ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

1. General description

The LVT126 is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V.

This device combines low static and dynamic power dissipation with high speed and high output drive. The 74LVT126 device is a quad buffer that is ideal for driving bus lines. The device features four output enable inputs (1OE, 2OE, 3OE and 4OE), each controlling one of the 3-state outputs.

2. Features

- Quad bus interface
- 3-state buffers
- Output capability: +64 mA and -32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion and extraction permitted
- No bus current loading when output is tied to 5 V bus
- Power-up 3-state
- Latch-up protection:
 - JESD78: exceeds 500 mA
- **ESD** protection:
 - MIL STD 883 method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V

3. Quick reference data

Table 1: Quick reference data

 $GND = 0 V; T_{amb} = 25 \circ C.$

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{PLH}	propagation delay nA to nY	C_L = 50 pF; V_{CC} = 3.3 V	-	2.3	-	ns
t _{PHL}	propagation delay nA to nY	C_L = 50 pF; V_{CC} = 3.3 V	-	2.4	-	ns
CI	input capacitance	$V_I = 0 V \text{ or } V_{CC}$	-	4	-	pF
Co	output capacitance	outputs disabled; $V_0 = 0 V \text{ or } 3.0 V$	-	8	-	pF
I _{CC}	quiescent supply current	outputs disabled; $V_{CC} = 3.6 V$	-	0.13	-	mA

4. Ordering information

Table 2:	Ordering	information
----------	----------	-------------

Type number	Package			
	Temperature range	Name	Description	Version
74LVT126D	–40 °C to +85 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
74LVT126DB	–40 °C to +85 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
74LVT126PW	–40 °C to +85 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1
74LVT126BQ	–40 °C to +85 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Symbol 1OE	Pin 1	Description 1 output enable input
10E	1	1 output enable input
1A	2	1 data input
1Y	3	1 data output
20E	4	2 output enable input
2A	5	2 data input
2Y	6	2 data output
GND	7	ground (0 V)
3Y	8	3 data output
3A	9	3 data input
30E	10	3 output enable input
4Y	11	4 data output
4A	12	4 data input
40E	13	4 output enable input
V _{CC}	14	supply voltage

7. Functional description

7.1 Function table

	Table 4:	Function table ^[1]
--	----------	-------------------------------

		Output
nOE	nA	nY
Н	L	L
Н	Н	Н
L	Х	Z

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+4.6	V
input voltage		<u>[1]</u> –0.5	+7.0	V
output voltage	output in OFF-state or HIGH-state	<u>[1]</u> –0.5	+7.0	V
input diode current	V _I < 0 V	-	-50	mA
output diode current	V _O < 0 V	-	-50	mA
output current	output in LOW-state	-	128	mA
	output in HIGH-state	-	-64	mA
storage temperature		-65	+150	°C
junction temperature		[2] _	150	°C
	supply voltage input voltage output voltage input diode current output diode current output current storage temperature	supply voltageinput voltageoutput voltageoutput voltageinput diode currentV1 < 0 V	supply voltage-0.5input voltage[1] -0.5output voltageoutput in OFF-state or HIGH-state[1] -0.5input diode current $V_1 < 0 V$ -output diode current $V_0 < 0 V$ -output currentoutput in LOW-state-output in HIGH-statestorage temperature-65	supply voltage-0.5+4.6input voltage[1] -0.5+7.0output voltageoutput in OFF-state or HIGH-state[1] -0.5+7.0input diode current $V_1 < 0 V$ 50output diode current $V_0 < 0 V$ 50output currentoutput in LOW-state-128output in HIGH-state64storage temperature-65+150

[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

9. Recommended operating conditions

Table 6:	Recommended operating conditions					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		2.7	-	3.6	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-	-	-32	mA
I _{OL}	LOW-level output current	none	-	-	32	mA
		current duty cycle ≤ 50 %; f ≥ 1 kHz	-	-	64	mA
$\Delta t / \Delta V$	input transition rise or fall rate	outputs enabled	-	-	10	ns/V
T _{amb}	ambient temperature	in free air	-40	-	+85	°C

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C [1]					
V _{IK}	input diode voltage	I_{IK} = -18 mA; V_{CC} = 2.7 V	-	-0.9	-1.2	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -100 \ \mu\text{A};$ $V_{CC} = 2.7 \ V \text{ to } 3.6 \ V;$	V _{CC} – 0.2	V _{CC} – 0.1	-	V
		I_{OH} = -8 mA; V_{CC} = 2.7 V	2.4	2.5	-	V
		I_{OH} = -32 mA; V_{CC} = 3.0 V	2.0	2.2	-	V
V _{OL}	LOW-level output voltage	$V_{CC} = 2.7 V$				
		I _{OL} = 100 μA	-	0.1	0.2	V
		I _{OL} = 24 mA	-	0.3	0.5	V
		V _{CC} = 3.0 V				
		I _{OL} = 16 mA	-	0.25	0.4	V
		I _{OL} = 32 mA	-	0.3	0.5	V
		I _{OL} = 64 mA	-	0.4	0.55	V
I _{LI}	input leakage current					
	all input pins	V_{CC} = 0 V or 3.6 V; V _I = 5.5 V	-	1	10	μA
	control pins	V_{CC} = 3.6 V; V_{CC} or GND	-	±0.1	±1	μA
	data pins	$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC}$	[2] _	0.1	1	μA
		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 0 \text{ V}$	[2] _	-1	-5	μA
I _{OFF}	power-down output current	V_{CC} = 0 V; V ₁ or V ₀ = 0 V to 4.5 V	-	1	±100	μA
I _{HOLD}	bus hold current A input	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 0.8 \text{ V}$	<u>[3]</u> 75	150	-	μΑ
		$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 2.0 \text{ V}$	-75	-150	-	μΑ
		$V_{CC} = 0 V$ to 3.6 V; $V_{I} = 3.6 V$	±500	-	-	μΑ

