For 8-bit systems, the data should be justified to the most significant bit (Y'9 and $C'_BC'_R$ 9), with the two least significant bits (Y'[1:0] and $C'_BC'_R$ [1:0]) set to zero.

Rev.5

June 2016

4.5 Parallel Video Data Outputs CHn_DOUT_[9:0]

A 10-bit video output bus is provided for each received video channel. For HD formats the parallel data outputs are aligned to the rising edge of PCLK. For 3G formats the parallel data outputs are aligned to both rising and falling edge of PCLK. Each output provides a 10-bit multiplexed ITU-R BT.1120 compliant video bus with embedded TRS. The drive strength of the parallel video output pins (PCLK, HOUT, VOUT, FOUT, DOUT[9:0]) can be adjusted using the PARALLEL_VIDEO_OUT_DRV_STRENGTH_SEL bit. The device uses the low drive strength setting by default. For PCB trace longer than 6 inches the high drive strength setting should be used.

Figure 4-11: DDR Parallel Video Output Timing Diagram

Table 4-9: Digital Output Specifications

Digital Parallel Video Output Interface	Symbol	Conditions	Min	Тур	Max	Units	Notes
Parallel Clock Frequency	f _{PCLK}	—	_	148.5	_	MHz	_
Parallel Clock Duty Cycle	DC _{PCLK}	—	40	—	60	%	
Output Data Hold Time	t _{OH}	1.89V operation, 6pF C _{LOAD} , 0°C	0.4	_	_	ns	_
Output Data Delay Time	t _{OD}	1.71V operation, 6pF C _{LOAD} , 85°C	_	_	2.66	ns	_

Digital Parallel Video Output Interface	Symbol	Conditions	Min	Тур	Max	Units	Notes
Output Data Rise/Fall Time	t _r /t _f	1.89V operation, 6 pF C _{LOAD} , 0°C	—	—	0.4	ns	_
	۲ _۲ / ۲	1.71V operation, 15 pF C _{LOAD} , 85°C	_	—	1.4	ns	_

Table 4-9: Digital Output Specifications (Continued)

4.6 PCLK Control

The CLOCKS_CFG_CFG_1_REG register can be used to control the phase of the output PCLK. PCLK_SELECT bits shift the phase of the clock according to Table 4-10. The clock can be inverted using the PCLK_INVERT bit.

Table 4-10: PCLK Control

PCLK_SELECT[2:1]	PCLK Phase Adjustment for HD Formats	PCLK Phase Adjustment for 3G Formats
0	0	0
1	90	90
2	180	N/A
3	270	N/A

4.7 Stream ID Packet Extraction

The GV7704 will automatically detect and extract HDcctv Stream ID packets from all four video channels. Each channel's 6 byte packet can be read from the host interface through the bits EXTRACT_STREAM_ID_BYTE[1:6] located in registers EXTRACT_STREAM_ID_REG[1:6] respectively. There are independent registers for each of the four channels.

When the GV7704 is decoding HD-VLC streams, the device will automatically re-insert the correct Stream ID in the HD parallel video output. Only bytes 1 and 2 of the Stream ID packet will be updated, with all other bytes set to all zero. The re-inserted byte 1 and 2 data can be read from registers INS_ID_BYTE1_REG and INS_ID_BYTE_2_REG. Bytes 1 and 2 can be programmed from bits INS_ID_BYTE[1:2] located in registers INS_ID_BYTE_REG[1:2] respectively.

Byte 1 of the Stream ID packet is interpreted according to Table 4-11 below.

Input Video Standard	HD-VLC Encoding	Byte 1 Value	Original Video Standard		
720p25	OFF	14h	720p25		
625i25	ON	94h	720p25		
720p29.97	OFF	12h	720p29.97		
525i29.97	ON	92h	720p29.97		
720p30	OFF	11h	720p30		
525i30	ON	91h	720p30		
1080i50	OFF	E3h	1080i50		
720p50	OFF	13h	720p50		
625i25	ON	93h	720p50		
1080i59.94	OFF	E2h	1080i59.94		
720p59.94	OFF	16h	720p59.94		
525i29.97	ON	96h	720p59.94		
1080i60	OFF	E1h	1080i60		
720p60	OFF	15h	720p60		
525i30	ON	95h	720p60		
1080p25	OFF	23h	1080p25		
625i25	ON	A3h	1080p25		
1080p29.97	OFF	22h	1080p29.97		
525i29.97	ON A2h		1080p29.97		
1080p30	OFF	21h	1080p30		
525i30	ON A1h		1080p30		
625i25	ON	F3h	1080i50		
525i29.97	ON	F2h	1080i59.94		
525i30	ON	F1h	1080i60		
1080p50	OFF	26h	1080p50		
625i50	ON	A6h	1080p50		
1080p59.94	OFF	25h	1080p59.94		
525i59.94	ON	A5h	1080p59.94		
1080p60	OFF	24h	1080p60		
525i60	ON	A4h	1080p60		

Table 4-11: Stream ID Packet Extraction Byte 1

Note: When the GV7704 is receiving HD-VLC encoded HD video formats at "true" 30 or 60 frames per second, the 270Mb/s serial data rate will be at 270 x 1.001 Mb/s. This multiplication factor is to account for the fractional increase in the original HD video frame rate. For all other HD frame rates, the HD-VLC encoded serial data rate will be exactly 270Mb/s.

4.8 Ancillary Data Extraction

The GV7704 is capable of extracting ancillary data packets, with the type of packet specified by the user on a programmable 10 bit DID. The 2 MSBs of the DID are written to ANC_PACKET_DID_9_8 in register ANC_PACKET_DID_9_8_REG, and the next 8 bits are written to ANC_PACKET_DID_7_0 in register ANC_PACKET_DID_7_0_REG.

Up to 16 User Data Words can be extracted per ancillary data packet. The chip will extract the DID-SDID/DBN-DC-UDWs-CS bytes, and they are available in 10-bit pairs (ANC_PACKET_UD W0_9_8, ANC_PACKET_UDW0_7_0) through to (ANC_PACKET_UD W15_9_8, ANC_PACKET_UDW15_7_0).

