Dual 4-Stage Binary Ripple Counter with + 2 and + 5 **Sections** ## **High-Performance Silicon-Gate CMOS** The MC74HC390A is identical in pinout to the LS390. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. This device consists of two independent 4-bit counters, each composed of a divide-by-two and a divide-by-five section. The divide-by-two and divide-by-five counters have separate clock inputs, and can be cascaded to implement various combinations of $\div 2$ and/or \div 5 up to a \div 100 counter. Flip-flops internal to the counters are triggered by high-to-low transitions of the clock input. A separate, asynchronous reset is provided for each 4-bit counter. State changes of the O outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or strobes except when gated with the Clock of the HC390A. #### **Features** - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS, and TTL - Operating Voltage Range: 2.0 to 6.0 V - Low Input Current: 1 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No 7 A - Chip Complexity: 244 FETs or 61 Equivalent Gates - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Logic Diagram #### ON Semiconductor® #### http://onsemi.com SOIC-16 **D SUFFIX** CASE 751B **DT SUFFIX** CASE 948F #### **PIN ASSIGNMENT** | CLOCK A _a [| 1 ● | 16 | □ v _{cc} | |------------------------|-----|----|----------------------| | RESET a | 2 | 15 | CLOCK A _b | | Q _{Aa} [| 3 | 14 | RESET b | | CLOCK B _a [| 4 | 13 | Q _{Ab} | | Q _{Ba} [| 5 | 12 | CLOCK B _b | | Q _{Ca} [| 6 | 11 |] Q _{Bb} | | Q _{Da} [| 7 | 10 |] Q _{Cb} | | GND [| 8 | 9 | Q _{Db} | | | | | • | #### MARKING DIAGRAMS TSSOP-16 #### SOIC-16 = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) #### **FUNCTION TABLE** | Clo | ock | | | |-----|-----|-------|----------------------| | Α | В | Reset | Action | | Х | Х | Н | Reset
÷ 2 and ÷ 5 | | _ | Х | L | Increment
÷ 2 | | Х | ~ | L | Increment
÷ 5 | #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. #### **MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |------------------|---|-------------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | -0.5 to +7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V _{CC} + 0.5 | V | | l _{in} | DC Input Current, per Pin | ±20 | mA | | l _{out} | DC Output Current, per Pin | ±25 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | ±50 | mA | | P _D | Power Dissipation in Still Air, SOIC Package† TSSOP Package† | 500
450 | mW | | T _{stg} | Storage Temperature | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds SOIC or TSSOP Package | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. †Derating: SOIC Package: -7 mW/°C from 65° to 125°C TSSOP Package: -6.1 mW/°C from 65° to 125°C #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Max | Unit | |------------------------------------|---|------------|---------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | | V _{CC} | V | | T _A | Operating Temperature, All Package Types | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time $V_{CC} = 2.0$ (Figure 1) $V_{CC} = 3.0$ $V_{CC} = 4.0$ $V_{CC} = 6.0$ | V 0
V 0 | 1000
600
500
400 | ns | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Gu | aranteed Li | mit | | |-----------------|--------------------------------------|---|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | Test Conditions | V _{CC}
V | –55 to
25°C | ≤85°C | ≤125°C | Unit | | V _{IH} | Minimum High-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | V | | V _{IL} | Maximum Low-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | V | | V _{OH} | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \le 2.4 \text{ mA} \\ I_{out} \le 4.0 \text{ mA} \\ I_{out} \le 5.2 \text{ mA}$ | 3.0
4.5
6.0 | 2.48
3.98
5.48 | 2.34
3.84