Table 7: Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{EX}	external current into output	output in HIGH-state when $V_O > V_{CC}$; $V_O = 5.5$ V and $V_{CC} = 3.0$ V	-	60	125	μA
I _{PU} , I _{PD}	power-up or power-down 3-state output current	$\label{eq:VCC} \begin{array}{l} V_{CC} \leq 1.2 \ \text{V}; \ \text{V}_{O} = 0.5 \ \text{V} \ \text{to} \ \text{V}_{CC}; \\ \text{V}_{I} = \text{GND} \ \text{or} \ \text{V}_{CC}; \ \text{nOE} = \text{don't care} \end{array}$	<u>[4]</u>	±1	±100	μΑ
I _{OZ}	3-state output current	V _{CC} = 3.6 V				
		output HIGH: $V_0 = 3.0 V$	-	1	5	μΑ
		output LOW: $V_0 = 0.5 V$	-	-1	-5	μΑ
I _{CC}	quiescent supply current	V_{CC} = 3.6 V; V_{I} = GND or V_{CC} ; I_{O} = 0 A				
		outputs HIGH	-	0.13	0.19	mA
		outputs LOW	-	2	7	mA
		outputs disabled	[5] _	0.13	0.19	mA
ΔI_{CC}	additional supply current per input pin	V_{CC} = 3 V to 3.6 V; one input at V_{CC} – 0.6 V and other inputs at V_{CC} or GND	<u>[6]</u> _	0.1	0.2	mA
CI	input capacitance	$V_I = 0 V \text{ or } V_{CC}$	-	4	-	pF
Co	output capacitance	outputs disabled; $V_0 = 0 V \text{ or } 3.0 V$	-	8	-	pF

[1] Typical values are measured at nominal V_{CC} and T_{amb} = 25 °C.

[2] Unused pins at V_{CC} or GND.

[3] This is the bus hold overdrive current required to force the input to the opposite logic state.

[4] This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 3.3 V \pm 0.3 V a transition time of 100 μ s is permitted. This parameter is valid for T_{amb} = 25 °C only.

[5] Measured with outputs pulled up to V_{CC} or GND.

[6] This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

11. Dynamic characteristics

Table 8: Dynamic characteristics

GND = 0 V; $t_r = t_f = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$; for test circuit see Figure 7.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
T _{amb} = -	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C \ \frac{[1]}{}$							
t _{PLH}	propagation delay nA to nY	$V_{CC} = 2.7 V$	-	-	4.5	ns		
		$V_{CC}=3.3~V\pm0.3~V$	1.0	2.3	3.8	ns		
t _{PHL}	propagation delay nA to nY	$V_{CC} = 2.7 V$	-	-	4.4	ns		
		$V_{CC}=3.3~V\pm0.3~V$	1.0	2.4	3.9	ns		
t _{PZH}	output enable time nOE to nY	$V_{CC} = 2.7 V$	-	-	6.1	ns		
		$V_{CC}=3.3~V\pm0.3~V$	1.0	3.6	5.4	ns		
t _{PZL}	output enable time nOE to nY	$V_{CC} = 2.7 V$	-	-	5.8	ns		
		$V_{CC}=3.3~V\pm0.3~V$	1.1	3.6	5.2	ns		

Table 8: Dynamic characteristics ...continued

GND = 0 V; $t_r = t_f = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$; for test circuit see Figure 7.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{PHZ}	output disable time nOE to nY	$V_{CC} = 2.7 V$	-	-	4.3	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.2	3.8	ns
t _{PLZ}	output disable time nOE to nY	$V_{CC} = 2.7 V$	-	-	6.1	ns
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.3	3.6	5.5	ns

[1] Typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.

12. Waveforms

74LVT126

3.3 V quad buffer; 3-state

Table 9: Test data

Input				Load		V _{EXT}		
VI	f _i	t _W	t _r , t _f	CL	RL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
2.7 V	\leq 10 MHz	500 ns	\leq 2.5 ns	50 pF	500 Ω	GND	6 V	open

Philips Semiconductors

74LVT126

3.3 V quad buffer; 3-state

13. Package outline

Fig 8. Package outline SO14 (SOT108-1)

Fig 9. Package outline SSOP14 (SOT337-1)

Fig 10. Package outline TSSOP14 (SOT402-1)

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 11. Package outline DHVQFN14 (SOT762-1)

74LVT126

3.3 V quad buffer; 3-state

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74LVT126_4	20050211	Product data sheet	-	9397 750 14553	74LVT126_3
Modifications:	informatio	at of this data sheet has b on standard of Philips Ser	U U	comply with the nev	v presentation and
	 Figure 4. 	added Figure note 1.			
74LVT126_3	• <u>Figure 4</u> : 20040624	Product data sheet	-	9397 750 13542	74LVT126_2
74LVT126_3 74LVT126_2			-	9397 750 13542 9397 750 03515	74LVT126_2 74LVT126_1

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

74LVT126

3.3 V quad buffer; 3-state

19. Contents

1	General description 1
2	Features 1
3	Quick reference data 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 4
7.1	Function table 4
8	Limiting values 4
9	Recommended operating conditions 5
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms 7
13	Package outline 9
14	Revision history 13
15	Data sheet status 14
16	Definitions 14
17	Disclaimers 14
18	Contact information 14

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 11 February 2005 Document number: 9397 750 14553

Published in The Netherlands