The GV7704 looks for packets in the horizontal blanking region of a digital video signal. The vertical blanking region is used by the HD-VLC encoder of the GV7000 which inserts compression coefficients that cannot be overwritten. The payload of the ancillary data packet can be used to carry user-defined or proprietary data, which can be sent between an Aviia transmitter and receiver.

The ancillary data packet is formatted according to the Figure 4-12 below. The packet must always begin with the Ancillary Data Flag (ADF), defined as the following 10-bit word sequence: 000_h , $3FF_h$, $3FF_h$.

The next data word is the 8-bit Data ID (DID), used to define the contents of the packet. For example, a unique DID can be used to denote alarm data, with another DID to denote status data.

After the DID, there are two possible options, as shown in Figure 4-12.

Type 1 Ancillary Data Packet

A Type 1 packet defines an 8-bit Data Block Number (DBN) sequence, used to distinguish successive packets with the same DID. The DBN simply increments with each packet of the same DID, between 0 and 15.

For a Type 2 packet, an 8-bit Secondary Data ID (SDID) word is defined, which can be used to denote variants of payloads with the same DID. For example, packets with a DID to denote error data may distinguish different error types using unique SDID's.

After the DBN or SDID, the next data word is the 8-bit Data Count (DC). This word must be set to the number of user data words (UDW) that follow the DC, and must not exceed 16 (maximum payload size).

The final word of the ancillary data packet is the 9-bit Checksum (CS). The CS value must be equal to the nine least significant bits of the sum of the nine least significant bits of the DID, the DBN or the SDID, the DC and all user data words (UDW) in the packet.

For HD video formats, ancillary data packets are only extracted from the Luma channel.

4.9 Audio Extraction

The GV7704 will de-embed audio from both HD and HD-VLC encoded data. The GV7704 can extract up to four channels of serial digital audio at an audio sampling rate of 32kHz, 44.1kHz, or 48kHz. By default, audio extraction for each channel is enabled, and it can be disabled on any channel by setting DISABLE_AUDIO to 01 in the AUDIO_CTRL_OVERRIDE_REG register from the host interface.

By default, the device will process audio at a sampling rate of 48kHz. When using a GV7700 to GV7704 chip set, audio sampled at 44.1kHz and 32kHz will be automatically detected by the GV7704. The GV7704 reads the Stream ID packet byte 3 to determine the audio sampling frequency.

When receiving from a signal not transmitted by the GV7700, the audio sampling rate must be manually specified if different than 48kHz, first by setting AUDIO_SAMP_FREQ_MANUAL_MODE to 1, and then by specifying the sampling frequency through AUDIO_SAMP_FREQ. Refer to Table 4-12 below.

AUDIO_SAMP_FREQ	Sampling Frequency
00 (default)	48khz
01	44.1kHz
10	32kHz
11	Reserved

Table 4-12: Register Settings for Manual Audio Sampling Frequency

The device will continuously look for the programmable audio group DID and updates the audio packets present on every rising edge of the vertical blanking interval. If several audio groups are present in the video signal, the device will extract the lower Audio Group number (ex: Audio Group 2, Audio Group 8: Audio Group 2 will be extracted). As such, the programmable audio group DID is offered to the user as a method of selecting the audio group of his choice for extraction or for specifying an audio DID that would be different from the 8 HD audio group DIDs specified in the SMPTE standards.

The audio packet format is SMPTE ST 299-1, regardless of the input signal rate (270Mb/s or 1.485Gb/s). The GV7704 will compute ECC (Error Correcting Codes) and compare them to the ECC embedded in the audio packets, and it will correct errors wherever possible as well as report any errors found. Error correction can be disabled by setting DISABLE_ECC to 01 in the AUD_EXT_CONFIG_REG register, and the audio samples will be bypassed as found in the packets.

The audio samples will be buffered and output on the four I²S channels via CHn_ACLK, CHn_WCLK, CHn_AIN_1_2, and CHn_AIN_3_4 pins. They will be formatted according to the standard I²S bus specifications, and the timing for this interface is shown in Figure 4-13 below.

Figure 4-13: ACLK to Audio Data and WCLK Signal Output Timing

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Output Data Hold Time	t _{OH}	50% levels; 1.8V operation	1.5	—	—	ns
Output Data Delay Time	t _{OD}		_	—	7.0	ns

4.9.1 Serial I²S Audio Data Format

The GV7704 supports the I²S serial audio data format, as shown in Figure 4-14 below.

Figure 4-14: I²S Audio Output Format

4.9.2 Audio Mute

The GV7704 can mute either pair of output audio channels using 2 host interface control bits for each video lane. The bits can mute channels 0 & 1 or channels 2 & 3. Channels 0 & 1 can be muted by asserting the MUTE 0_1 bit in the AUD_EXT_CONFIG_REG for any of the four video lanes. Channels 2 & 3 can be muted by asserting the MUTE_2_3 bit in the AUD_EXT_CONFIG_REG for any of the four video lanes. See Table 4-14.

By default, the 4 channels will not be muted.

Table 4-14: Audio Mute Controls

Address	Register	Parameter	Description
Channel 0: 488D _h Channel 1: 548D _h	AUD EXT CONFIG _	MUTE_0_1	HIGH = Channels 0 & 1 are muted LOW = Channels 0 & 1 are not muted
Channel 2: 608D _h Channel 3: 6C8D _h	AUD_EXT_CONFIG REG	MUTE_2_3	HIGH = Channels 2 & 3 are muted LOW = Channels 2 & 3 are not muted

4.10 GSPI Host Interface

The GV7704 is controlled via the Gennum Serial Peripheral Interface (GSPI).

The GSPI host interface is comprised of a serial data input signal (SDIN pin), serial data output signal (SDOUT pin), an active-low chip select (\overline{CS} pin) and a burst clock (SCLK pin).

The GV7704 is a slave device, so the SCLK, SDIN and \overline{CS} signals must be sourced by the application host processor.

