Surface Mount Schottky Power Rectifier # Plastic SOD-123FL Package This device uses the Schottky Barrier principle with a large area metal—to—silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are AC–DC and DC–DC converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical. #### **Features** - Guardring for Stress Protection - Low Forward Voltage - Epoxy Meets UL 94 V-0 - Package Designed for Optimal Automated Board Assembly - These are Pb-Free Devices #### **Mechanical Characteristics** • Reel Options: MBR2H200SFT3G = 10,000 per 13 in reel/8 mm tape • Device Marking: L2J Polarity Designator: Cathode BandWeight: 11.7 mg (approximately) • Case: Epoxy, Molded • Lead Finish: 100% Matte Sn (Tin) • Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds 200 C Max. 101 10 Seconds • Device Meets MSL 1 Requirements ## ON Semiconductor® www.onsemi.com ## SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 200 VOLTS SOD-123FL CASE 498 #### MARKING DIAGRAM L2J = Specific Device Code M = Date Code ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | | |---------------|----------------------|------------------------|--| | MBR2H200SFT1G | SOD-123
(Pb-Free) | 3000 / Tape &
Reel | | | MBR2H200SFT3G | SOD-123
(Pb-Free) | 10000 / Tape &
Reel | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|--|-------------|------| | Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage | V _{RRM}
V _{RWM}
V _R | 200 | V | | Average Rectified Forward Current (T _L = 108°C) | Io | 2.0 | А | | Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 105°C) | I _{FRM} | 4.0 | А | | Non-Repetitive Peak Surge Current
(Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) | I _{FSM} | 30 | А | | Storage and Operating Junction Temperature Range (Note 1) | T_{stg}, T_{J} | -55 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Value | Unit | |--|----------------|-------|------| | Thermal Resistance, Junction-to-Lead (Note 2) | Ψ_{JCL} | 23 | °C/W | | Thermal Resistance, Junction-to-Ambient (Note 2) | $R_{ heta JA}$ | 85 | °C/W | | Thermal Resistance, Junction-to-Ambient (Note 3) | $R_{ heta JA}$ | 330 | °C/W | #### **ELECTRICAL CHARACTERISTICS** | Characteristic | Symbol | Value | Unit | |--|----------------|------------------------------|----------| | Maximum Instantaneous Forward Voltage (Note 4) $ \begin{array}{l} (I_F = 1.0 \text{ A, } T_J = 25^{\circ}\text{C}) \\ (I_F = 2.0 \text{ A, } T_J = 25^{\circ}\text{C}) \\ (I_F = 1.0 \text{ A, } T_J = 125^{\circ}\text{C}) \\ (I_F = 2.0 \text{ A, } T_J = 125^{\circ}\text{C}) \end{array} $ | V _F | 0.86
0.94
0.71
0.78 | V | | Maximum Instantaneous Reverse Current (Note 4) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 125^{\circ}C$) | I _R | 200
2 | μA
mA | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - Mounted with 700 mm² copper pad size (Approximately 1 in²) 1 oz FR4 Board. Mounted with pad size approximately 20 mm² copper, 1 oz FR4 Board. Pulse Test: Pulse Width ≤ 380 μs, Duty Cycle ≤ 2.0%. ^{1.} The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$. #### TYPICAL CHARACTERISTICS $\label{eq:VR} V_R,\, \text{REVERSE VOLTAGE (V)}$ Figure 5. Typical Junction Capacitance T_L, LEAD TEMPERATURE (°C) Figure 6. Current Derating per Diode #### TYPICAL CHARACTERISTICS Figure 7. Forward Power Dissipation Figure 8. Thermal Response, Junction-to-Ambient (20 mm² pad) Figure 9. Thermal Response, Junction-to-Ambient (1 in² pad) #### PACKAGE DIMENSIONS #### SOD-123FL **CASE 498** ISSUE D #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH. - DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------|--------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.90 | 0.95 | 0.98 | 0.035 | 0.037 | 0.039 | | A1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 | | b | 0.70 | 0.90 | 1.10 | 0.028 | 0.035 | 0.043 | | С | 0.10 | 0.15 | 0.20 | 0.004 | 0.006 | 0.008 | | D | 1.50 | 1.65 | 1.80 | 0.059 | 0.065 | 0.071 | | E | 2.50 | 2.70 | 2.90 | 0.098 | 0.106 | 0.114 | | L | 0.55 | 0.75 | 0.95 | 0.022 | 0.030 | 0.037 | | HE | 3.40 | 3.60 | 3.80 | 0.134 | 0.142 | 0.150 | | θ | 0° | _ | 8° | 0° | _ | 8° | #### RECOMMENDED **SOLDERING FOOTPRINT*** **DIMENSIONS: MILLIMETERS** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative Phone: 81-3-5817-1050