5.34 | 2.20
3.70
5.20 | | | V _{OL} | Maximum Low-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $\begin{split} V_{in} = V_{IH} \text{ or } V_{IL} & I_{out} \leq 2.4 \text{ mA} \\ I_{out} \leq 4.0 \text{ mA} \\ I_{out} \leq 5.2 \text{ mA} \end{split}$ | 3.0
4.5
6.0 | 0.26
0.26
0.26 | 0.33
0.33
0.33 | 0.40
0.40
0.40 | | #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued) | | | | | Guaranteed Limit | | | | |-----------------|---|--|-----------------|------------------|-------|--------|------| | Symbol | Parameter | Test Conditions | V _{CC} | –55 to
25°C | ≤85°C | ≤125°C | Unit | | l _{in} | Maximum Input Leakage
Current | V _{in} = V _{CC} or GND | 6.0 | ±0.1 | ±1.0 | ±1.0 | μΑ | | Icc | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 6.0 | 4 | 40 | 160 | μΑ | ### AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_f = t_f = 6 ns) | | | | Gu | aranteed Li | mit | | |--------------------|--|-----------------|----------------|-------------|--------|------| | Symbol | Parameter | v _{cc} | –55 to
25°C | ≤85°C | ≤125°C | Unit | | f _{max} | Maximum Clock Frequency (50% Duty Cycle) | 2.0 | 10 | 9 | 8 | MHz | | | (Figures 1 and 3) | 3.0 | 15 | 14 | 12 | | | | | 4.5 | 30 | 28 | 25 | | | | | 6.0 | 50 | 45 | 40 | | | t _{PLH} , | Maximum Propagation Delay, Clock A to QA | 2.0 | 70 | 80 | 90 | ns | | t _{PHL} | (Figures 1 and 3) | 3.0 | 40 | 45 | 50 | | | | | 4.5 | 24 | 30 | 36 | | | | | 6.0 | 20 | 26 | 31 | | | t _{PLH} , | Maximum Propagation Delay, Clock A to QC | 2.0 | 200 | 250 | 300 | ns | | t _{PHL} | (QA connected to Clock B) | 3.0 | 160 | 185 | 210 | | | | (Figures 1 and 3) | 4.5 | 58 | 65 | 70 | | | | | 6.0 | 49 | 62 | 68 | | | t _{PLH} , | Maximum Propagation Delay, Clock B to QB | 2.0 | 70 | 80 | 90 | ns | | t _{PHL} | (Figures 1 and 3) | 3.0 | 40 | 45 | 50 | | | | | 4.5 | 26 | 33 | 39 | | | | | 6.0 | 22 | 28 | 33 | | | t _{PLH} , | Maximum Propagation Delay, Clock B to QC | 2.0 | 90 | 105 | 180 | ns | | t _{PHL} | (Figures 1 and 3) | 3.0 | 56 | 70 | 100 | | | | | 4.5 | 37 | 46 | 56 | | | | | 6.0 | 31 | 39 | 48 | | | t _{PLH} , | Maximum Propagation Delay, Clock B to QD | 2.0 | 70 | 80 | 90 | ns | | t _{PHL} | (Figures 1 and 3) | 3.0 | 40 | 45 | 50 | | | | | 4.5 | 26 | 33 | 39 | | | | | 6.0 | 22 | 28 | 33 | | | t _{PHL} | Maximum Propagation Delay, Reset to any Q | 2.0 | 80 | 95 | 110 | ns | | | (Figures 2 and 3) | 3.0 | 48 | 65 | 75 | | | | | 4.5 | 30 | 38 | 44 | | | | | 6.0 | 26 | 33 | 39 | | | t _{TLH} , | Maximum Output Transition Time, Any Output | 2.0 | 75 | 95 | 110 | ns | | t _{THL} | (Figures 1 and 3) | 3.0 | 27 | 32 | 36 | | | | | 4.5 | 15 | 19 | 22 | | | | | 6.0 | 13 | 15 | 19 | | | C _{in} | Maximum Input Capacitance | _ | 10 | 10 | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Per Counter)* | 35 | pF | ^{*} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. #### **TIMING REQUIREMENTS** (Input $t_r = t_f = 6 \text{ ns}$) | | | | Gu | aranteed Li | mit | | |---------------------------------|--|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | V _{CC} | –55 to
25°C | ≤85°C | ≤125°C | Unit | | t _{rec} | Minimum Recovery Time, Reset Inactive to Clock A or Clock B (Figure 3) | 2.0
3.0
4.5
6.0 | 25
15
10
9 | 30
20
13
11 | 40
30
15
13 | ns | | t _w | Minimum Pulse Width, Clock A, Clock B (Figure 2) | 2.0
3.0
4.5
6.0 | 75
27
15
13 | 95
32
19
15 | 110
36
22
19 | ns | | t _w | Minimum Pulse Width, Reset
(Figure 3) | 2.0
3.0
4.5
6.0 | 75
27
20
18 | 95
32
24
22 | 110
36
30
28 | ns | | t _f , t _f | Maximum Input Rise and Fall Times
(Figure 2) | 2.0
3.0
4.5
6.0 | 1000
800
500
400 | 1000
800
500
400 | 1000
800
500