All read and write access to the device is initiated and terminated by the application host processor.

4.10.1 CS Pin

The Chip Select pin (\overline{CS}) is an active-low signal provided by the host processor to the GV7704.

The HIGH-to-LOW transition of this pin marks the start of serial communication to the GV7704.

The LOW-to-HIGH transition of this pin marks the end of serial communication to the GV7704.

4.10.2 SDIN Pin

The SDIN pin is the GSPI serial data input pin of the GV7704.

The 16-bit Command and Data Words from the host processor are shifted into the device on the rising edge of SCLK when the \overline{CS} pin is LOW.

4.10.3 SDOUT Pin

The SDOUT pin is the GSPI serial data output of the GV7704.

All data transfers out of the GV7704 to the host processor occur from this pin.

By default at power up or after system reset, the SDOUT pin provides a non-clocked path directly from the SDIN pin, only when the \overline{CS} pin is LOW, except during the GSPI Data Word portion for read operations to the device. When the \overline{CS} pin is HIGH, the SDOUT pin will be in a high-impedance state.

For read operations, the SDOUT pin is used to output data read from an internal Configuration and Status Register (CSR) when \overline{CS} is LOW. Data is shifted out of the device on the falling edge of SCLK, so that it can be read by the host processor on the subsequent SCLK rising edge. The current drive strength of the SDOUT pin can be adjusted using the GSPI_SDOUT_DRV_STRENGTH_SEL bit.

4.10.4 SCLK Pin

The SCLK pin is the GSPI serial data shift clock input to the device, and must be provided by the host processor.

Serial data is clocked into the GV7704 SDIN pin on the rising edge of SCLK. Serial data is clocked out of the device from the SDOUT pin on the falling edge of SCLK (read operation). SCLK is ignored when \overline{CS} is HIGH.

4.10.5 Command Word Description

All GSPI accesses are a minimum of 48 bits in length (a 16-bit Command Word, a 16-bit Extended Address field, and a 16-bit Data Word) and the start of each access is indicated by the HIGH-to-LOW transition of the chip select (\overline{CS}) pin of the GV7704.

The format of the Command Word and Data Words are shown in Figure 4-15.

Data received immediately following this HIGH-to-LOW transition will be interpreted as a new Command Word.

4.10.5.1 R/W bit - B15 Command Word

This bit indicates a read or write operation.

When R/\overline{W} is set to 1, a read operation is indicated and data is read from the register specified by the ADDRESS field of the Command Word.

When R/\overline{W} is set to 0, a write operation is indicated and data is written to the register specified by the ADDRESS field of the Command Word.

4.10.5.2 BROADCAST ALL - B14 Command Word

This bit must always be set to 0.

4.10.5.3 EMEM - B13 Command Word

This bit must always be set to 1.

4.10.5.4 AUTOINC - B12 Command Word

When AUTOINC is set to 1, Auto-Increment read or write access is enabled.

In Auto-Increment Mode, the device automatically increments the register address for each contiguous read or write access, starting from the address defined in the ADDRESS field of the Command Word.

The internal address is incremented for each 16-bit read or write access until a LOW-to-HIGH transition on the \overline{CS} pin is detected.

When AUTOINC is set to 0, single read or write access is required. Auto-Increment write must not be used to update values in HOST_CONFIG.

4.10.5.5 UNIT ADDRESS - B11:B5 Command Word

The 7 bits of the UNIT ADDRESS field of the Command Word should always be set to 0.

4.10.5.6 ADDRESS - B4:B0 Command Word, B15:B0 Extended Address

The Address Word consists of bits [4:0] of the Command Word, plus another 16 bits [15:0] from the Extended Address Word. The total Command and Data Word format, including the Extended Address, is shown in Figure 4-15 below.

Figure 4-15: Command and Data Word Format

4.10.6 Data Word Description

The Data Word portion of the GSPI access consists of an 8-bit repetition code, followed by an 8-bit Read or Write access Payload. All registers in the GV7704 are 8 bits long, however since GSPI write commands are required to be 16 bits long, the Data Word will have the same byte repeated. For example, to write FC_h to a register within the CSR, the 16-bit Data Word of the GSPI Command should be FCFC_h.
4.10.7 GSPI Transaction Timing

Figure 4-16: GSPI External Interface Timing

Table 4-15: GSPI Timing Parameters

Parameter	Symbol	Min	Тур	Мах	Units
CS LOW before SCLK rising edge	t ₀	2.0	_	_	ns
SCLK frequency		—	_	55	MHz
SCLK period	t ₁	18.2	—	—	ns
SCLK duty cycle	t ₂	40	50	60	%
Input data setup time	t ₃	2.7	_	_	ns
SCLK idle time — write	t ₄	41.7	_	_	ns
SCLK idle time — read	t ₅	162	—		ns
Inter-command delay time	t _{cmd}	162	_	—	ns
SDOUT after SCLK falling edge	t ₆	_	_	7.5	ns
CS HIGH after final SCLK falling edge	t ₇	0.0	_	_	ns
Input data hold time	t ₈	1.0	_	_	ns

Parameter	Symbol	Min	Тур	Мах	Units
CS HIGH time	t ₉	57.0	—	_	ns
SDIN to SDOUT combinational delay		_	_	5.0	ns

Table 4-15: GSPI Timing Parameters (Continued)

4.10.8 Single Read/Write Access

Single read/write access timing for the GSPI interface is shown in Figure 4-17 and Figure 4-18.

When performing a single read or write access, one Data Word is read from/written to the device per access. Each access is a minimum of 48-bits long, consisting of a Command Word, an Extended Address, and a single Data Word. The read or write cycle begins with a high-to-low transition of the \overline{CS} pin. The read or write access is terminated by a low-to-high transition of the \overline{CS} pin.

The maximum interface clock frequency (SCLK) is 55MHz and the inter-command delay time indicated in the figures as t_{cmd} , is a minimum of 162ns.

For read access, the time from the last bit of the Command Word to the start of the data output, as defined by t_5 , corresponds to no less than 162ns.

Figure 4-17: GSPI Write Timing – Single Write Access

Figure 4-18: GSPI Read Timing – Single Read Access

4.10.9 Auto-increment Read/Write Access

Auto-increment read/write access timing for the GSPI interface is shown in Figure 4-19 and Figure 4-20.

Auto-increment mode is enabled by the setting of the AUTOINC bit of the Command Word.

In this mode, multiple Data Words can be read from/written to the device using only one starting address. Each access is initiated by a HIGH-to-LOW transition of the \overline{CS} pin, and consists of a Command Word and one or more Data Words. The internal address is automatically incremented after the first read or write Data Word, and continues to increment until the read or write access is terminated by a LOW-to-HIGH transition of the \overline{CS} pin.

Note: Writing to HOST_CONFIG using Auto-increment access is not allowed.

The maximum interface clock frequency (SCLK) is 55MHz and the inter-command delay time indicated in the diagram as t_{cmd} , is a minimum of 162ns.

For read access, the time from the last bit of the first Command Word to the start of the data output of the first Data Word as defined by t_5 , will be no less than 162ns. All subsequent read data accesses will not be subject to this delay during an Auto-Increment read.

Figure 4-19: GSPI Write Timing – Auto-Increment

4.11 JTAG

The GV7704 provides an IEEE 1149.1-compliant JTAG TAP interface for boundary scan test and debug.

The GV7704 TAP interface consists of the TCK clock input, TRST, TDI and TMS inputs, and the TDO output as defined in the standard. TMS and TDI inputs are clocked with respect to the rising edge of TCK and the TDO output with respect to the falling edge of TCK.

4.12 Power Supply and Reset Timing

Figure 4-21: Power Supply and Reset Timing

Note: To ensure correct digital functionality of the part the 1.8V supply must be powered before the 1.2V supply.

5. Register Map

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
4078 _h	GSPI_SDOUT_DRV_ STRENGTH_SEL_REG	GSPI_SDOUT_DRV_ STRENGTH_SEL	0:0	RW	1 _b	GSPI SDOUT drive strength select. $1_b = high drive strength$ $0_b = low drive strength$
44F1 _h (Ch 0) 50F1 _h (Ch 1) 5CF1 _h (Ch 2) 68F1 _h (Ch 3)	INPUT_TERMINATION_ REG	INPUT_TERMINATION	0:0	RW	1 _b	Sets the receive input termination impedance. Termination is to VDD18. $0_b = 50\Omega$ $1_b = 75\Omega$
44F2 _h (Ch 0) 50F2 _h (Ch 1)	POWER_UP_DRIVER_REG	PU_DRVN	0:0	RW	0 _b	Power up control for the SDO_N path 0 _b = Power down 1 _b = Power up
5CF2 _h (Ch 2) 68F2 _h (Ch 3)		PU_DRVP	1:1	RW	0 _b	Power up control for the SDO_P path 0 _b = Power down 1 _b = Power up
44F3 _h (Ch 0) 50F3 _h (Ch 1) 5CF3 _h (Ch 2) 68F3 _h (Ch 3)	P2S_CLK_EN_REG	P2S_CLK_EN	0:0	RW	0 _b	Parallel to serial converter in transmit path clock buffer enable $0_b = Clocks$ in the p2s are turned off $1_b = Clocks$ in the p2s are enabled
44F4 _h (Ch 0) 50F4 _h (Ch 1) 5CF4 _h (Ch 2) 68F4 _h (Ch 3)	P2S_RSTB_REG	P2S_RSTB	0:0	RW	0 _b	Parallel to serial converter in transmit path reset 0 _b = Hold p2s flops in reset 1 _b = P2s not in reset
44F5 _h (Ch 0) 50F5 _h (Ch 1) 5CF5 _h (Ch 2) 68F5 _h (Ch 3)	CDR_TX_CLK_EN_REG	CDR_TX_CLK_EN	0:0	RW	0 _b	Enable for transmit path clock $0_b =$ Turn off half rate clock to the p2s in the transmit path $1_b =$ Turn on half rate clock to the p2s in the transmit path
44F6 _h (Ch 0) 50F6 _h (Ch 1) 5CF6 _h (Ch 2) 68F6 _h (Ch 3)	SDO_50_EN_REG	SDO_50_EN	0:0	RW	0 _b	SDO_P/N 50 Ω termination enable $0_b = 75\Omega$ termination $1_b = 50\Omega$ termination

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
4469 _h (Ch 0) 5069 _h (Ch 1)	DATALANE_FIFO_CTRL_	DATALANE_FIFO_WR_ FLUSH	0:0	RW	0 _b	Initiates a flush from the writer side on the FIFO. Active HIGH.
5C69 _h (Ch 2) 6869 _h (Ch 3)	REG	DATALANE_FIFO_RD_ START_THRESH	5:1	RW	4 _h	Number or items that need to be written to FIFO before the read process starts.
4823 _h (Ch 0) 5423 _h (Ch 1) 6023 _h (Ch 2) 6C23 _h (Ch 3)	VIDEO_CTRL_OVERRIDE_ REG	DISABLE_VIDEO_LANE	5:4	RW	0 _h	$X0_b = Lane n$ is enabled $11_b = Lane n$ is enabled $01_b = Lane n$ is disabled regardless of the presence of a valid signal
4824 _h (Ch 0) 5424 _h (Ch 1) 6024 _h (Ch 2) 6C24 _h (Ch 3)	AUDIO_CTRL_OVERRIDE_ REG	DISABLE_AUDIO	1:0	RW	0 _h	X0 _b = Channel n Audio is enabled 11 _b = Channel n Audio is enabled 01 _b = Channel n Audio is disabled
	5425 _h (Ch 1) AUDIO_SAMP_FREQ_ 5025 _h (Ch 2) OVERRIDE_REG	AUDIO_SAMP_FREQ	2:1	RW	0 _h	Manually specifies the audio sampling rate when AUDIO_SAMP_FREQ_MANUAL_ MODE = 1 $00_b = 48kHz$ $01_b = 44.1kHz$ $10_b = 32kHz$ $11_b = Reserved$
4825 _h (Ch 0) 5425 _h (Ch 1) 6025 _h (Ch 2) 6C25 _h (Ch 3)		AUDIO_SAMP_FREQ_ MANUAL_MODE	0:0	RW	0 _b	This mode only needs to be enabled if the audio sampling information is not present in the Stream ID packets. If the incoming signal is transmitted by a GV7700, the information will be present and this mode does not need to be enabled. 1_b = The audio sampling frequency will be manually specified according to AUDIO SAMP FREQ.
						AUDIO_SAMP_FREQ. 0 _b = The device will automatically detect the audio sampling frequency present within the Stream ID of the video signal.
4829 _h (Ch 0)		PCLK_INVERT	3:3	RW	0	When HIGH, inverts the PCLK.
5429 _h (Ch 1) 6029 _h (Ch 2) 6C29 _h (Ch 3)	CLOCKS_CFG_1_REG	PCLK_SELECT	2:1	RW	0	In HD mode, the PCLK can be moved by 0°, 90°, 180°, or 270°. In 3G mode, the PCLK can be moved by 0° or 90°.

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
482C. (Ch 0)		OUT_THREEG_HDB	4:4	RW	0	When HIGH, indicates that the parallel output signal is 3G (Full HD). When LOW, indicates that the output signal is HD.
542C _h (Ch 1) 542C _h (Ch 1) 602C _h (Ch 2) 6C2C _h (Ch 3)	602C _h (Ch 2) REG	THREEG_HDB	2:2	RW	0	When HIGH, indicates that the incoming signal is 3G. When LOW, indicates that the incoming signal is HD.
		SD_HDB	1:1	RO	0 _b	When HIGH, indicates that the incoming signal is 270Mb/s. When LOW, indicates that the incoming signal is 1.485Gb/s.
4863 _h (Ch 0) 5463 _h (Ch 1) 6063 _h (Ch 2) 6C63 _h (Ch 3)	EXTRACT_STREAM_ID_ REG1	EXTRACT_STREAM_ID_ BYTE1	7:0	RO	0 _h	Extract byte 1 information for the packet on DS1 (First UDW in the Stream ID packet)
4864 _h (Ch 0) 5464 _h (Ch 1) 6064 _h (Ch 2) 6C64 _h (Ch 3)	EXTRACT_STREAM_ID_ REG2	EXTRACT_STREAM_ID_ BYTE2	7:0	RO	0 _h	Extract byte 2 information for the packet on DS1 (First UDW in the Stream ID packet)
4865 _h (Ch 0) 5465 _h (Ch 1) 6065 _h (Ch 2) 6C65 _h (Ch 3)	EXTRACT_STREAM_ID_ REG3	EXTRACT_STREAM_ID_ BYTE3	7:0	RO	0 _h	Extract byte 3 information for the packet on DS1 (First UDW in the Stream ID packet)
$\begin{array}{c} 4866_{\rm h}({\rm Ch}0)\\ 5466_{\rm h}({\rm Ch}1)\\ 6066_{\rm h}({\rm Ch}2)\\ 6{\rm C66}_{\rm h}({\rm Ch}3) \end{array}$	EXTRACT_STREAM_ID_ REG4	EXTRACT_STREAM_ID_ BYTE4	7:0	RO	0 _h	Extract byte 4 information for the packet on DS1 (First UDW in the Stream ID packet)
4867 _h (Ch 0) 5467 _h (Ch 1) 6067 _h (Ch 2) 6C67 _h (Ch 3)	EXTRACT_STREAM_ID_ REG5	EXTRACT_STREAM_ID_ BYTE5	7:0	RO	0 _h	Extract byte 5 information for the packet on DS1 (First UDW in the Stream ID packet)
4868 _h (Ch 0) 5468 _h (Ch 1) 6068 _h (Ch 2) 6C68 _h (Ch 3)	EXTRACT_STREAM_ID_ REG6	EXTRACT_STREAM_ID_ BYTE6	7:0	RO	0 _h	Extract byte 6 information for the packet on DS1 (First UDW in the Stream ID packet)

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
487D _h (Ch 0)						
547D _h (Ch 1)	INS_ID_BYTE1_REG	INS_ID_BYTE1	7:0	RWC	0 _h	Identification code byte 1
607D _h (Ch 2)						·····,··
6C7D _h (Ch 3)						
487E _h (Ch 0)						
547E _h (Ch 1)	INS_ID_BYTE2_REG	INS_ID_BYTE2	7:0	RWC	0 _h	Identification code byte 2
607E _h (Ch 2)						,
6C7E _h (Ch 3)						
488D _h (Ch 0)				514	0	Audio Mute for channels 2 & 3.
488D _h (Ch 0) 548D _h (Ch 1)		MUTE_2_3	3:3	RW	0 _h	When HIGH, the device will set the CH1_AOUT_2_3 serial output to 0.
608D _h (Ch 2)	AUD_EXT_CONFIG_REG					Audio Mute for channels 0 & 1.
6C8D _h (Ch 3)		MUTE_0_1	2:2	RW	0 _h	When HIGH, the device will set the
					CH1_AOUT_0_1 serial output to 0.	
488E _h (Ch 0)						
548E _h (Ch 1)			1.0		0.	Bits 8-9 of the audio packet DID to
608E _h (Ch 2)	AUDIO_DID_9_8_REG	AUDIO_DID_9_8	1:0	RW	0 _h	be extracted.
6C8E _h (Ch 3)						
488F _h (Ch 0)					0 _h	Bits 0-7 of the audio packet DID to be extracted.
548F _h (Ch 1)	AUDIO_DID_7_0_REG	AUDIO_DID_7_0	7:0	RW		
608F _h (Ch 2)			7.0	11.00		
6C8F _h (Ch 3)						
						Audio Group detection status.
						1000000 _b = Group 8 DID
						detected 01000000 _b = Group 7 DID
						detected
4892 _h (Ch 0)						00100000 _b = Group 6 DID detected
5492 _h (Ch 1)						00010000 _b = Group 5 DID
6092 _h (Ch 2)	AUDIO_DETECT_0_REG	AUDIO_GRP_DETECT	7:0	RO	0 _h	detected
6C92 _h (Ch 3)						00001000 _b = Group 4 DID detected
						00000100 _b = Group 3 DID
						detected 00000010 _b = Group 2 DID
						detected
						0000001 _b = Group 1 DID
						detected

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
4893 _h (Ch 0) 5493 _h (Ch 1) 6093 _h (Ch 2) 6C93 _h (Ch 3)	AUDIO_DETECT_1_REG	AUDIO_DETECT_1	0:0	RO	0 _b	When HIGH, indicates that an ancillary data packet having a DID matching audio_did has been detected in the video.
48C6 _h (Ch 0) 54C6 _h (Ch 1) 60C6 _h (Ch 2) 6CC6 _h (Ch 3)	ANC_PACKET_DID_9_ 8_REG	ANC_PACKET_DID_9_8	1:0	RW	0 _h	10-bit DID that the device will seek and extract UDW's from. ANC_PACKET_DID is considered a static signal. Bits [9:8]
48C7 _h (Ch 0) 54C7 _h (Ch 1) 60C7 _h (Ch 2) 6CC7 _h (Ch 3)	ANC_PACKET_DID_7_ 0_REG	ANC_PACKET_DID_7_0	7:0	RWC	0 _h	10-bit DID that the device will seek and extract UDW's from. ANC_PACKET_DID is considered a static signal. Bits [7:0]
	ANC_EXTRACT_STATUS_ REG	ANC_PACKET_ INCOMPLETE	2:2	RO	0 _b	When HIGH, indicates that the packet the device has received contains more than 16 UDWs, which exceeds the maximum allowable amount.
48C8 _h (Ch 0) 54C8 _h (Ch 1) 60C8 _h (Ch 2) 6CC8 _h (Ch 3)		ANC_EXTRACT_ UPDATE_TOGGLE	1:1	ROCW	0 _b	Set HIGH when the device has finished extracting all the words from the desired packet type. Writing 1 to this bit clears the status.
		ANC_EXTRACT_IDLE	0:0	RO	0 _b	1 _b = Device is not currently extracting words from the desired DID packet. 0 _b = Device is currently extracting words from the DID packet specified by ANS_PACKET_DID
48C9 _h (Ch 0) 54C9 _h (Ch 1) 60C9 _h (Ch 2) 6CC9 _h (Ch 3)	ANC_PACKET_SDID_9_8_ REG	ANC_PACKET_SDID_ 9_8	1:0	RO	0 _h	Secondary Data Identification Word extracted from the ancillary data packet. Bits [9:8]
48CA _h (Ch 0) 54CA _h (Ch 1) 60CA _h (Ch 2) 6CCA _h (Ch 3)	ANC_PACKET_SDID_7_0_ REG	ANC_PACKET_SDID_ 7_0	7:0	RO	0 _h	Secondary Data Identification Word extracted from the ancillary data packet. Bits [7:0]

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
48CB _h (Ch 0)						Data Word Count extracted from
54CB _h (Ch 1)	ANC_PACKET_DC_9_8_	ANC_PACKET_DC_9_	1.0		0	the ancillary data packet.
60CB _h (Ch 2)	REG	8	1:0	RO	0 _h	Represents the number of User Data Words (UDW) in the ancillary
6CCB _h (Ch 3)						data packet. Bits [9:8]
48CC _h (Ch 0)						Data Word Count extracted from
54CC _h (Ch 1)	ANC_PACKET_DC_7_0_	ANC_PACKET_DC_7_	7.0	DO.	0	the ancillary data packet.
60CC _h (Ch 2)	REG	0	7:0	RO	0 _h	Represents the number of User Data Words (UDW) in the ancillary
6CCC _h (Ch 3)						data packet. Bits [7:0]
48CD _h (Ch 0)						
54CD _h (Ch 1)	ANC_PACKET_UDW0_	ANC_PACKET_UDW0_	1.0	50	0	User Data Word 0 extracted from
60CD _h (Ch 2)	 9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CCD _h (Ch 3)						
48CE _h (Ch 0)						
54CE _h (Ch 1)	ANC_PACKET_UDW0_	ANC_PACKET_UDW0_			0	User Data Word 0 extracted from
60CE _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CCE _h (Ch 3)						
48CF _h (Ch 0)						
54CF _h (Ch 1)	ANC_PACKET_UDW1_	ANC_PACKET_UDW1_	1.0	50	0	User Data Word 1 extracted from
60CF _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CCF _h (Ch 3)						
48D0 _h (Ch 0)						
54D0 _h (Ch 1)	ANC_PACKET_UDW1_	ANC_PACKET_UDW1_		50	0	User Data Word 1 extracted from
60D0 _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CD0 _h (Ch 3)						
48D1 _h (Ch 0)						
54D1 _h (Ch 1)	ANC_PACKET_UDW2_	ANC_PACKET_UDW2_		50	0	User Data Word 2 extracted from
60D1 _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CD1 _h (Ch 3)						
48D2 _h (Ch 0)						
54D2 _h (Ch 1)	ANC_PACKET_UDW2_	ANC_PACKET_UDW2_	-		0	User Data Word 2 extracted from
60D2 _h (Ch 2)	7_0_REG	7_0	7:0	RO) 0 _h	the ancillary data packet. Bits [7:0]
6CD2 _h (Ch 3)						

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
48D3 _h (Ch 0)						
54D3 _h (Ch 1)	ANC_PACKET_UDW3_	ANC_PACKET_UDW3_	1.0		0	User Data Word 3 extracted from
60D3 _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CD3 _h (Ch 3)						
48D4 _h (Ch 0)						
54D4 _h (Ch 1)	ANC_PACKET_UDW3_	ANC_PACKET_UDW3_	7.0		0	User Data Word 3 extracted from
60D4 _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CD4 _h (Ch 3)						
48D5 _h (Ch 0)						
54D5 _h (Ch 1)	ANC_PACKET_UDW4_	ANC_PACKET_UDW4_	1.0		0	User Data Word 4 extracted from
60D5 _h (Ch 2)	9_8_REG	9_8	1:0	ro 0 _h	the ancillary data packet. Bits [9:8]	
6CD5 _h (Ch 3)						
48D6 _h (Ch 0)						
54D6 _h (Ch 1)	ANC_PACKET_UDW4_	ANC_PACKET_UDW4_	7.0	50	0	User Data Word 4 extracted from
60D6 _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CD6 _h (Ch 3)						
48D7 _h (Ch 0)						
54D7 _h (Ch 1)	ANC_PACKET_UDW5_	ANC_PACKET_UDW5_	1:0	RO	0 _h	User Data Word 5 extracted from
60D7 _h (Ch 2)	9_8_REG	9_8	1.0	ĸŬ	υ _h	the ancillary data packet. Bits [9:8]
6CD7 _h (Ch 3)						
48D8 _h (Ch 0)						
54D8 _h (Ch 1)	ANC_PACKET_UDW5_	ANC_PACKET_UDW5_	7.0	PO	0.	User Data Word 5 extracted from
60D8 _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CD8 _h (Ch 3)						
48D9 _h (Ch 0)						
54D9 _h (Ch 1)	ANC_PACKET_UDW6_	ANC_PACKET_UDW6_	1:0	RO	0 _h	User Data Word 6 extracted from
60D9 _h (Ch 2)	9_8_REG	9_8	1.0	ΝU	۷h	the ancillary data packet. Bits [9:8]
6CD9 _h (Ch 3)						
48DA _h (Ch 0)						
54DA _h (Ch 1)	ANC_PACKET_UDW6_	ANC_PACKET_UDW6_	7.0	PO	0.	User Data Word 6 extracted from
60DA _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CDA _h (Ch 3)						

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
48DB _h (Ch 0)						
54DB _h (Ch 1)	ANC_PACKET_UDW7_	ANC_PACKET_UDW7_	1.0	50	0	User Data Word 7 extracted from
60DB _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CDB _h (Ch 3)						
48DC _h (Ch 0)						
54DC _h (Ch 1)	ANC_PACKET_UDW7_	ANC_PACKET_UDW7_	7.0	20	0	User Data Word 7 extracted from
60DC _h (Ch 2)	 7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CDC _h (Ch 3)						
48DD _h (Ch 0)						
54DD _h (Ch 1)	ANC_PACKET_UDW8_	ANC_PACKET_UDW8_		20	0	User Data Word 8 extracted from
60DD _h (Ch 2)	 9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CDD _h (Ch 3)						
48DE _h (Ch 0)						
54DE _h (Ch 1)	ANC_PACKET_UDW8_	ANC_PACKET_UDW8_				User Data Word 8 extracted from
60DE _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CDE _h (Ch 3)						
48DF _h (Ch 0)						
54DF _h (Ch 1)	ANC_PACKET_UDW9_	ANC_PACKET_UDW9_	1.0	50	0	User Data Word 9 extracted from
60DF _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CDF _h (Ch 3)						
48E0 _h (Ch 0)						
54E0 _h (Ch 1)	ANC_PACKET_UDW9_	ANC_PACKET_UDW9_	7.0		0	User Data Word 9 extracted from
60E0 _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CE0 _h (Ch 3)						
48E1 _h (Ch 0)						
54E1 _h (Ch 1)	ANC_PACKET_UDW10_	ANC_PACKET_UDW10_	1.0		0	User Data Word 10 extracted from
60E1 _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CE1 _h (Ch 3)						
48E2 _h (Ch 0)						
54E2 _h (Ch 1)	ANC_PACKET_UDW10_	ANC_PACKET_UDW10_	7.0		0	User Data Word 10 extracted from
60E2 _h (Ch 2)	 7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CE2 _h (Ch 3)						

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
48E3 _h (Ch 0)						
54E3 _h (Ch 1)	ANC_PACKET_UDW11_	ANC_PACKET_UDW11_	1.0		0	User Data Word 11 extracted from
60E3 _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CE3 _h (Ch 3)						
48E4 _h (Ch 0)						
54E4 _h (Ch 1)	ANC_PACKET_UDW11_	ANC_PACKET_UDW11_	7.0	50	0	User Data Word 11 extracted from
60E4 _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CE4 _h (Ch 3)						
48E5 _h (Ch 0)						
54E5 _h (Ch 1)	ANC_PACKET_UDW12_	ANC_PACKET_UDW12_	1.0		0	User Data Word 12 extracted from
60E5 _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CE5 _h (Ch 3)						
48E6 _h (Ch 0)						
54E6 _h (Ch 1)	ANC_PACKET_UDW12_	ANC_PACKET_UDW12_	7.0	50	0	User Data Word 12 extracted from
60E6 _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CE6 _h (Ch 3)						
48E7 _h (Ch 0)						
54E7 _h (Ch 1)	ANC_PACKET_UDW13_	ANC_PACKET_UDW13_	1.0	PO	0.	User Data Word 13 extracted from
60E7 _h (Ch 2)	9_8_REG	9_8	1:0	RO	0 _h	the ancillary data packet. Bits [9:8]
6CE7 _h (Ch 3)						
48E8 _h (Ch 0)						
54E8 _h (Ch 1)	ANC_PACKET_UDW13_	ANC_PACKET_UDW13_	7:0	RO	0 _h	User Data Word 13 extracted from
60E8 _h (Ch 2)	7_0_REG	7_0	7.0	ΝŬ	υ _h	the ancillary data packet. Bits [7:0]
6CE8 _h (Ch 3)						
48E9 _h (Ch 0)						
54E9 _h (Ch 1)	ANC_PACKET_UDW14_	ANC_PACKET_UDW14_	1:0	RO	0 _h	User Data Word 14 extracted from
60E9 _h (Ch 2)	9_8_REG	9_8	1.0	NU	۷h	the ancillary data packet. Bits [9:8]
6CE9 _h (Ch 3)						
48EA _h (Ch 0)						
54EA _h (Ch 1)	ANC_PACKET_UDW14_	ANC_PACKET_UDW14_	7:0	PO	0 _h	User Data Word 14 extracted from
60EA _h (Ch 2)	7_0_REG	7_0	7.0	RO	۷h	the ancillary data packet. Bits [7:0]
6CEA _h (Ch 3)						

Address	Register Name	Parameter Name	Bit Slice	R/W	Reset Value	Description
48EB _h (Ch 0)						
54EB _h (Ch 1)	ANC_PACKET_UDW15_	ANC_PACKET_UDW15_	1:0	RO	0 _h	User Data Word 15 extracted from the ancillary data packet. Bits [9:8]
60EB _h (Ch 2)	9_8_REG	9_8	1.0	ĸŬ	٥h	
6CEB _h (Ch 3)						
48EC _h (Ch 0)						
54EC _h (Ch 1)	ANC_PACKET_UDW15_	ANC_PACKET_UDW15_	7.0	PO	0.	User Data Word 15 extracted from
60EC _h (Ch 2)	7_0_REG	7_0	7:0	RO	0 _h	the ancillary data packet. Bits [7:0]
6CEC _h (Ch 3)						
						CS Word extracted from the ancillary data packet.
48ED _h (Ch 0)						Equal to the nine least significant
54ED _h (Ch 1)	ANC_PACKET_CS_9_8_	ANC_PACKET_CS_9_				bits of the sum of the nine least significant bits of the data
60ED _h (Ch 2)	REG	ANC_PACKET_CS_9_ 8	1:0	RO	0 _h	identification (DID) word, the data
6CED _h (Ch 3)						block number (DBN)/ secondary data identification word (SDID),
						the data count (DC) word, and all user data words (UDW) in the packet. Bits [9:8]
48EE _h (Ch 0)						
54EE _h (Ch 1)	ANC_PACKET_CS_7_0_	_ ANC_PACKET_CS_7_		50	0	CS Word extracted from the ancillary data packet. Bits [7:0]
60EE _h (Ch 2)	REG	0	7:0	RO	0 _h	
6CEE _h (Ch 3)						
48EF _h (Ch 0)						1_{b} = Device generates the BT656
48EF _h (Ch 1)						10-bit YCbCr multiplexed video format
60EF _h (Ch 2)	OUTPUT_BLOCK_CFG_ REG	BT656_ENABLE	0:0	RW	0 _b	0 _b = Device generates the default
6CEF _h (Ch 3)						SMPTE 10-bit YCbCr multiplexed
						video format
48F4 _h (Ch 0)						
54F4 _h (Ch 1)	TX_WORD_CLK_	TX_WORD_CLK_	0:0	RW	0 _b	Used in the procedure to enable
60F4 _h (Ch 2)	ENABLE_REG	ENABLE	0.0	11.77	a~	SDO. See Section 4.3.2.1 for details
6CF4 _h (Ch 3)						
492C _h (Ch 0)						Parallel video output (PCLK, HOUT,
552C _h (Ch 1)	PARALLEL_VIDEO_OUT _DRV_STRENGTH_SEL_ REG	PARALLEL_VIDEO_	0.0		0 _b	VOUT, FOUT, DOUT[9:0]) drive strength select.
612C _h (Ch 2)		OUT_DRV_ STRENGTH_SEL	0:0	RW		1 _b = high drive strength
6D2C _h (Ch 3)		· ···· <u>-</u>				$0_{\rm b} = $ low drive strength

6. Application Information

6.1 Typical Application Circuit

Figure 6-1: Typical Application Circuit (Part 1)

GV7704 Final Data Sheet PDS-060376

Rev.5 June 2016

www.semtech.com

Figure 6-2: Typical Application Circuit (Part 2)

Figure 6-3: Alternative CATx Input Circuit

7. Packaging Information

7.1 Package Dimensions

SIDE VIEW

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. SOLDER BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
- 3. THIS DIMENSION INCLUDES STAND-OFF HEIGHT, PACKAGE BODY THICKNESS AND LID HEIGHT, BUT DOES NOT INCLUDE ATTACHED FEATURES, E.G., EXTERNAL HEATSINK OR CHIP CAPACITORS. AN INTEGRAL HEATSLUG IS NOT CONSIDERED AN ATTACHED FEATURE.
- 4. DIMENSION IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM C.
- 5. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 6. ALL DIMENSIONS ARE IN MILLIMETERS.

Figure 7-1: GV7704 Package Dimensions

7.2 Recommended PCB Footprint

Figure 7-2: GV7704 PCB Footprint

7.3 Marking Diagram

Figure 7-3: GV7704 Marking Diagram

XXXX - Last 4 digits of Assembly Lot. E3 - Pb-free & Green indicator YYWW - Date Code

7.4 Solder Reflow Profile

7.5 Packaging Data

Table 7-1: GV7704 Packaging Data

Parameter	Value
Package Type/Dimensions/Pad Pitch	169 WB-BGA 11mm x 11mm, 0.8mm pitch
Moisture Sensitivity Level (MSL)	3
Junction to Case Thermal Resistance, $\theta_{j\text{-}c}$	12.1°C/W
Junction to Ambient Thermal Resistance (zero airflow), $\boldsymbol{\theta}_{j\text{-}a}$	35.4°C/W
Junction-to-Top of Package Characterization, $\boldsymbol{\theta}_{j\text{-}t}$	0.14°C/W
Junction to Board Thermal Resistance, $\boldsymbol{\theta}_{j\text{-}b}$	25.7°C/W
Pb-free and RoHS Compliant	Yes

7.6 Ordering Information

Part	Package
GV7704-IBE3	169-pin LBGA (176 pc/Tray)

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2016

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com

GV7704 Final Data Sheet PDS-060376

Rev.5 June 2016