400 | ns | #### PIN DESCRIPTIONS # INPUTS Clock A (Pins 1, 15) and Clock B (Pins 4, 15) Clock A is the clock input to the \div 2 counter; Clock B is the clock input to the \div 5 counter. The internal flip-flops are toggled by high-to-low transitions of the clock input. #### CONTROL INPUTS Reset (Pins 2, 14) Asynchronous reset. A high at the Reset input prevents counting, resets the internal flip–flops, and forces $Q_{\rm A}$ through $Q_{\rm D}$ low. #### OUTPUTS Q_A (Pins 3, 13) Output of the \div 2 counter. #### Q_B, Q_C, Q_D (Pins 5, 6, 7, 9, 10, 11) Outputs of the \div 5 counter. Q_D is the most significant bit. Q_A is the least significant bit when the counter is connected for BCD output as in Figure 5. Q_B is the least significant bit when the counter is operating in the bi–quinary mode as in Figure 6. #### **SWITCHING WAVEFORMS** Figure 2. Figure 3. #### **TEST CIRCUIT** *Includes all probe and jig capacitance Figure 4. #### **EXPANDED LOGIC DIAGRAM** # TIMING DIAGRAM (Q_A Connected to Clock B) #### **APPLICATIONS INFORMATION** Each half of the MC54/74HC390A has independent \div 2 and \div 5 sections (except for the Reset function). The \div 2 and \div 5 counters can be connected to give BCD or bi–quinary (2–5) count sequences. If Output Q_A is connected to the Clock B input (Figure 4), a decade divider with BCD output is obtained. The function table for the BCD count sequence is given in Table 1. To obtain a bi–quinary count sequence, the input signals connected to the Clock B input, and output Q_D is connected to the Clock A input (Figure 6). Q_A provides a 50% duty cycle output. The bi–quinary count sequence function table is given in Table 2. Table 1. BCD Count Sequence* | | | Output | | | | | |-------|-------|----------------|----------------|-------|--|--| | Count | Q_D | Q _C | Q _B | Q_A | | | | 0 | L | L | L | L | | | | 1 | L | L | L | Н | | | | 2 | L | L | Н | L | | | | 3 | L | L | Н | Н | | | | 4 | L | Н | L | L | | | | 5 | L | Н | L | Н | | | | 6 | L | Н | Н | L | | | | 7 | L | Н | Н | Н | | | | 8 | Н | L | L | L | | | | 9 | Н | L | L | Н | | | ^{*}QA connected to Clock B input. Table 2. Bi-Quinary Count Sequence** | | Output | | | | | |-------|--------|-------|----------------|----------------|--| | Count | Q_A | Q_D | Q _C | Q _B | | | 0 | L | L | L | L | | | 1 | L | L | L | Н | | | 2 | L | L | Н | L | | | 3 | L | L | Н | Н | | | 4 | L | Н | L | L | | | 8 | Н | L | L | L | | | 9 | Н | L | L | Н | | | 10 | Н | L | Н | L | | | 11 | Н | L | Н | Н | | | 12 | Н | Н | L | L | | ^{**} QD connected to Clock A input. #### **CONNECTION DIAGRAMS** Figure 5. BCD Count Figure 6. Bi-Quinary Count #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|-----------------------|-----------------------| | MC74HC390ADG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC74HC390ADR2G | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | MC74HC390ADTR2G | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | | NLV74HC390ADR2G* | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable #### PACKAGE DIMENSIONS #### TSSOP-16 CASE 948F **ISSUE B** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. - FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL MOLE EXCEED A 26 (2010) PER DIPT - NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR - 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. | | MILLIN | IETERS | INCHES | | |-----|----------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 BSC | | | М | 0° | 8° | 0° | 8 ° | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS SOIC-16 CASE 751B-05 ISSUE K #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INCHES | | | |-----|----------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 BSC | | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | #### SOLDERING FOOTPRINT* **DIMENSIONS: MILLIMETERS** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative