
 2002 Microchip Technology Inc. DS51297A

MPLAB® C18

C COMPILER

LIBRARIES

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.

• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.

The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.

• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical com-

ponents in life support systems is not authorized except with

express written approval by Microchip. No licenses are con-

veyed, implicitly or otherwise, under any intellectual property

rights.
DS51297A - page ii
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,

MPLAB, PIC, PICmicro, PICSTART and PRO MATE are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

AMPLAB, FilterLab, microID, MXDEV, MXLAB, PICMASTER,

SEEVAL and The Embedded Control Solutions Company are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,

FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,

ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,

MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select

Mode and Total Endurance are trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2002, Microchip Technology Incorporated. Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2002 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

MPLAB® C18 C COMPILER

LIBRARIES
Table of Contents
Preface ..1

Chapter 1. Overview
1.1 Introduction .. 7
1.2 MPLAB C18 Libraries Overview .. 7
1.3 Start-Up Code ... 7
1.4 Processor-Independent Library ... 8
1.5 Processor-Specific Libraries .. 8

Chapter 2. Hardware Peripheral Functions
2.1 Introduction .. 11
2.2 A/D Converter Functions ... 12
2.3 Input Capture Functions .. 20
2.4 I²C® Functions ... 24
2.5 I/O Port Functions ... 33
2.6 Microwire® Functions .. 36
2.7 Pulse Width Modulation Functions .. 41
2.8 SPI™ Functions .. 44
2.9 Timer Functions ... 50
2.10 USART Functions .. 57

Chapter 3. Software Peripheral Library
3.1 Introduction .. 67
3.2 External LCD Functions .. 67
3.3 External CAN2510 Functions .. 74
3.4 Software I²C Functions .. 98
3.5 Software SPI Functions ... 104
3.6 Software UART Functions ... 107

Chapter 4. General Software Library
4.1 Introduction .. 111
4.2 Character Classification Functions .. 111
4.3 Data Conversion Functions ... 116
4.4 Memory and String Manipulation Functions 121
4.5 Delay Functions ... 133
4.6 Reset Functions .. 135

Chapter 5. Math Library
5.1 Introduction .. 139
5.2 32-Bit Integer and 32-Bit Floating Point Math Libraries 139
 2002 Microchip Technology Inc. DS51297A-page iii

MPLAB® C18 C Compiler Libraries
5.3 Decimal/Floating Point and Floating Point/Decimal Conversions139

Glossary ... 145

Index ... 149

Worldwide Sales and Service ... 156
DS51297A-page iv  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES
Preface
INTRODUCTION

The purpose of this document is to provide detailed information on the libraries and

precompiled object files that may be used with Microchip’s MPLAB® C18 C Compiler.

HIGHLIGHTS

Items discussed in this chapter are:

• About this Guide

• Warranty Registration

• Recommended Reading

• Troubleshooting

• Microchip On-Line Support

• Customer Change Notification Service

• Customer Support

ABOUT THIS GUIDE

Document Layout

This document describes MPLAB C18 libraries and precompiled object files. For a

detailed discussion about using MPLAB C18 or MPLAB IDE, refer to Recommended

Reading later in this chapter.

The document layout is as follows:

• Chapter 1: Overview – describes the libraries and precompiled object files

available.

• Chapter 2: Hardware Peripheral Functions – describes each hardware

peripheral library function.

• Chapter 3: Software Peripheral Library – describes each software peripheral

library function.

• Chapter 4: General Software Library – describes each general software library

function.

• Chapter 5: Math Library – discusses the math library functions.

• Glossary – A glossary of terms used in this guide.

• Index – Cross-reference listing of terms, features and sections of this document.

• Worldwide Sales and Service – gives the address, telephone and fax number

for Microchip Technology Inc. sales and service locations throughout the world.
 2002 Microchip Technology Inc. apRNOVT^-page 1

MPLAB® C18 C Compiler Libraries
Conventions Used in This Guide

This manual uses the following documentation conventions:

Documentation Updates

All documentation becomes dated, and this user’s guide is no exception. Since MPLAB

IDE, MPLAB C18 and other Microchip tools are constantly evolving to meet customer

needs, some actual dialogs and/or tool descriptions may differ from those in this

document. Please refer to our web site to obtain the latest documentation available.

Documentation Numbering Conventions

Documents are numbered with a “DS” number. The number is located on the bottom of

each page, in front of the page number. The numbering convention for the DS Number

is: DSXXXXXA,

where:

Table: Documentation Conventions

Description Represents Examples

Code (Courier font):

Plain characters Sample code

Filenames and paths

#define START
c:\autoexec.bat

Angle brackets: < > Variables <label>, <exp>

Square brackets [] Optional arguments MPASMWIN
[main.asm]

Curly brackets and

pipe character: { | }

Choice of mutually exclusive

arguments

An OR selection

errorlevel {0|1}

Lower case

characters in quotes

Type of data “filename”

Ellipses... Used to imply (but not show)

additional text that is not relevant

to the example

list
[“list_option...,
“list_option”]

0xnnn A hexadecimal number where n is

a hexadecimal digit

0xFFFF, 0x007A

Italic characters A variable argument; it can be

either a type of data (in lower case

characters) or a specific example

(in uppercase characters).

char isascii
(char, ch);

Interface (Arial font):

Underlined, italic text

with right arrow

A menu selection from the menu

bar
File > Save

Bold characters A window or dialog button to click OK, Cancel

Characters in angle

brackets < >

A key on the keyboard <Tab>, <Ctrl-C>

Documents (Arial font):

Italic characters Referenced books MPLAB IDE User’s

Guide

XXXXX = The document number.

A = The revision level of the document.
apRNOVT^-page 2  2002 Microchip Technology Inc.

Preface
WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.

Sending in your Warranty Registration Card entitles you to receive new product

updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This document describes the MPLAB C18 C Compiler libraries and precompiled object

files. For more information on the MPLAB C18 C compiler, the operation of MPLAB IDE

and the use of other tools, the following are recommended reading.

README.C18

For the latest information on using MPLAB C18 C Compiler, read the README.C18 file

(ASCII text) included with the software. This README file contains update information

that may not be included in this document.

README.XXX

For the latest information on other Microchip tools (MPLAB IDE, MPLINK™ linker, etc.),

read the associated README files (ASCII text file) included with the MPLAB IDE

software.

MPLAB C18 C Compiler User’s Guide (DS51288)

Comprehensive guide that describes the installation, operation and features of

Microchip’s MPLAB C18 C compiler for PIC18 devices.

MPLAB C18 C Compiler Getting Started (DS51295)

This document explains how to use MPLAB C18 with MPLAB IDE. Setting up MPLAB

IDE to use the compiler and several examples of use are provided.

MPLAB IDE User’s Guide (DS51025)

Comprehensive guide that describes installation and features of Microchip’s MPLAB

Integrated Development Environment (IDE), as well as the editor and simulator

functions in the MPLAB IDE environment.

MPASM™ User’s Guide with MPLINK™ and MPLIB™ (DS33014)

This user’s guide describes how to use the Microchip PICmicro® MCU MPASM

assembler, the MPLINK object linker and the MPLIB object librarian.

PIC18 Device Data Sheets

These documents contain information on the operation and electrical specifications of

PIC18 devices. May be found on the Technical CD-ROM or our web site (see below).

Technical Library CD-ROM (DS00161)

This CD-ROM contains comprehensive application notes, data sheets, and technical

briefs for all Microchip products. To obtain this CD-ROM, contact the nearest Microchip

Sales and Service location (see back page).

Microchip Web Site

Our web site (www.microchip.com) contains a wealth of documentation. Individual data

sheets, application notes, tutorials and user’s guides are all available for easy

download. All documentation is in Adobe™ Acrobat (pdf) format.

Microsoft® Windows® Manuals

This manual assumes that users are familiar with the Microsoft Windows operating

system. Many excellent references exist for this software program, and should be

consulted for general operation of Windows.
 2002 Microchip Technology Inc. apRNOVT^-page 3

MPLAB® C18 C Compiler Libraries
TROUBLESHOOTING

See the README files for information on common problems not addressed in this user’s

guide.

MICROCHIP ON-LINE SUPPORT

Microchip provides on-line support on the Microchip web site at:

http://www.microchip.com

A file transfer site is also available by using an FTP service connecting to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may

download files for the latest development tools, data sheets, application notes,

user' guides, articles and sample programs. A variety of Microchip specific business

information is also available, including listings of Microchip sales offices and

distributors. Other information available on the web site includes:

• Latest Microchip press releases

• Technical support section with FAQs

• Design tips

• Device errata

• Job postings

• Microchip consultant program member listing

• Links to other useful web sites related to Microchip products

• Conferences for products, development systems, technical information and more

• Listing of seminars and events

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip started the customer notification service to help customers stay current on

Microchip products with the least amount of effort. Once you subscribe, you will receive

email notification whenever we change, update, revise or have errata related to your

specified product family or development tool of interest.

Go to the Microchip web site (www.microchip.com) and click on Customer Change

Notification. Follow the instructions to register.

The Development Systems product group categories are:

• Compilers

• Emulators

• In-Circuit Debuggers

• MPLAB IDE

• Programmers

Here is a description of these categories:

Compilers - The latest information on Microchip C compilers and other language tools.

These include the MPLAB C17, MPLAB C18 and MPLAB C30 C Compilers; MPASM

and MPLAB ASM30 assemblers; MPLINK and MPLAB LINK30 linkers; and MPLIB and

MPLAB LIB30 librarians.

Emulators - The latest information on Microchip in-circuit emulators. This includes the

MPLAB ICE 2000.

In-Circuit Debuggers - The latest information on Microchip in-circuit debuggers.

These include the MPLAB ICD and MPLAB ICD 2.
apRNOVT^-page 4  2002 Microchip Technology Inc.

Preface
MPLAB - The latest information on Microchip MPLAB IDE, the Windows Integrated

Development Environment for development systems tools. This list is focused on the

MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager and general editing

and debugging features.

Programmers - The latest information on Microchip device programmers. These

include the PRO MATE® II device programmer and PICSTART® Plus development

programmer.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributors

• Local Sales Office

• Field Application Engineers (FAEs)

• Corporate Applications Engineers (CAEs)

• Systems Information and Upgrade Hot Line

Customers should call their distributor or field application engineer (FAE) for support.

Local sales offices are also available to help customers. See the last page of this

document for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at (480) 792-7627.

Systems Information and Upgrade Line

The Systems Information and Upgrade Information Line provides system users with a

listing of the latest versions of all of Microchip’s development systems software

products. Plus, this line provides information on how customers can receive the most

current upgrade kits. The Information Line Numbers are:

1-800-755-2345 for U.S. and most of Canada.

1-480-792-7302 for the rest of the world.
 2002 Microchip Technology Inc. apRNOVT^-page 5

MPLAB® C18 C Compiler Libraries
NOTES:
apRNOVT^-page 6  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES
Chapter 1. Overview
1.1 INTRODUCTION

This chapter gives an overview of the MPLAB C18 library files and precompiled object

files that can be included in an application.

1.2 MPLAB C18 LIBRARIES OVERVIEW

A library is a collection of functions grouped for reference and ease of linking. See the

MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information about creating and maintaining libraries.

The MPLAB C18 libraries are included in the lib subdirectory of the installation.

These can be linked directly into an application using the MPLINK linker.

These files were precompiled in the c:\mcc18\src directory at Microchip. If you

chose not to install the compiler and related files in the c:\mcc18 directory, source

code from the libraries will not show in the linker listing file and cannot be stepped

through when using MPLAB IDE.

To include the library code in the .lst file and to be able to single step through library

functions, follow the instructions in README.C18 to rebuild the libraries using the

supplied batch files (.bat) found in the src directory.

1.3 START-UP CODE

1.3.1 Overview

Three versions of start-up code are provided with MPLAB C18, with varying levels of

initialization. In increasing order of complexity, they are:

c018.o initializes the C software stack and jumps to the start of the application

function, main().

c018i.o performs all of the same tasks as c018.o and also assigns the appropriate

values to initialized data prior to calling the user’s application. Initialization is required

if global or static variables are set to a value when they are defined. This is the

start-up code that is included in the linker script files that are provided with MPLAB

C18.

c018iz.o performs all of the same tasks as c018i.o and also assigns zero to all

uninitialized variables, as is required for strict ANSI compliance.

1.3.2 Source Code

The source code for the start-up routines may be found in the src/startup

subdirectory of the compiler installation.

1.3.3 Rebuilding

Use the batch file build.bat to rebuild the start-up code and copy the generated

object files to the lib directory.

Before rebuilding the start-up code with build.bat, verify that MPLAB C18

(mcc18.exe) is in your path.
 2002 Microchip Technology Inc. apRNOVT^-page 7

MPLAB® C18 C Compiler Libraries
1.4 PROCESSOR-INDEPENDENT LIBRARY

1.4.1 Overview

The clib.lib library provides functions that are supported by the core PIC18

architecture: those that are supported across all processors in the family. These

functions are described in the following chapters:

• General Software Library, Chapter 4.

• Math Libraries, Chapter 5.

1.4.2 Source Code

The source code for the functions in clib.lib may be found in the following

subdirectories of the compiler installation:

• src\math

• src\delays

• src\ctype

• src\string

• src\stdlib

1.4.3 Rebuilding

The batch file makeclib.bat may be used to rebuild the processor-independent

library. Before invoking this batch file, verify that the following tools are in your path:

• MPLAB C18 (mcc18.exe)

• MPASM assembler (mpasm.exe)

• MPLIB librarian (mplib.exe)

Also prior to rebuilding clib.lib, be sure that the environment variable MCC_INCLUDE

is set to the path of the MPLAB C18 include files (e.g., c:\mcc18\h).

1.5 PROCESSOR-SPECIFIC LIBRARIES

1.5.1 Overview

The processor-specific library files contain definitions that may vary across individual

members of the PIC18 family. This includes all of the peripheral routines and the

special function register (SFR) definitions. The peripheral routines that are provided

include both those designed to use the hardware peripherals and those that

implement a peripheral interface using general purpose I/O lines. The functions

included in the processor-specific libraries are described in the following chapters:

• Hardware Peripheral Functions, Chapter 2.

• Software Peripheral Library, Chapter 3.

The processor-specific libraries are named:

p processor.lib

For example, the library file for the PIC18F8720 is named p18f8720.lib.
apRNOVT^-page 8  2002 Microchip Technology Inc.

Overview
1.5.2 Source Code

The source code for the processor-specific libraries may be found in the following

subdirectories of the compiler installation:

• src\pmc

• src\proc

1.5.3 Rebuilding

The batch file makeplib.bat may be used to rebuild the processor-independent

libraries. Before invoking this batch file, verify that the following tools are in your path:

• MPLAB C18 (mcc18.exe)

• MPASM assembler (mpasm.exe)

• MPLIB librarian (mplib.exe)

Also prior to invoking makeplib.bat, be sure that the environment variable

MCC_INCLUDE is set to the path of the MPLAB C18 include files (e.g., c:\mcc18\h).
 2002 Microchip Technology Inc. apRNOVT^-page 9

MPLAB® C18 C Compiler Libraries
NOTES:
apRNOVT^-page 10  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES
Chapter 2. Hardware Peripheral Functions
2.1 INTRODUCTION

This chapter documents the hardware peripheral functions found in the

processor-specific libraries. The source code for all of these functions is included with

MPLAB C18 in the src\pmc subdirectory of the compiler installation.

See the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information about managing libraries using the MPLIB librarian.

The following peripherals are supported by MPLAB C18 library routines:

• A/D Converter (2.2 “A/D Converter Functions”)

• Input Capture (2.3 “Input Capture Functions”)

• I2C® (2.4 “I²C® Functions”)

• I/O Ports (2.5 “I/O Port Functions”)

• Microwire® (2.6 “Microwire® Functions”)

• Pulse Width Modulation (PWM) (2.7 “Pulse Width Modulation Functions”)

• SPI™ (2.8 “SPI™ Functions”)

• Timer (2.9 “Timer Functions”)

• USART (2.10 “USART Functions”)
 2002 Microchip Technology Inc. apRNOVT^-page 11

MPLAB® C18 C Compiler Libraries
2.2 A/D CONVERTER FUNCTIONS

The A/D peripheral is supported with the following functions:

2.2.1 Function Descriptions

Function Description

BusyADC Is A/D converter currently performing a conversion?

CloseADC Disable the A/D converter.

ConvertADC Start an A/D conversion.

OpenADC Configure the A/D convertor.

ReadADC Read the results of an A/D conversion.

SetChanADC Select A/D channel to be used.

BusyADC

Function: Is the A/D converter currently performing a conversion?

Include: adc.h

Prototype: char BusyADC(void);

Remarks: This function indicates if the A/D peripheral is in the process of

converting a value.

Return Value: 1 if the A/D peripheral is performing a conversion.

0 if the A/D peripheral isn’t performing a conversion.

File Name: adcbusy.c

CloseADC

Function: Disable the A/D converter.

Include: adc.h

Prototype: void CloseADC(void);

Remarks: This function disables the A/D convertor and A/D interrupt

mechanism.

File Name: adcclose.c

ConvertADC

Function: Starts the A/D conversion process.

Include: adc.h

Prototype: void ConvertADC(void);

Remarks: This function starts an A/D conversion. The BusyADC() function

may be used to detect completion of the conversion.

File Name: adcconv.c
apRNOVT^-page 12  2002 Microchip Technology Inc.

Hardware Peripheral Functions
OpenADC
PIC18CXX2, PIC18FXX2, PIC18FXX8

Function: Configure the A/D convertor.

Include: adc.h

Prototype: void OpenADC(unsigned char config,
 unsigned char config2);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file adc.h.

A/D clock source:

ADC_FOSC_2 FOSC / 2

ADC_FOSC_4 FOSC / 4

ADC_FOSC_8 FOSC / 8

ADC_FOSC_16 FOSC / 16

ADC_FOSC_32 FOSC / 32

ADC_FOSC_64 FOSC / 64

ADC_FOSC_RC Internal RC Oscillator

A/D result justification:

ADC_RIGHT_JUST Result in Least Significant bits

ADC_LEFT_JUST Result in Most Significant bits

A/D voltage reference source:

ADC_8ANA_0REF VREF+=VDD, VREF-=VSS,

All analog channels

ADC_7ANA_1REF AN3=VREF+, All analog

channels except AN3

ADC_6ANA_2REF AN3=VREF+, AN2=VREF

ADC_6ANA_0REF VREF+=VDD, VREF-=VSS

ADC_5ANA_1REF AN3=VREF+, VREF-=VSS

ADC_5ANA_0REF VREF+=VDD, VREF-=VSS

ADC_4ANA_2REF AN3=VREF+, AN2=VREF-

ADC_4ANA_1REF AN3=VREF+

ADC_3ANA_2REF AN3=VREF+, AN2=VREF-

ADC_3ANA_0REF VREF+=VDD, VREF-=VSS

ADC_2ANA_2REF AN3=VREF+, AN2=VREF-

ADC_2ANA_1REF AN3=VREF+

ADC_1ANA_2REF AN3=VREF+, AN2=VREF-,

AN0=A

ADC_1ANA_0REF AN0 is analog input

ADC_0ANA_0REF All digital I/O

config2
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file adc.h.
 2002 Microchip Technology Inc. apRNOVT^-page 13

MPLAB® C18 C Compiler Libraries

Channel:

ADC_CH0 Channel 0

ADC_CH1 Channel 1

ADC_CH2 Channel 2

ADC_CH3 Channel 3

ADC_CH4 Channel 4

ADC_CH5 Channel 5

ADC_CH6 Channel 6

ADC_CH7 Channel 7

A/D Interrupts:

ADC_INT_ON Interrupts enabled

ADC_INT_OFF Interrupts disabled

Remarks: This function resets the A/D peripheral to the POR state and

configures the A/D-related special function registers (SFRs)

according to the options specified.

File Name: adcopen.c

Code Example: OpenADC(ADC_FOSC_32 &
 ADC_RIGHT_JUST &
 ADC_1ANA_0REF,
 ADC_CH0 &
 ADC_INT_OFF);

OpenADC
PIC18C658/858, PIC18C601/801,
PIC18F6X20, PIC18F8X20

Function: Configure the A/D convertor.

Include: adc.h

Prototype: void OpenADC(unsigned char config,
 unsigned char config2);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file adc.h.

A/D clock source:

ADC_FOSC_2 FOSC / 2

ADC_FOSC_4 FOSC / 4

ADC_FOSC_8 FOSC / 8

ADC_FOSC_16 FOSC / 16

ADC_FOSC_32 FOSC / 32

ADC_FOSC_64 FOSC / 64

ADC_FOSC_RC Internal RC Oscillator

A/D result justification:

ADC_RIGHT_JUST Result in Least Significant bits

ADC_LEFT_JUST Result in Most Significant bits

OpenADC
PIC18CXX2, PIC18FXX2, PIC18FXX8 (Continued)
apRNOVT^-page 14  2002 Microchip Technology Inc.

Hardware Peripheral Functions
A/D port configuration:

ADC_0ANA All digital

ADC_1ANA analog:AN0 digital:AN1-AN15

ADC_2ANA analog:AN0-AN1 digital:AN2-AN15

ADC_3ANA analog:AN0-AN2 digital:AN3-AN15

ADC_4ANA analog:AN0-AN3 digital:AN4-AN15

ADC_5ANA analog:AN0-AN4 digital:AN5-AN15

ADC_6ANA analog:AN0-AN5 digital:AN6-AN15

ADC_7ANA analog:AN0-AN6 digital:AN7-AN15

ADC_8ANA analog:AN0-AN7 digital:AN8-AN15

ADC_9ANA analog:AN0-AN8 digital:AN9-AN15

ADC_10ANA analog:AN0-AN9 digital:AN10-AN15

ADC_11ANA analog:AN0-AN10digital:AN11-AN15

ADC_12ANA analog:AN0-AN11digital:AN12-AN15

ADC_13ANA analog:AN0-AN12digital:AN13-AN15

ADC_14ANA analog:AN0-AN13digital:AN14-AN15

ADC_15ANA All analog

config2
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file adc.h.

Channel:

ADC_CH0 Channel 0

ADC_CH1 Channel 1

ADC_CH2 Channel 2

ADC_CH3 Channel 3

ADC_CH4 Channel 4

ADC_CH5 Channel 5

ADC_CH6 Channel 6

ADC_CH7 Channel 7

ADC_CH8 Channel 8

ADC_CH9 Channel 9

ADC_CH10 Channel 10

ADC_CH11 Channel 11

ADC_CH12 Channel 12

ADC_CH13 Channel 13

ADC_CH14 Channel 14

ADC_CH15 Channel 15

A/D Interrupts:

ADC_INT_ON Interrupts enabled

ADC_INT_OFF Interrupts disabled

A/D voltage configuration:

ADC_VREFPLUS_VDD VREF+ = AVDD

ADC_VREFPLUS_EXT VREF+ = external

ADC_VREFMINUS_VDD VREF- = AVDD

ADC_VREFMINUS_EXT VREF- = external

OpenADC
PIC18C658/858, PIC18C601/801,
PIC18F6X20, PIC18F8X20 (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 15

MPLAB® C18 C Compiler Libraries

Remarks: This function resets the A/D-related registers to the POR state

and then configures the clock, result format, voltage reference,

port and channel.

File Name: adcopen.c

Code Example: OpenADC(ADC_FOSC_32 &
 ADC_RIGHT_JUST &
 ADC_14ANA,
 ADC_CH0 &
 ADC_INT_OFF);

OpenADC
PIC18F1X20, PIC18F2X20, PIC18F4X20

Function: Configure the A/D convertor.

Include: adc.h

Prototype: void OpenADC(unsigned char config,
 unsigned char config2 ,
 unsigned char portconfig);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file adc.h.

A/D clock source:

ADC_FOSC_2 FOSC / 2

ADC_FOSC_4 FOSC / 4

ADC_FOSC_8 FOSC / 8

ADC_FOSC_16 FOSC / 16

ADC_FOSC_32 FOSC / 32

ADC_FOSC_64 FOSC / 64

ADC_FOSC_RC Internal RC Oscillator

A/D result justification:

ADC_RIGHT_JUST Result in Least Significant bits

ADC_LEFT_JUST Result in Most Significant bits

A/D acquisition time select:

ADC_0_TAD 0 Tad

ADC_2_TAD 2 Tad

ADC_4_TAD 4 Tad

ADC_6_TAD 6 Tad

ADC_8_TAD 8 Tad

ADC_12_TAD 12 Tad

ADC_16_TAD 16 Tad

ADC_20_TAD 20 Tad

config2
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file adc.h.

OpenADC
PIC18C658/858, PIC18C601/801,
PIC18F6X20, PIC18F8X20 (Continued)
apRNOVT^-page 16  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Channel:

ADC_CH0 Channel 0

ADC_CH1 Channel 1

ADC_CH2 Channel 2

ADC_CH3 Channel 3

ADC_CH4 Channel 4

ADC_CH5 Channel 5

ADC_CH6 Channel 6

ADC_CH7 Channel 7

ADC_CH8 Channel 8

ADC_CH9 Channel 9

ADC_CH10 Channel 10

ADC_CH11 Channel 11

ADC_CH12 Channel 12

ADC_CH13 Channel 13

ADC_CH14 Channel 14

ADC_CH15 Channel 15

A/D Interrupts:

ADC_INT_ON Interrupts enabled

ADC_INT_OFF Interrupts disabled

A/D voltage configuration:

ADC_VREFPLUS_VDD VREF+ = AVDD

ADC_VREFPLUS_EXT VREF+ = external

ADC_VREFMINUS_VDD VREF- = AVDD

ADC_VREFMINUS_EXT VREF- = external

portconfig
The value of portconfig is any value from 0 to 127 for the

PIC18F1220/1320 and 0 to 15 for the

PIC18F2220/2320/4220/4320, inclusive. This is the value of bits

0 through 6 or bits 0 through 3 of the ADCON1 register, which

are the port configuration bits.

Remarks: This function resets the A/D-related registers to the POR state

and then configures the clock, result format, voltage reference,

port and channel.

File Name: adcopen.c

Code Example: OpenADC(ADC_FOSC_32 &
 ADC_RIGHT_JUST &
 ADC_12_TAD,
 ADC_CH0 &
 ADC_INT_OFF, 15);

OpenADC
PIC18F1X20, PIC18F2X20, PIC18F4X20 (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 17

MPLAB® C18 C Compiler Libraries
ReadADC

Function: Read the result of an A/D conversion.

Include: adc.h

Prototype: int ReadADC(void);

Remarks: This function reads the 16-bit result of an A/D conversion.

Return Value: This function returns the 16-bit signed result of the A/D

conversion. Based on the configuration of the A/D converter

(e.g., using the OpenADC() function), the result will be contained

in the Least Significant or Most Significant bits of the 16-bit

result.

File Name: adcread.c

SetChanADC

Function: Select the channel used as input to the A/D converter.

Include: adc.h

Prototype: void SetChanADC(unsigned char channel);

Arguments: channel
One of the following values (defined in adc.h):

ADC_CH0 Channel 0

ADC_CH1 Channel 1

ADC_CH2 Channel 2

ADC_CH3 Channel 3

ADC_CH4 Channel 4

ADC_CH5 Channel 5

ADC_CH6 Channel 6

ADC_CH7 Channel 7

ADC_CH8 Channel 8

ADC_CH9 Channel 9

ADC_CH10 Channel 10

ADC_CH11 Channel 11

Remarks: Selects the pin that will be used as input to the A/D converter.

File Name: adcsetch.c

Code Example: SetChanADC(ADC_CH0);
apRNOVT^-page 18  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.2.2 Example Use of the A/D Converter Routines

#include <p18C452.h>
#include <adc.h>
#include <stdlib.h>
#include <delays.h>

int result;

void main(void)
{
 // configure A/D convertor
 OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_8ANA_0REF,
 ADC_CH0 & ADC_INT_OFF);

 Delay10TCYx(5); // Delay for 50TCY
 ConvertADC(); // Start conversion
 while(BusyADC()); // Wait for completion
 result = ReadADC(); // Read result
 CloseADC(); // Disable A/D converter
}

 2002 Microchip Technology Inc. apRNOVT^-page 19

MPLAB® C18 C Compiler Libraries
2.3 INPUT CAPTURE FUNCTIONS

The capture peripheral is supported with the following functions:

2.3.1 Function Descriptions

Function Description

CloseCapturex Disable capture peripheral x.

OpenCapturex Configure capture peripheral x.

ReadCapturex Read a value from capture peripheral x.

CloseCapture1
CloseCapture2
CloseCapture3
CloseCapture4
CloseCapture5

Function: Disable input capture x.

Include: capture.h

Prototype: void CloseCapture1(void);
void CloseCapture2(void);
void CloseCapture3(void);
void CloseCapture4(void);
void CloseCapture5(void);

Remarks: This function disables the interrupt corresponding to the

specified input capture.

File Name: cp1close.c
cp2close.c
cp3close.c
cp4close.c
cp5close.c

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4
OpenCapture5

Function: Configure and enable input capture x.

Include: capture.h

Prototype: void OpenCapture1(unsigned char config);
void OpenCapture2(unsigned char config);
void OpenCapture3(unsigned char config);
void OpenCapture4(unsigned char config);
void OpenCapture5(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file capture.h:
apRNOVT^-page 20  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Enable CCP Interrupts:

CAPTURE_INT_ON Interrupts Enabled

CAPTURE_INT_OFF Interrupts Disabled

Interrupt Trigger (replace x with CCP module

number):

Cx_EVERY_FALL_EDGE Interrupt on every falling edge

Cx_EVERY_RISE_EDGE Interrupt on every rising edge

Cx_EVERY_4_RISE_EDGE Interrupt on every 4th rising

edge

Cx_EVERY_16_RISE_EDGE Interrupt on every 16th rising

edge

Remarks: This function first resets the capture module to the POR state

and then configures the input capture for the specified edge

detection.

The capture functions use a structure, defined in capture.h, to

indicate overflow status of each of the capture modules. This

structure is called CapStatus and has the following bit fields:
Cap1OVF
Cap2OVF
Cap3OVF
Cap4OVF
Cap5OVF

In addition to opening the capture, the appropriate timer module

must be enabled before any of the captures will operate. See

2.9 “Timer Functions” for information on using the Timer runtime

library functions for this.

File Name: cp1open.c
cp2open.c
cp3open.c
cp4open.c
cp5open.c

Code Example: OpenCapture1(CAPTURE_INT_ON &
 C1_EVERY_4_RISE_EDGE);

OpenCapture1
OpenCapture2
OpenCapture3
OpenCapture4
OpenCapture5 (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 21

MPLAB® C18 C Compiler Libraries
ReadCapture1
ReadCapture2
ReadCapture3
ReadCapture4
ReadCapture5

Function: Read the result of a capture event from the specified input

capture.

Include: capture.h

Prototype: unsigned int ReadCapture1(void);
unsigned int ReadCapture2(void);
unsigned int ReadCapture3(void);
unsigned int ReadCapture4(void);
unsigned int ReadCapture5(void);

Remarks: This function reads the value of the respective input capture’s

SFRs.

Return Value: This function returns the result of the capture event.

File Name: cp1read.c
cp2read.c
cp3read.c
cp4read.c
cp5read.c
apRNOVT^-page 22  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.3.2 Example Use of the Capture Routines

This example demonstrates the use of the capture library routines in a “polled” (not

interrupt-driven) environment.

#include <p18C452.h>
#include <capture.h>
#include <timers.h>
#include <usart.h>
#include <stdlib.h>

void main(void)
{
 unsigned int result;
 char str[7];

 // Configure Capture1
 OpenCapture1(C1_EVERY_4_RISE_EDGE &
 CAPTURE_INT_OFF);

 // Configure Timer3
 OpenTimer3(TIMER_INT_OFF &
 T3_SOURCE_INT);

 // Configure USART
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX,
 25);

 while(!PIR1bits.CCP1IF); // Wait for event
 result = ReadCapture1(); // read result
 ultoa(result,str); // convert to string

 // Write the string out to the USART if
 // an overflow condition has not occurred.
 if(!CapStatus.Cap1OVF)
 {
 putsUSART(str);
 }

 // Clean up
 CloseCapture1();
 CloseTimer3();
 CloseUSART();
}

 2002 Microchip Technology Inc. apRNOVT^-page 23

MPLAB® C18 C Compiler Libraries
2.4 I²C® FUNCTIONS

The I2C peripheral is supported with the following functions:

The following functions are also provided for interfacing with an EE device such as the

Microchip 24LC01B using the I2C interface:

2.4.1 Function Descriptions

Function Description

AckI2C Generate I2C bus Acknowledge condition.

CloseI2C Disable the SSP module.

DataRdyI2C Is the data available in the I2C buffer?

getcI2C Read a single byte from the I2C bus.

getsI2C Read a string from the I2C bus operating in master I2C mode.

IdleI2C Loop until I2C bus is idle.

NotAckI2C Generate I2C bus Not Acknowledge condition.

OpenI2C Configure the SSP module.

putcI2C Write a single byte to the I2C bus.

putsI2C Write a string to the I2C bus operating in either Master or Slave mode.

ReadI2C Read a single byte from the I2C bus.

RestartI2C Generate an I2C bus Restart condition.

StartI2C Generate an I2C bus START condition.

StopI2C Generate an I2C bus STOP condition.

WriteI2C Write a single byte to the I2C bus.

Function Description

EEAckPolling Generate the Acknowledge polling sequence.

EEByteWrite Write a single byte.

EECurrentAddRead Read a single byte from the next location.

EEPageWrite Write a string of data.

EERandomRead Read a single byte from an arbitrary address.

EESequentialRead Read a string of data.

AckI2C

Function: Generate I2C bus Acknowledge condition.

Include: i2c.h

Prototype: void AckI2C(void);

Remarks: This function generates an I2C bus Acknowledge condition.

File Name: acki2c.c
apRNOVT^-page 24  2002 Microchip Technology Inc.

Hardware Peripheral Functions
CloseI2C

Function: Disable the SSP module.

Include: i2c.h

Prototype: void CloseI2C(void);

Remarks: This function disables the SSP module.

File Name: closei2c.c

DataRdyI2C

Function: Is data available in the I2C buffer?

Include: i2c.h

Prototype: unsigned char DataRdyI2C(void);

Remarks: Determines if there is a byte to be read in the SSP buffer.

Return Value: 1 if there is data in the SSP buffer

0 if there is no data in the SSP buffer

File Name: dtrdyi2c.c

Code Example: if (DataRdyI2C())
{
 var = getcI2C();
}

getcI2C

See ReadI2C.

getsI2C

Function: Read a fixed length string from the I2C bus operating in master

I2C mode.

Include: i2c.h

Prototype: unsigned char getsI2C(
 unsigned char * rdptr,
 unsigned char length);

Arguments: rdptr
Character type pointer to PICmicro RAM for storage of data

read from I2C device.
length
Number of bytes to read from I2C device.

Remarks: This routine reads a predefined data string length from the I2C

bus.

Return Value: 0 if all bytes have been sent

-1 if a bus collision has occurred

File Name: getsi2c.c

Code Example: unsigned char string[15];
getsI2C(string, 15);
 2002 Microchip Technology Inc. apRNOVT^-page 25

MPLAB® C18 C Compiler Libraries

IdleI2C

Function: Loop until I2C bus is IDLE.

Include: i2c.h

Prototype: void IdleI2C(void);

Remarks: This function checks the state of the I2C peripheral and waits for

the bus to become available. The IdleI2C function is required

since the hardware I2C peripheral does not allow for spooling of

bus sequences. The I2C peripheral must be in an IDLE state

before an I2C operation can be initiated or a write collision will

be generated.

File Name: idlei2c.c

NotAckI2C

Function: Generate I2C bus Not Acknowledge condition.

Include: i2c.h

Prototype: void NotAckI2C(void);

Remarks: This function generates an I2C bus Not Acknowledge condition.

File Name: noacki2c.c

OpenI2C

Function: Configure the SSP module.

Include: i2c.h

Prototype: void OpenI2C(unsigned char sync_mode,
 unsigned char slew);

Arguments: sync_mode
One of the following values, defined in i2c.h:

SLAVE_7 I2C Slave mode, 7-bit address

SLAVE_10 I2C Slave mode, 10-bit address

MASTER I2C Master mode

slew
One of the following values, defined in i2c.h:

SLEW_OFF Slew rate disabled for 100 kHz mode

SLEW_ON Slew rate enabled for 400 kHz mode

Remarks: OpenI2C resets the SSP module to the POR state and then

configures the module for Master/Slave mode and the selected

slew rate.

File Name: openi2c.c

Code Example: OpenI2C(MASTER, SLEW_ON);

putcI2C

See WriteI2C.
apRNOVT^-page 26  2002 Microchip Technology Inc.

Hardware Peripheral Functions
putsI2C

Function: Write a data string to the I2C bus operating in either Master or

Slave mode.

Include: i2c.h

Prototype: unsigned char putsI2C(
 unsigned char *wrptr);

Arguments: wrptr
Pointer to data that will be written to the I2C bus.

Remarks: This routine writes a data string to the I2C bus until a null

character is reached. The null character itself is not transmitted.

This routine can operate in both Master or Slave mode.

Return Value: Master I2C Mode:

0 if the null character was reached in the data string

-2 if the slave I2C device responded with a Not Ack

-3 if a write collision occurred

Slave I2C mode:

0 if the null character was reached in the data string

-2 if the master I2C device responded with a Not Ack which

terminated the data transfer

File Name: putsi2c.c

Code Example: unsigned char string[] = “data to send”;
putsI2C(string);

ReadI2C
getcI2C

Function: Read a single byte from the I2C bus.

Include: i2c.h

Prototype: unsigned char ReadI2C (void);

Remarks: This function reads in a single byte from the I2C bus.

Return Value: The data byte read from the I2C bus.

File Name: readi2c.c

Code Example: unsigned char value;
value = ReadI2C();

RestartI2C

Function: Generate an I2C bus Restart condition.

Include: i2c.h

Prototype: void RestartI2C(void);

Remarks: This function generates an I2C bus Restart condition.

File Name: rstrti2c.c
 2002 Microchip Technology Inc. apRNOVT^-page 27

MPLAB® C18 C Compiler Libraries
StartI2C

Function: Generate an I2C bus START condition.

Include: i2c.h

Prototype: void StartI2C(void);

Remarks: This function generates a I2C bus START condition.

File Name: starti2c.c

StopI2C

Function: Generate I2C bus STOP condition.

Include: i2c.h

Prototype: void StopI2C(void);

Remarks: This function generates an I2C bus STOP condition.

File Name: stopi2c.c

WriteI2C
putcI2C

Function: Write a single byte to the I2C bus device.

Include: i2c.h

Prototype: unsigned char WriteI2C(
 unsigned char data_out);

Arguments: data_out
A single data byte to be written to the I2C bus device.

Remarks: This function writes out a single data byte to the I2C bus device.

Return Value: 0 if the write was successful

-1 if there was a write collision

File Name: writei2c.c

Code Example: WriteI2C(‘a’);
apRNOVT^-page 28  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.4.2 EE Memory Device Interface Function Descriptions

EEAckPolling

Function: Generate the Acknowledge polling sequence for Microchip EE

I2C memory devices.

Include: i2c.h

Prototype: unsigned char EEAckPolling(
 unsigned char control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function is used to generate the Acknowledge polling

sequence for EE I2C memory devices that utilize Acknowledge

polling.

Return Value: 0 if there were no errors

-1 if there was a bus collision error

-3 if there was a write collision error

File Name: i2ceeap.c

Code Example: temp = EEAckPolling(0xA0);

EEByteWrite

Function: Write a single byte to the I2C bus.

Include: i2c.h

Prototype: unsigned char EEByteWrite(
 unsigned char control,
 unsigned char address,
 unsigned char data);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
data
Data to write to EEPROM address specified in function

parameter address.

Remarks: This function writes a single data byte to the I2C bus. This

routine can be used for any Microchip I2C EE memory device

which requires only 1 byte of address information.

Return Value: 0 if there were no errors

-1 if there was a bus collision error

-2 if there was a NOT ACK error

-3 if there was a write collision error

File Name: i2ceebw.c

Code Example: temp = EEByteWrite(0xA0, 0x30, 0xA5);
 2002 Microchip Technology Inc. apRNOVT^-page 29

MPLAB® C18 C Compiler Libraries
EECurrentAddRead

Function: Read a single byte from the I2C bus.

Include: i2c.h

Prototype: unsigned int EECurrentAddRead(
 unsigned char control);

Arguments: control
EEPROM control / bus device select address byte.

Remarks: This function reads in a single byte from the I2C bus. The

address location of the data to read is that of the current pointer

within the I2C EE device. The memory device contains an

address counter that maintains the address of the last word

accessed, incremented by one.

Return Value: -1 if a bus collision error occurred

-2 if a NOT ACK error occurred

-3 if a write collision error occurred

Otherwise, the result is returned as an unsigned 16-bit quantity.

Since the buffer itself is only 8-bits wide, this means that the

Most Significant Byte will be zero and the Least Significant Byte

will contain the read buffer contents.

File Name: i2ceecar.c

Code Example: temp = EECurrentAddRead(0xA1);

EEPageWrite

Function: Write a string of data to the EE device from the I2C bus.

Include: i2c.h

Prototype: unsigned char EEPageWrite(
 unsigned char control,
 unsigned char address,
 unsigned char * wrptr);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
wrptr
Character type pointer in PICmicro RAM. The data objects

pointed to by wrptr will be written to the EE device.

Remarks: This function writes a null terminated string of data to the I2C EE

memory device. The null character itself is not transmitted.

Return Value: 0 if there were no errors

-1 if there was a bus collision error

-2 if there was a NOT ACK error

-3 if there was a write collision error

File Name: i2ceepw.c

Code Example: temp = EEPageWrite(0xA0, 0x70, wrptr);
apRNOVT^-page 30  2002 Microchip Technology Inc.

Hardware Peripheral Functions
EERandomRead

Function: Read a single byte from the I2C bus.

Include: i2c.h

Prototype: unsigned int EERandomRead(
 unsigned char control,
 unsigned char address);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.

Remarks: This function reads in a single byte from the I2C bus. The

routine can be used for Microchip I2C EE memory devices

which only require 1 byte of address information.

Return Value: The return value contains the value read in the Least Significant

Byte and the error condition in the Most Significant Byte. The

error condition is:

-1 if there was a bus collision error

-2 if there was a NOT ACK error

-3 if there was a write collision error

File Name: i2ceerr.c

Code Example: unsigned int temp;
temp = EERandomRead(0xA0,0x30);

EESequentialRead

Function: Read a string of data from the I2C bus.

Include: i2c.h

Prototype: unsigned char EESequentialRead(
 unsigned char control,
 unsigned char address,
 unsigned char * rdptr,
 unsigned char length);

Arguments: control
EEPROM control / bus device select address byte.
address
EEPROM internal address location.
rdptr
Character type pointer to PICmicro RAM area for placement of

data read from EEPROM device.
length
Number of bytes to read from EEPROM device.

Remarks: This function reads in a predefined string length of data from the

I2C bus. The routine can be used for Microchip I2C EE memory

devices which only require 1 byte of address information.

Return Value: 0 if there were no errors

-1 if there was a bus collision error

-2 if there was a NOT ACK error

-3 if there was a write collision error
 2002 Microchip Technology Inc. apRNOVT^-page 31

MPLAB® C18 C Compiler Libraries
2.4.3 Example of Use

The following is a simple code example illustrating the SSP module configured for I2C

master communication. The routine illustrates I2C communications with a Microchip

24LC01B I2C EE Memory Device.

#include "p18cxx.h"
#include "i2c.h"

unsigned char arraywr[] = {1,2,3,4,5,6,7,8,0};
unsigned char arrayrd[20];

//***
void main(void)
{
 OpenI2C(MASTER, SLEW_ON);// Initialize I2C module
 SSPADD = 9; //400Khz Baud clock(9) @16MHz
 //100khz Baud clock(39) @16MHz

 while(1)
 {
 EEByteWrite(0xA0, 0x30, 0xA5);
 EEAckPolling(0xA0);
 EECurrentAddRead(0xA0);
 EEPageWrite(0xA0, 0x70, arraywr);
 EEAckPolling(0xA0);
 EESequentialRead(0xA0, 0x70, arrayrd, 20);
 EERandomRead(0xA0,0x30);
 }
}

File Name: i2ceesr.c

Code Example: unsigned char err;
err = EESequentialRead(0xA0,
 0x70,
 rdptr,
 15);

EESequentialRead (Continued)
apRNOVT^-page 32  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.5 I/O PORT FUNCTIONS

PORTB is supported with the following functions:

2.5.1 Function Descriptions

Function Description

ClosePORTB Disable the interrupts and internal pull-up resistors for PORTB.

CloseRBxINT Disable interrupts for PORTB pin x .

DisablePullups Disable the internal pull-up resistors on PORTB.

EnablePullups Enable the internal pull-up resistors on PORTB.

OpenPORTB Configure the interrupts and internal pull-up resistors on PORTB.

OpenRBxINT Enable interrupts for PORTB pin x .

ClosePORTB

Function: Disable the interrupts and internal pull-up resistors for PORTB.

Include: portb.h

Prototype: void ClosePORTB(void);

Remarks: This function disables the PORTB interrupt on change and the

internal pull-up resistors.

File Name: pbclose.c

CloseRB0INT
CloseRB1INT
CloseRB2INT

Function: Disable the interrupts for the specified PORTB pin.

Include: portb.h

Prototype: void CloseRB0INT(void);
void CloseRB1INT(void);
void CloseRB2INT(void);

Remarks: This function disables the PORTB interrupt-on-change.

File Name: rb0close.c
rb1close.c
rb2close.c

DisablePullups

Function: Disable the internal pull-up resistors on PORTB.

Include: portb.h

Prototype: void DisablePullups(void);

Remarks: This function disables the internal pull-up resistors on PORTB.

File Name: pulldis.c
 2002 Microchip Technology Inc. apRNOVT^-page 33

MPLAB® C18 C Compiler Libraries
EnablePullups

Function: Enable the internal pull-up resistors on PORTB.

Include: portb.h

Prototype: void EnablePullups(void);

Remarks: This function enables the internal pull-up resistors on PORTB.

File Name: pullen.c

OpenPORTB

Function: Configure the interrupts and internal pull-up resistors on

PORTB.

Include: portb.h

Prototype: void OpenPORTB(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file portb.h.

Interrupt-on-Change:

PORTB_CHANGE_INT_ON Interrupt enabled

PORTB_CHANGE_INT_OFF Interrupt disabled

Enable Pullups:

PORTB_PULLUPS_ON pull-up resistors enabled

PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-up

resistors on PORTB.

File Name: pbopen.c

Code Example: OpenPORTB(PORTB_CHANGE_INT_ON & PORTB_PULLUPS_ON);

OpenRB0INT
OpenRB1INT
OpenRB2INT

Function: Enable interrupts for the specified PORTB pin.

Include: portb.h

Prototype: void OpenRB0INT(unsigned char config);
void OpenRB1INT(unsigned char config);
void OpenRB2INT(unsigned char config);
apRNOVT^-page 34  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file portb.h.

Interrupt-on-Change:

PORTB_CHANGE_INT_ON Interrupt enabled

PORTB_CHANGE_INT_OFF Interrupt disabled

Interrupt on Edge:

RISING_EDGE_INT Interrupt on rising edge

FALLING_EDGE_INT Interrupt on falling edge

Enable Pullups:

PORTB_PULLUPS_ON pull-up resistors enabled

PORTB_PULLUPS_OFF pull-up resistors disabled

Remarks: This function configures the interrupts and internal pull-up

resistors on PORTB.

File Name: rb0open.c
rb1open.c
rb2open.c

Code Example: OpenRB0INT(PORTB_CHANGE_INT_ON &
PORTB_CHANGE_INT_ON & RISING_EDGE_INT &
PORTB_PULLUPS_ON);

OpenRB0INT
OpenRB1INT
OpenRB2INT (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 35

MPLAB® C18 C Compiler Libraries
2.6 MICROWIRE® FUNCTIONS

Microwire communication is supported with the following functions:

2.6.1 Function Descriptions

Function Description

CloseMwire Disable the SSP module used for Microwire communication.

DataRdyMwire Indicate completion the internal write cycle.

getcMwire Read a byte from the Microwire device.

getsMwire Read a string from the Microwire device.

OpenMwire Configure the SSP module for Microwire use.

putcMwire Write a byte to the Microwire device.

ReadMwire Read a byte from the Microwire device.

WriteMwire Write a byte to the Microwire device.

CloseMwire

Function: Disable the SSP module.

Include: mwire.h

Prototype: void CloseMwire(void);

Remarks: Pin I/O returns under control of the TRISC and LATC register

settings.

File Name: closmwir.c

DataRdyMwire

Function: Indicate whether the Microwire device has completed the

internal write cycle.

Include: mwire.h

Prototype: unsigned char DataRdyMwire(void);

Remarks: Determines if Microwire device is ready.

Return Value: 1 if the Microwire device is ready

0 if the internal write cycle is not complete or a bus error

occurred

File Name: drdymwir.c

Code Example: while (!DataRdyMwire());

getcMwire

See ReadMwire.
apRNOVT^-page 36  2002 Microchip Technology Inc.

Hardware Peripheral Functions
getsMwire

Function: Read a string from the Microwire device.

Include: mwire.h

Prototype: void getsMwire(unsigned char * rdptr,
 unsigned char length);

Arguments: rdptr
Pointer to PICmicro RAM for placement of data read from

Microwire device.
length
Number of bytes to read from Microwire device.

Remarks: This function is used to read a predetermined length of data

from a Microwire device. Before using this function, a READ

command with the appropriate address must be issued.

File Name: getsmwir.c

Code Example: unsigned char arryrd[LENGTH];
putcMwire(READ);
putcMwire(address);
getsMwire(arrayrd, LENGTH);

OpenMwire

Function: Configure the SSP module.

Include: mwire.h

Prototype: void OpenMwire(
 unsigned char sync_mode);

Arguments: sync_mode
One of the following values defined in mwire.h:

Fosc_4 clock = FOSC/4

Fosc_16 clock = FOSC/16

Fosc_64 clock = FOSC/64

Fosc_TMR2 clock = TMR2 output/2

Remarks: OpenMwire resets the SSP module to the POR state and then

configures the module for Microwire communications.

File Name: openmwir.c

Code Example: OpenMwire(FOSC_16);

putcMwire

See WriteMwire.
 2002 Microchip Technology Inc. apRNOVT^-page 37

MPLAB® C18 C Compiler Libraries
ReadMwire
getcMwire

Function: Read a byte from a Microwire device.

Include: mwire.h

Prototype: unsigned char ReadMwire(
 unsigned char high_byte,
 unsigned char low_byte);

Arguments: high_byte
First byte of 16-bit instruction word.
low_byte
Second byte of 16-bit instruction word.

Remarks: This function reads in a single byte from a Microwire device. The

START bit, opcode and address compose the high and low

bytes passed into this function.

Return Value: The return value is the data byte read from the Microwire

device.

File Name: readmwir.c

Code Example: ReadMwire(0x03, 0x00);

WriteMwire
putcMwire

Function: This function is used to write out a single data byte (one

character).

Include: mwire.h

Prototype: unsigned char WriteMwire(
 unsigned char data_out);

Arguments: data_out
Single byte of data to write to Microwire device.

Remarks: This function writes out single data byte to a Microwire device

utilizing the SSP module.

Return Value: 0 if the write was successful

-1 if there was a write collision

File Name: writmwir.c

Code Example: WriteMwire(0x55);
apRNOVT^-page 38  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.6.2 Example of Use

The following is a simple code example illustrating the SSP module communicating

with a Microchip 93LC66 Microwire EE Memory Device.

#include "p18cxxx.h"
#include "mwire.h"

// 93LC66 x 8
// FUNCTION Prototypes
void main(void);
void ew_enable(void);
void erase_all(void);
void busy_poll(void);
void write_all(unsigned char data);
void byte_read(unsigned char address);
void read_mult(unsigned char address,
 unsigned char *rdptr,
 unsigned char length);
void write_byte(unsigned char address,
 unsigned char data);

// VARIABLE Definitions
unsigned char arrayrd[20];
unsigned char var;

// DEFINE 93LC66 MACROS -- see datasheet for details
#define READ 0x0C
#define WRITE 0x0A
#define ERASE 0x0E
#define EWEN1 0x09
#define EWEN2 0x80
#define ERAL1 0x09
#define ERAL2 0x00
#define WRAL1 0x08
#define WRAL2 0x80
#define EWDS1 0x08
#define EWDS2 0x00
#define W_CS LATCbits.LATC2

void main(void)
{
 TRISCbits.TRISC2 = 0;
 W_CS = 0; //ensure CS is negated
 OpenMwire(FOSC_16); //enable SSP perpiheral
 ew_enable(); //send erase/write enable
 write_byte(0x13, 0x34); //write byte (address,data)
 busy_poll();
 Nop();
 byte_read(0x13); //read single byte (address)
 read_mult(0x10, arrayrd, 10); //read multiple bytes
 erase_all(); //erase entire array
 CloseMwire(); //disable SSP peripheral
}

void ew_enable(void)
{
 W_CS = 1; //assert chip select
 putcMwire(EWEN1); //enable write command byte 1
 putcMwire(EWEN2); //enable write command byte 2
 W_CS = 0; //negate chip select
}

 2002 Microchip Technology Inc. apRNOVT^-page 39

MPLAB® C18 C Compiler Libraries
void busy_poll(void)
{
 W_CS = 1;
 while(! DataRdyMwire());
 W_CS = 0;
}

void write_byte(unsigned char address,
 unsigned char data)
{
 W_CS = 1;
 putcMwire(WRITE); //write command
 putcMwire(address); //address
 putcMwire(data); //write single byte
 W_CS = 0;
}

void byte_read(unsigned char address)
{
 W_CS = 1;
 getcMwire(READ,address); //read one byte
 W_CS = 0;
}

void read_mult(unsigned char address,
 unsigned char *rdptr,
 unsigned char length)
{
 W_CS = 1;
 putcMwire(READ); //read command
 putcMwire(address); //address (A7 - A0)
 getsMwire(rdptr, length); //read multiple bytes
 W_CS = 0;
}

void erase_all(void)
{
 W_CS = 1;
 putcMwire(ERAL1); //erase all command byte 1
 putcMwire(ERAL2); //erase all command byte 2
 W_CS = 0;
}

apRNOVT^-page 40  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.7 PULSE WIDTH MODULATION FUNCTIONS

The PWM peripheral is supported with the following functions:

Function Description

ClosePWMx Disable PWM channel x.

OpenPWMx Configure PWM channel x.

SetDCPWMx Write a new duty cycle value to PWM channel x.

SetOutputPWMx Sets the PWM output configuration bits for ECCP.

ClosePWM1
ClosePWM2

Function: Disable PWM channel.

Include: pwm.h

Prototype: void ClosePWM1(void);
void ClosePWM2(void);

Remarks: This function disables the specified PWM channel.

File Name: pw1close.c
pw2close.c

OpenPWM1
OpenPWM2

Function: Configure PWM channel.

Include: pwm.h

Prototype: void OpenPWM1(char period);
void OpenPWM2(char period);

Arguments: period
Can be any value from 0x00 to 0xff. This value determines the

PWM frequency by using the following formula:

PWM period = [(period) + 1] x 4 x TOSC x

TMR2 prescaler

Remarks: This function configures the specified PWM channel for period

and for time-base. PWM uses only Timer2.

In addition to opening the PWM, Timer2 must also be opened

with an OpenTimer2(...) statement before the PWM will

operate.

File Name: pw1open.c
pw2open.c

Code Example: OpenPWM1(0xff);
 2002 Microchip Technology Inc. apRNOVT^-page 41

MPLAB® C18 C Compiler Libraries
SetDCPWM1
SetDCPWM2

Function: Write a new duty cycle value to the specified PWM channel

duty-cycle registers.

Include: pwm.h

Prototype: void SetDCPWM1(unsigned int dutycycle);
void SetDCPWM2(unsigned int dutycycle);

Arguments: dutycycle
The value of dutycycle can be any 10-bit number. Only the lower

10-bits of dutycycle are written into the duty cycle registers. The

duty cycle, or more specifically the high time of the PWM

waveform, can be calculated from the following formula:

PWM x Duty cycle = (DCx<9:0>) x TOSC

where DCx<9:0> is the 10-bit value specified in the call to this

function.

Remarks: This function writes the new value for dutycycle to the specified

PWM channel duty cycle registers.

The maximum resolution of the PWM waveform can be

calculated from the period using the following formula:

Resolution (bits) = log(FOSC/Fpwm) / log(2)

File Name: pw1setdc.c
pw2setdc.c

Code Example: SetDCPWM1(0);

SetOutputPWM1
PIC18F1X20, PIC18F4X20

Function: Sets the PWM output configuration bits for ECCP.

Include: pwm.h

Prototype: void SetOutputPWM1 (unsigned char
outputconfig, unsigned char outputmode);

Arguments: outputconfig
The value of outputconfig can be any one of the following values

(defined in pwm.h):

SINGLE_OUT single output

FULL_OUT_FWD full-bridge output foward

HALF_OUT half-bridge output

FULL_OUT_REV full-bridge output reverse
outputmode
The value of outputmode can be any one of the following values

(defined in pwm.h):

PWM_MODE_1 P1A and P1C active high,

P1B and P1D active high

PWM_MODE_2 P1A and P1C active high,

P1B and P1D active low

PWM_MODE_3 P1A and P1C active low,

P1B and P1D active high

PWM_MODE_4 P1A and P1C active low,

P1B and P1D active low
apRNOVT^-page 42  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Remarks: This is only applicable to those devices with extended CCP

(ECCP).

File Name: pw1setoc.c

Code Example: SetOutputPWM1 (SINGLE_OUT, PWM_MODE_1);

SetOutputPWM1
PIC18F1X20, PIC18F4X20 (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 43

MPLAB® C18 C Compiler Libraries
2.8 SPI™ FUNCTIONS

SPI communication is supported with the following functions:

2.8.1 Function Descriptions

Function Description

CloseSPI Disable the SSP module used for SPI communications.

DataRdySPI Determine if a new value is available from the SPI buffer.

getcSPI Read a byte from the SPI bus.

getsSPI Read a string from the SPI bus.

OpenSPI Initialize the SSP module used for SPI communications.

putcSPI Write a byte to the SPI bus.

putsSPI Write a string to the SPI bus.

ReadSPI Read a byte from the SPI bus.

WriteSPI Write a byte to the SPI bus.

CloseSPI

Function: Disable the SSP module.

Include: spi.h

Prototype: void CloseSPI(void);

Remarks: This function disables the SSP module. Pin I/O returns under

the control of the TRISC and LATC Registers.

File Name: closespi.c

DataRdySPI

Function: Determine if the SSPBUF contains data.

Include: spi.h

Prototype: unsigned char DataRdySPI(void);

Remarks: This function determines if there is a byte to be read from the

SSPBUF register.

Return Value: 0 if there is no data in the SSPBUF register

1 if there is data in the SSPBUF register

File Name: dtrdyspi.c

Code Example: while (!DataRdySPI());

getcSPI

See ReadSPI.
apRNOVT^-page 44  2002 Microchip Technology Inc.

Hardware Peripheral Functions
getsSPI

Function: Read a string from the SPI bus.

Include: spi.h

Prototype: void getsSPI(unsigned char *rdptr,
 unsigned char length);

Arguments: rdptr
Pointer to location to store data read from SPI device.
length
Number of bytes to read from SPI device.

Remarks: This function reads in a predetermined data string length from

the SPI bus.

File Name: getsspi.c

Code Example: unsigned char wrptr(10);
getsSPI(wrptr, 10);

OpenSPI

Function: Initialize the SSP module.

Include: spi.h

Prototype: void OpenSPI(unsigned char sync_mode,
 unsigned char bus_mode,
 unsigned char smp_phase);

Arguments: sync_mode
One of the following values, defined in spi.h:

FOSC_4 SPI Master mode, clock = FOSC/4

FOSC_16 SPI Master mode, clock = FOSC/16

FOSC_64 SPI Master mode, clock = FOSC/64

FOSC_TMR2 SPI Master mode, clock = TMR2 output/2

SLV_SSON SPI Slave mode, /SS pin control enabled

SLV_SSOFF SPI Slave mode, /SS pin control disabled

bus_mode
One of the following values, defined in spi.h:

MODE_00 Setting for SPI bus Mode 0,0

MODE_01 Setting for SPI bus Mode 0,1

MODE_10 Setting for SPI bus Mode 1,0

MODE_11 Setting for SPI bus Mode 1,1

smp_phase
One of the following values, defined in spi.h:

SMPEND Input data sample at end of data out

SMPMID Input data sample at middle of data out

Remarks: This function sets up the SSP module for use with a SPI bus

device.

File Name: openspi.c

Code Example: OpenSPI(FOSC_16, MODE_00, SMPEND);
 2002 Microchip Technology Inc. apRNOVT^-page 45

MPLAB® C18 C Compiler Libraries

putcSPI

See WriteSPI.

putsSPI

Function: Write a string to the SPI bus.

Include: spi.h

Prototype: void putsSPI(unsigned char *wrptr);

Arguments: wrptr
Pointer to value that will be written to the SPI bus.

Remarks: This function writes out a data string to the SPI bus device. The

routine is terminated by reading a null character in the data

string (the null character is not written to the bus).

File Name: putsspi.c

Code Example: unsigned char wrptr[] = “Hello!”;
putsSPI(wrptr);

ReadSPI
getcSPI

Function: Read a byte from the SPI bus.

Include: spi.h

Prototype: unsigned char ReadSPI(void);

Remarks: This function initiates a SPI bus cycle for the acquisition of a

byte of data.

Return Value: This function returns a byte of data read during a SPI read

cycle.

File Name: readspi.c

Code Example: char x;
x = ReadSPI();

WriteSPI
putcSPI

Function: Write a byte to the SPI bus.

Include: spi.h

Prototype: unsigned char WriteSPI(
 unsigned char data_out);

Arguments: data_out
Value to be written to the SPI bus.

Remarks: This function writes a single data byte out and then checks for a

write collision.

Return Value: 0 if no write collision occurred

-1 if a write collision occurred

File Name: writespi.c

Code Example: WriteSPI(‘a’);
apRNOVT^-page 46  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.8.2 Example of Use

The following example demonstrates the use of SSP module to communicate with a

Microchip 24C080 SPI EE Memory Device.

#include <p18cxxx.h>
#include <spi.h>

// FUNCTION Prototypes
void main(void);
void set_wren(void);
void busy_polling(void);
unsigned char status_read(void);
void status_write(unsigned char data);
void byte_write(unsigned char addhigh,
 unsigned char addlow,
 unsigned char data);
void page_write(unsigned char addhigh,
 unsigned char addlow,
 unsigned char *wrptr);
void array_read(unsigned char addhigh,
 unsigned char addlow,
 unsigned char *rdptr,
 unsigned char count);
unsigned char byte_read(unsigned char addhigh,
 unsigned char addlow);

// VARIABLE Definitions
unsigned char arraywr[] = {1,2,3,4,5,6,7,8,9,10,11,
 12,13,14,15,16,0};

//24C040/080/160 page write size
unsigned char arrayrd[16];
unsigned char var;

#define SPI_CS LATCbits.LATC2

//**
void main(void)
{
 TRISCbits.TRISC2 = 0;
 SPI_CS = 1; // ensure SPI memory device
 // Chip Select is reset
 OpenSPI(FOSC_16, MODE_00, SMPEND);
 set_wren();
 status_write(0);

 busy_polling();
 set_wren();
 byte_write(0x00, 0x61, 'E');

 busy_polling();
 var = byte_read(0x00, 0x61);

 set_wren();
 page_write(0x00, 0x30, arraywr);
 busy_polling();

 array_read(0x00, 0x30, arrayrd, 16);
 var = status_read();
 2002 Microchip Technology Inc. apRNOVT^-page 47

MPLAB® C18 C Compiler Libraries
 CloseSPI();
 while(1);
}

void set_wren(void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_WREN); //send write enable command
 SPI_CS = 1; //negate chip select
}

void page_write (unsigned char addhigh,
 unsigned char addlow,
 unsigned char *wrptr)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 putsSPI(wrptr); //send data byte
 SPI_CS = 1; //negate chip select
}

void array_read (unsigned char addhigh,
 unsigned char addlow,
 unsigned char *rdptr,
 unsigned char count)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 getsSPI(rdptr, count); //read multiple bytes
 SPI_CS = 1;
}

void byte_write (unsigned char addhigh,
 unsigned char addlow,
 unsigned char data)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_WRITE); //send write command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = putcSPI(data); //send data byte
 SPI_CS = 1; //negate chip select
}

unsigned char byte_read (unsigned char addhigh,
 unsigned char addlow)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_READ); //send read command
 var = putcSPI(addhigh); //send high byte of address
 var = putcSPI(addlow); //send low byte of address
 var = getcSPI(); //read single byte
 SPI_CS = 1;
 return (var);
}

apRNOVT^-page 48  2002 Microchip Technology Inc.

Hardware Peripheral Functions
unsigned char status_read (void)
{
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_RDSR); //send read status command
 var = getcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 return (var);
}

void status_write (unsigned char data)
{
 SPI_CS = 0;
 var = putcSPI(SPI_WRSR); //write status command
 var = putcSPI(data); //status byte to write
 SPI_CS = 1; //negate chip select
}

void busy_polling (void)
{
 do
 {
 SPI_CS = 0; //assert chip select
 var = putcSPI(SPI_RDSR); //send read status command
 var = fetcSPI(); //read data byte
 SPI_CS = 1; //negate chip select
 } while (var & 0x01); //stay in loop until !busy
}

 2002 Microchip Technology Inc. apRNOVT^-page 49

MPLAB® C18 C Compiler Libraries
2.9 TIMER FUNCTIONS

The timer peripherals are supported with the following functions:

2.9.1 Function Descriptions

Function Description

CloseTimerx Disable timer x.

OpenTimerx Configure timer x.

ReadTimerx Read the value of timer x.

WriteTimerx Write a value into timer x.

CloseTimer0
CloseTimer1
CloseTimer2
CloseTimer3
CloseTimer4

Function: Disable the specified timer.

Include: timers.h

Prototype: void CloseTimer0(void);
void CloseTimer1(void);
void CloseTimer2(void);
void CloseTimer3(void);
void CloseTimer4(void);

Remarks: This function disables the interrupt and the specified timer.

File Name: t0close.c
t1close.c
t2close.c
t3close.c
t4close.c

OpenTimer0

Function: Configure timer0.

Include: timers.h

Prototype: void OpenTimer0(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file timers.h.

Enable Timer0 Interrupt:

TIMER_INT_ON Interrupt enabled

TIMER_INT_OFF Interrupt disabled
apRNOVT^-page 50  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Timer Width:

T0_8BIT 8-bit mode

T0_16BIT 16-bit mode

Clock Source:

T0_SOURCE_EXT External clock source (I/O pin)

T0_SOURCE_INT Internal clock source (TOSC)

External Clock Trigger (for T0_SOURCE_EXT):

T0_EDGE_FALL External clock on falling edge

T0_EDGE_RISE External clock on rising edge

Prescale Value:

T0_PS_1_1 1:1 prescale

T0_PS_1_2 1:2 prescale

T0_PS_1_4 1:4 prescale

T0_PS_1_8 1:8 prescale

T0_PS_1_16 1:16 prescale

T0_PS_1_32 1:32 prescale

T0_PS_1_64 1:64 prescale

T0_PS_1_128 1:128 prescale

T0_PS_1_256 1:256 prescale

Remarks: This function configures timer0 according to the options

specified.

File Name: t0open.c

Code Example: OpenTimer0(TIMER_INT_OFF &
 T0_8BIT &
 T0_SOURCE_INT &
 T0_PS_1_32);

OpenTimer1

Function: Configure timer1.

Include: timers.h

Prototype: void OpenTimer1(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file timers.h.

Enable Timer1 Interrupt:

TIMER_INT_ON Interrupt enabled

TIMER_INT_OFF Interrupt disabled

OpenTimer0 (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 51

MPLAB® C18 C Compiler Libraries
Timer Width:

T1_8BIT_RW 8-bit mode

T1_16BIT_RW 16-bit mode

Clock Source:

T1_SOURCE_EXT External clock source (I/O pin)

T1_SOURCE_INT Internal clock source (TOSC)

Prescaler:

T1_PS_1_1 1:1 prescale

T1_PS_1_2 1:2 prescale

T1_PS_1_4 1:4 prescale

T1_PS_1_8 1:8 prescale

Oscillator Use:

T1_OSC1EN_ON Enable Timer1 oscillator

T1_OSC1EN_OFF Disable Timer1 oscillator

Synchronize Clock Input:

T1_SYNC_EXT_ON Sync external clock input

T1_SYNC_EXT_OFF Don’t sync external clock input

Remarks: This function configures timer1 according to the options

specified.

File Name: t1open.c

Code Example: OpenTimer1(TIMER_INT_ON &
 T1_8BIT_RW &
 T1_SOURCE_EXT &
 T1_PS_1_1 &
 T1_OSC1EN_OFF &
 T1_SYNC_EXT_OFF &
 T1_SOURCE_CCP);

OpenTimer2

Function: Configure timer2.

Include: timers.h

Prototype: void OpenTimer2(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file timers.h.

Enable Timer2 Interrupt:

TIMER_INT_ON Interrupt enabled

TIMER_INT_OFF Interrupt disabled

Prescale Value:

T2_PS_1_1 1:1 prescale

T2_PS_1_4 1:4 prescale

T2_PS_1_16 1:16 prescale

Postscale Value:

T2_POST_1_1 1:1 postscale

T2_POST_1_2 1:2 postscale

 : :

T2_POST_1_15 1:15 postscale

T2_POST_1_16 1:16 postscale

OpenTimer1 (Continued)
apRNOVT^-page 52  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Remarks: This function configures timer2 according to the options

specified.

File Name: t2open.c

Code Example: OpenTimer2(TIMER_INT_OFF &
 T2_PS_1_1 &
 T2_POST_1_8);

OpenTimer3

Function: Configure timer3.

Include: timers.h

Prototype: void OpenTimer3(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file timers.h.

Enable Timer3 Interrupt:

TIMER_INT_ON Interrupt enabled

TIMER_INT_OFF Interrupt disabled

Timer Width:

T3_8BIT_RW 8-bit mode

T3_16BIT_RW 16-bit mode

Clock Source:

T3_SOURCE_EXT External clock source (I/O pin)

T3_SOURCE_INT Internal clock source (TOSC)

Prescale Value:

T3_PS_1_1 1:1 prescale

T3_PS_1_2 1:2 prescale

T3_PS_1_4 1:4 prescale

T3_PS_1_8 1:8 prescale

Synchronize Clock Input:

T3_SYNC_EXT_ON Sync external clock input

T3_SYNC_EXT_OFF Don’t sync external clock input

Use With CCP:

Use With CCP:

T1_SOURCE_CCP Timer1 source for both CCP’s

T3_SOURCE_CCP Timer3 source for both CCP’s

T1_CCP1_T3_CCP2 Timer1 source for CCP1 and

Timer3 source for CCP2

Remarks: This function configures timer3 according to the options

specified.

File Name: t3open.c

Code Example: OpenTimer3(TIMER_INT_ON &
 T3_8BIT_RW &
 T3_SOURCE_EXT &
 T3_PS_1_1 &
 T3_OSC1EN_OFF &
 T3_SYNC_EXT_OFF &
 T3_SOURCE_CCP);

OpenTimer2 (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 53

MPLAB® C18 C Compiler Libraries
OpenTimer4

Function: Configure timer4.

Include: timers.h

Prototype: void OpenTimer4(unsigned char config);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file timers.h.

Enable Timer4 Interrupt:

TIMER_INT_ON Interrupt enabled

TIMER_INT_OFF Interrupt disabled

Prescale Value:

T4_PS_1_1 1:1 prescale

T4_PS_1_4 1:4 prescale

T4_PS_1_16 1:16 prescale

Postscale Value:

T4_POST_1_1 1:1 postscale

T4_POST_1_2 1:2 postscale

 : :

T4_POST_1_15 1:15 postscale

T4_POST_1_16 1:16 postscale

Remarks: This function configures timer4 according to the options

specified.

File Name: t4open.c

Code Example: OpenTimer4(TIMER_INT_OFF &
 T4_PS_1_1 &
 T4_POST_1_8);

ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
ReadTimer4

Function: Read the value of the specified timer.

Include: timers.h

Prototype: unsigned int ReadTimer0(void);
unsigned int ReadTimer1(void);
unsigned char ReadTimer2(void);
unsigned int ReadTimer3(void);
unsigned char ReadTimer4(void);
apRNOVT^-page 54  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Remarks: These functions read the value of the respective timer

register(s).

Timer0: TMR0L,TMR0H

Timer1: TMR1L,TMR1H

Timer2: TMR2

Timer3: TMR3L,TMR3H

Timer4: TMR4

Note: When using a timer in 8-bit mode that may be configured

in 16-bit mode (e.g., timer0), the upper byte is not guaranteed to

be zero. The user may wish to cast the result to a char for

correct results. For example:

 // Example of reading a 16-bit result
 // from a 16-bit timer operating in
 // 8-bit mode:
 unsigned int result;
 result = (unsigned char) ReadTimer0();

Return Value: The current value of the timer.

File Name: t0read.c
t1read.c
t2read.c
t3read.c
t4read.c

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
WriteTime4

Function: Write a value into the specified timer.

Include: timers.h

Prototype: void WriteTimer0(unsigned int timer);
void WriteTimer1(unsigned int timer);
void WriteTimer2(unsigned char timer);
void WriteTimer3(unsigned int timer);
void WriteTimer4(unsigned char timer);

Arguments: timer
The value that will be loaded into the specified timer.

Remarks: These functions write a value to the respective timer register(s):

Timer0: TMR0L,TMR0H

Timer1: TMR1L,TMR1H

Timer2: TMR2

Timer3: TMR3L,TMR3H

Timer4: TMR4

ReadTimer0
ReadTimer1
ReadTimer2
ReadTimer3
ReadTimer4 (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 55

MPLAB® C18 C Compiler Libraries
2.9.2 Example of Use

#include <p18C452.h>
#include <timers.h>
#include <usart.h>
#include <stdlib.h>

void main(void)
{
 int result;
 char str[7];

 // configure timer0
 OpenTimer0(TIMER_INT_OFF &
 T0_SOURCE_INT &
 T0_PS_1_32);

 // configure USART
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX,
 25);

 while(1)
 {
 while(! PORTBbits.RB3); // wait for RB3 high
 result = ReadTimer0(); // read timer

 if(result > 0xc000) // exit loop if value
 break; // is out of range

 WriteTimer0(0); // restart timer

 ultoa(result, str); // convert timer to string
 putsUSART(str); // print string
 }

 CloseTimer0(); // close modules
 CloseUSART();
}

File Name: t0write.c
t1write.c
t2write.c
t3write.c
t4write.c

Code Example: WriteTimer0(10000);

WriteTimer0
WriteTimer1
WriteTimer2
WriteTimer3
WriteTime4 (Continued)
apRNOVT^-page 56  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.10 USART FUNCTIONS

The following routines are provided for devices with a single USART peripheral:

The following routines are provided for devices with multiple USART peripherals:

Function Description

BusyUSART Is the USART transmitting?

CloseUSART Disable the USART.

DataRdyUSART Is data available in the USART read buffer?

getcUSART Read a byte from the USART.

getsUSART Read a string from the USART.

OpenUSART Configure the USART.

putcUSART Write a byte to the USART.

putsUSART Write a string from data memory to the USART.

putrsUSART Write a string from program memory to the USART.

ReadUSART Read a byte from the USART.

WriteUSART Write a byte to the USART.

Function Description

BusyxUSART Is USART x transmitting?

ClosexUSART Disable USART x.

DataRdyxUSART Is data available in the read buffer of USART x?

getcxUSART Read a byte from USART x.

getsxUSART Read a string from USART x.

OpenxUSART Configure USART x.

putcxUSART Write a byte to USART x.

putsxUSART Write a string from data memory to USART x.

putrsxUSART Write a string from program memory to USART x.

ReadxUSART Read a byte from USART x.

WritexUSART Write a byte to USART x.
 2002 Microchip Technology Inc. apRNOVT^-page 57

MPLAB® C18 C Compiler Libraries
2.10.1 Function Descriptions

BusyUSART
Busy1USART
Busy2USART

Function: Is the USART transmitting?

Include: usart.h

Prototype: char BusyUSART(void);
char Busy1USART(void);
char Busy2USART(void);

Remarks: Returns a value indicating if the USART transmitter is currently

busy. This function should be used prior to commencing a new

transmission.

BusyUSART should be used on parts with a single USART

peripheral. Busy1USART and Busy2USART should be used on

parts with multiple USART peripherals.

Return Value: 0 if the USART transmitter is idle

1 if the USART transmitter is in use

File Name: ubusy.c
u1busy.c
u2busy.c

Code Example: while (BusyUSART());

CloseUSART
Close1USART
Close2USART

Function: Disable the specified USART.

Include: usart.h

Prototype: void CloseUSART(void);
void Close1USART(void);
void Close2USART(void);

Remarks: This function disables the interrupts, transmitter and receiver for

the specified USART.

CloseUSART should be used on parts with a single USART

peripheral. Close1USART and Close2USART should be used on

parts with multiple USART peripherals.

File Name: uclose.c
u1close.c
u2close.c
apRNOVT^-page 58  2002 Microchip Technology Inc.

Hardware Peripheral Functions
DataRdyUSART
DataRdy1USART
DataRdy2USART

Function: Is data available in the read buffer?

Include: usart.h

Prototype: char DataRdyUSART(void);
char DataRdy1USART(void);
char DataRdy2USART(void);

Remarks: This function returns the status of the RCIF flag bit in the PIR

register.

DataRdyUSART should be used on parts with a single USART

peripheral. DataRdy1USART and DataRdy2USART should be used

on parts with multiple USART peripherals.

Return Value: 1 if data is available

0 if data is not available

File Name: udrdy.c
u1drdy.c
u2drdy.c

Code Example: while (!DataRdyUSART());

getcUSART
getc1USART
getc2USART

See ReadUSART

getsUSART
gets1USART
gets2USART

Function: Read a fixed-length string of characters from the specified

USART.

Include: usart.h

Prototype: void getsUSART (char * buffer,
 unsigned char len);
void gets1USART (char * buffer,
 unsigned char len);
void gets2USART (char * buffer,
 unsigned char len);

Arguments: buffer
A pointer to the location where incoming characters are to be

stored.
len
The number of characters to read from the USART.

Remarks: This function waits for and reads len number of characters out of

the specified USART. There is no time out when waiting for

characters to arrive.

getsUSART should be used on parts with a single USART

peripheral. gets1USART and gets2USART should be used on

parts with multiple USART peripherals.
 2002 Microchip Technology Inc. apRNOVT^-page 59

MPLAB® C18 C Compiler Libraries

File Name: ugets.c
u1gets.c
u2gets.c

Code Example: char inputstr[10];
getsUSART(inputstr, 5);

OpenUSART
Open1USART
Open2USART

Function: Configure the specified USART module.

Include: usart.h

Prototype: void OpenUSART(unsigned char config,
 char spbrg);
void Open1USART(unsigned char config,
 char spbrg);
void Open2USART(unsigned char config,
 char spbrg);

Arguments: config
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file usart.h.

Interrupt on Transmission:

USART_TX_INT_ON Transmit interrupt ON

USART_TX_INT_OFF Transmit interrupt OFF

Interrupt on Receipt:

USART_RX_INT_ON Receive interrupt ON

USART_RX_INT_OFF Receive interrupt OFF

USART Mode:

USART_ASYNCH_MODE Asynchronous Mode

USART_SYNCH_MODE Synchronous Mode

Transmission Width:

USART_EIGHT_BIT 8-bit transmit/receive

USART_NINE_BIT 9-bit transmit/receive

Slave/Master Select*:

USART_SYNC_SLAVE Synchronous Slave mode

USART_SYNC_MASTER Synchronous Master mode

Reception mode:

USART_SINGLE_RX Single reception

USART_CONT_RX Continuous reception

Baud rate*:

USART_BRGH_HIGH High baud rate

USART_BRGH_LOW Low baud rate

* Applies to Synchronous mode only

getsUSART
gets1USART
gets2USART (Continued)
apRNOVT^-page 60  2002 Microchip Technology Inc.

Hardware Peripheral Functions
spbrg
This is the value that is written to the baud rate generator

register which determines the baud rate at which the USART

operates. The formulas for baud rate are:

Asynchronous mode, high speed:

FOSC / (64 * (spbrg + 1))

Asynchronous mode, low speed:

FOSC / (16 * (spbrg + 1))

Synchronous mode:

FOSC / (4 * (spbrg + 1))

Where FOSC is the oscillator frequency.

Remarks: This function configures the USART module according to the

specified configuration options.

OpenUSART should be used on parts with a single USART

peripheral. Open1USART and Open2USART should be used on

parts with multiple USART peripherals.

File Name: uopen.c
u1open.c
u2open.c

Code Example: OpenUSART1(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH,
 25);

putcUSART
putc1USART
putc2USART

See WriteUSART

OpenUSART
Open1USART
Open2USART (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 61

MPLAB® C18 C Compiler Libraries
putsUSART
puts1USART
puts2USART
putrsUSART
putrs1USART
putrs2USART

Function: Writes a string of characters to the USART including the null

character.

Include: usart.h

Prototype: void putsUSART(char *data);
void puts1USART(char *data);
void puts2USART(char *data);
void putrsUSART(const rom char *data);
void putrs1USART(const rom char *data);
void putrs2USART(const rom char *data);

Arguments: data
Pointer to a null-terminated string of data.

Remarks: This function writes a string of data to the USART including the

null character.

Strings located in data memory should be used with the “puts”

versions of these functions.

Strings located in program memory, including string literals,

should be used with the “putrs” versions of these functions.

putsUSART and putrsUSART should be used on parts with a

single USART peripheral. The other functions should be used

on parts with multiple USART peripherals.

File Name: uputs.c
u1puts.c
u2puts.c
uputrs.c
u1putrs.c
u2putrs.c

Code Example: putrsUSART(“Hello World!”);

ReadUSART
Read1USART
Read2USART
getcUSART
getc1USART
getc2USART

Function: Read a byte (one character) out of the USART receive buffer,

including the 9th bit if enabled.

Include: usart.h

Prototype: char getcUSART(void);
char getc1USART(void);
char getc2USART(void);
char ReadUSART(void);
char Read1USART(void);
char Read2USART(void);
apRNOVT^-page 62  2002 Microchip Technology Inc.

Hardware Peripheral Functions
Remarks: This function reads a byte out of the USART receive buffer. The

status bits and the 9th data bits are saved in a union with the

following declaration:

 union USART
 {
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
 };

The 9th bit is read only if 9-bit mode is enabled. The status bits

are always read.

On a part with a single USART peripheral, the getcUSART and

ReadUSART functions should be used and the status information

is read into a variable named USART_Status which is of the type

USART described above.

On a part with multiple USART peripherals, the getcxUSART and

ReadxUSART functions should be used and the status

information is read into a variable named USARTx_Status which

is of the type USART described above.

Return Value: This function returns the next character in the USART receive

buffer.

File Name: uread.c
u1read.c
u2read.c

Code Example: int result;
result = ReadUSART();
result |= (unsigned int)
 USART_Status.RX_NINE << 8;

ReadUSART
Read1USART
Read2USART
getcUSART
getc1USART
getc2USART (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 63

MPLAB® C18 C Compiler Libraries
WriteUSART
Write1USART
Write2USART
putcUSART
putc1USART
putc2USART

Function: Write a byte (one character) to the USART transmit buffer,

including the 9th bit if enabled.

Include: usart.h

Prototype: void putcUSART(char data);
void putc1USART(char data);
void putc2USART(char data);
void WriteUSART(char data);
void Write1USART(char data);
void Write2USART(char data);

Arguments: data
The value to be written to the USART.

Remarks: This function writes a byte to the USART transmit buffer. If 9-bit

mode is enabled, the 9th bit is written from the field TX_NINE,

found in a variable of type USART:

 union USART
 {
 unsigned char val;
 struct
 {
 unsigned RX_NINE:1;
 unsigned TX_NINE:1;
 unsigned FRAME_ERROR:1;
 unsigned OVERRUN_ERROR:1;
 unsigned fill:4;
 };
 };

On a part with a single USART peripheral, the putcUSART and

WriteUSART functions should be used and the status register is

named USART_Status which is of the type USART described

above.

On a part with multiple USART peripherals, the putcxUSART and

WritexUSART functions should be used and the status register is

named named USARTx_Status which is of the type USART

described above.

File Name: uwrite.c
u1write.c
u2write.c

Code Example: unsigned int outval;
USART1_Status.TX_NINE = (outval & 0x0100)
 >> 8;
WriteUSART((char) outval);
apRNOVT^-page 64  2002 Microchip Technology Inc.

Hardware Peripheral Functions
2.10.2 Example of Use

#include <p18C452.h>
#include <usart.h>

void main(void)
{
 // configure USART
 OpenUSART(USART_TX_INT_OFF &
 USART_RX_INT_OFF &
 USART_ASYNCH_MODE &
 USART_EIGHT_BIT &
 USART_CONT_RX &
 USART_BRGH_HIGH,
 25);

 while(1)
 {
 while(! PORTAbits.RA0); //wait for RA0 high

 WriteUSART(PORTD); //write value of PORTD

 if(PORTD == 0x80) // check for termination
 break; // value
 }

 CloseUSART();
}

 2002 Microchip Technology Inc. apRNOVT^-page 65

MPLAB® C18 C Compiler Libraries
NOTES:
apRNOVT^-page 66  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES
Chapter 3. Software Peripheral Library
3.1 INTRODUCTION

This chapter documents software peripheral library functions.The source code for all

of these functions is included with MPLAB C18 in the src\pmc subdirectory of the

compiler installation.

See the MPASM™ User's Guide with MPLINK™ and MPLIB™ (DS33014) for more

information about building libraries.

The following peripherals are supported by MPLAB C18 library routines

• External LCD Functions (3.2 “External LCD Functions”)

• External CAN2510 Functions (3.3 “External CAN2510 Functions”)

• Software I2C Functions (3.4 “Software I²C Functions”)

• Software SPI Functions (3.5 “Software SPI Functions”)

• Software UART Functions (3.6 “Software UART Functions”)

3.2 EXTERNAL LCD FUNCTIONS

These functions are designed to allow the control of a Hitachi HD44780 LCD controller

using I/O pins from a PIC18 microcontroller. The following functions are provided:

The precompiled versions of these functions use default pin assignments that can be

changed by redefining the following macro assignments in the file xlcd.h, found in

the h subdirectory of the compiler installation:

Function Description

BusyXLCD Is the LCD controller busy?

OpenXLCD Configure the I/O lines used for controlling the LCD and

initialize the LCD.

putcXLCD Write a byte to the LCD controller.

putsXLCD Write a string from data memory to the LCD.

putrsXLCD Write a string from program memory to the LCD.

ReadAddrXLCD Read the address byte from the LCD controller.

ReadDataXLCD Read a byte from the LCD controller.

SetCGRamAddr Set the character generator address.

SetDDRamAddr Set the display data address.

WriteCmdXLCD Write a command to the LCD controller.

WriteDataXLCD Write a byte to the LCD controller.
 2002 Microchip Technology Inc. apRNOVT^-page 67

MPLAB® C18 C Compiler Libraries
The libraries that are provided can operate in either a 4-bit mode or 8-bit mode. When

operating in 8-bit mode, all the lines of a single port are used. When operating in 4-bit

mode, either the upper 4 bits or lower 4 bits of a single port are used. The table below

lists the macros used for selecting between 4- or 8- bit mode and for selecting which

bits of a port are used when operating in 4-bit mode

.

After these definitions have been made, the user must recompile the XLCD routines

and then include the updated files in the project. This can be accomplished by adding

the XLCD source files into the project or by recompiling the library files using the

provided batch files.

The XLCD libraries also require that the following functions be defined by the user to

provide the appropriate delays:

LCD

Controller

Line

Macros Default Value Use

E Pin E_PIN

TRIS_E

PORTBbits.RB4

DDRBbits.RB4

Pin used for the E line.

Bit that controls the direction of the

pin associated with the E line.

RS Pin RS_PIN

TRIS_RS

PORTBbits.RB5

DDRBbits.RB5

Pin used for the RS line.

Bit that controls the direction of the

pin associated with the RS line.

RW Pin RW_PIN

TRIS_RW

PORTBbits.RB6

DDRBbits.RB6

Pin used for the RW line.

Bit that controls the direction of the

pin associated with the RW line.

Data Lines DATA_PORT

TRIS_DATA_PORT

PORTB

DDRB

Pins used for DATA lines. These

routines assume all pins are on a

single port.

Data direction register associated

with the DATA lines.

Macro Default Value Use

BIT8 not defined If this value is defined when the library functions are

built, they will operate in 8-bit Transfer mode.

Otherwise, they will operate in 4-bit Transfer mode.

UPPER not defined When BIT8 is not defined, this value determines

which nibble of the DATA_PORT is used for data

transfer.

If UPPER is defined, the upper 4 bits (4:7) of

DATA_PORT are used.

If UPPER is not defined, the lower 4 bits (0:3) of

DATA_PORT are used.

Function Behavior

DelayFor18TCY Delay for 18 cycles.

DelayPORXLCD Delay for 15 ms.

DelayXLCD Delay for 5 ms.
apRNOVT^-page 68  2002 Microchip Technology Inc.

Software Peripheral Library
3.2.1 Function Descriptions

BusyXLCD

Function: Is the LCD controller busy?

Include: xlcd.h

Prototype: unsigned char BusyXLCD(void);

Remarks: This function returns the status of the busy flag of the Hitachi

HD44780 LCD controller.

Return Value: 1 if the controller is busy

0 otherwise.

File Name: busyxlcd.c

Code Example: while(BusyXLCD());

OpenXLCD

Function: Configure the PIC® I/O pins and initialize the LCD controller.

Include: xlcd.h

Prototype: void OpenXLCD(unsigned char lcdtype);

Arguments: lcdtype
A bitmask that is created by performing a bitwise AND operation

(‘&’) with a value from each of the categories listed below. These

values are defined in the file xlcd.h.

Data Interface:

FOUR_BIT 4-bit Data Interface mode

EIGHT_BIT 8-bit Data Interface mode

LCD Configuration:

LINE_5X7 5x7 characters, single line display

LINE_5X10 5x10 characters display

LINES_5X7 5x7 characters, multiple line display

Remarks: This function configures the PIC18 I/O pins used to control the

Hitachi HD44780 LCD controller. It also initializes this controller.

File Name: openxlcd.c

Code Example: OpenXLCD(EIGHT_BIT & LINES_5X7);

putcXLCD

See WriteDataXLCD.

putsXLCD
putrsXLCD

Function: Write a string to the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: void putsXLCD(char *buffer);
void putrsXLCD(const rom char *buffer);

Arguments: buffer
Pointer to characters to be written to the LCD controller.
 2002 Microchip Technology Inc. apRNOVT^-page 69

MPLAB® C18 C Compiler Libraries
Remarks: This function writes a string of characters located in buffer to

the Hitachi HD44780 LCD controller. It stops transmission when

a null character is encountered. The null character is not

transmitted.

Strings located in data memory should be used with the “puts”

versions of these functions.

Strings located in program memory, including string literals,

should be used with the “putrs” versions of these functions.

File Name: putsxlcd.c
putrxlcd.c

Code Example: char mybuff [20];
putrsXLCD(“Hello World”);
putsXLCD(mybuff);

ReadAddrXLCD

Function: Read the address byte from the Hitachi HD44780 LCD

controller.

Include: xlcd.h

Prototype: unsigned char ReadAddrXLCD(void);

Remarks: This function reads the address byte from the Hitachi HD44780

LCD controller. The LCD controller should not be busy when this

operation is performed – this can be verified using the BusyXLCD

function.

The address read from the controller is for the character

generator RAM or the display data RAM depending on the

previous Set??RamAddr function that was called.

Return Value: This function returns an 8-bit quantity. The address is contained

in the lower order 7 bits and the BUSY status flag in the Most

Significant bit.

File Name: readaddr.c

Code Example: char addr;
while (BusyXLCD());
addr = ReadAddrXLCD();

ReadDataXLCD

Function: Read a data byte from the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: char ReadDataXLCD(void);

Remarks: This function reads a data byte from the Hitachi HD44780 LCD

controller. The LCD controller should not be busy when this

operation is performed – this can be verified using the BusyXLCD

function.

The data read from the controller is for the character generator

RAM or the display data RAM depending on the previous

Set??RamAddr function that was called.

putsXLCD
putrsXLCD (Continued)
apRNOVT^-page 70  2002 Microchip Technology Inc.

Software Peripheral Library

Return Value: This function returns the 8-bit data value.

File Name: readdata.c

Code Example: char data;
while (BusyXLCD());
data = ReadAddrXLCD();

SetCGRamAddr

Function: Set the character generator address.

Include: xlcd.h

Prototype: void SetCGRamAddr(unsigned char addr);

Arguments: addr
Character generator address.

Remarks: This function sets the character generator address of the Hitachi

HD44780 LCD controller. The LCD controller should not be busy

when this operation is performed – this can be verified using the

BusyXLCD function.

File Name: setcgram.c

Code Example: char cgaddr = 0x1F;
while(BusyXLCD());
SetCGRamAddr(cgaddr);

SetDDRamAddr

Function: Set the display data address.

Include: xlcd.h

Prototype: void SetDDRamAddr(unsigned char addr);

Arguments: addr
Display data address.

Remarks: This function sets the display data address of the Hitachi

HD44780 LCD controller. The LCD controller should not be busy

when this operation is performed – this can be verified using the

BusyXLCD function.

File Name: setddram.c

Code Example: char ddaddr = 0x10;
while(BusyXLCD());
SetDDRamAddr(ddaddr);

WriteCmdXLCD

Function: Write a command to the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: void WriteCmdXLCD(unsigned char cmd);

Arguments: cmd
Specifies the command to be performed. The command may be

one of the following values defined in xlcd.h:

ReadDataXLCD (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 71

MPLAB® C18 C Compiler Libraries
DOFF Turn display off

CURSOR_OFF Enable display with no cursor

BLINK_ON Enable display with blinking cursor

BLINK_OFF Enable display with unblinking cursor

SHIFT_CUR_LEFT Cursor shifts to the left

SHIFT_CUR_RIGHT Cursor shifts to the right

SHIFT_DISP_LEFT Display shifts to the left

SHIFT_DISP_RIGHT Display shifts to the right

Alternatively, the command may be a bitmask that is created by

performing a bitwise AND operation (‘&’) with a value from each

of the categories listed below. These values are defined in the

file xlcd.h.

Data Transfer mode:

FOUR_BIT 4-bit Data Interface mode

EIGHT_BIT 8-bit Data Interface mode

Display Type:

LINE_5X7 5x7 characters, single line

LINE_5X10 5x10 characters display

LINES_5X7 5x7 characters, multiple lines

Remarks: This function writes the command byte to the Hitachi HD44780

LCD controller. The LCD controller should not be busy when this

operation is performed – this can be verified using the BusyXLCD

function.

File Name: wcmdxlcd.c

Code Example: while(BusyXLCD());
WriteCmdXLCD(EIGHT_BIT & LINES_5X7);
WriteCmdXLCD(BLINK_ON);
WriteCmdXLCD(SHIFT_DISP_LEFT);

putcXLCD
WriteDataXLCD

Function: Writes a byte to the Hitachi HD44780 LCD controller.

Include: xlcd.h

Prototype: void WriteDataXLCD(char data);

Arguments: data
The value of data can be any 8-bit value, but should correspond

to the character RAM table of the HD44780 LCD controller.

Remarks: This function writes a data byte to the Hitachi HD44780 LCD

controller. The LCD controller should not be busy when this

operation is performed – this can be verified using the BusyXLCD

function.

The data read from the controller is for the character generator

RAM or the display data RAM depending on the previous

Set??RamAddr function that was called.

File Name: writdata.c

WriteCmdXLCD (Continued)
apRNOVT^-page 72  2002 Microchip Technology Inc.

Software Peripheral Library
3.2.2 Example of Use

#include <p18C452.h>
#include <xlcd.h>
#include <delays.h>
#include <usart.h>

void DelayFor18TCY(void)
{
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
 Nop();
}

void DelayPORXLCD(void)
{
 Delay1KTCYx(60); //Delay of 15ms
 return;
}

void DelayXLCD(void)
{
 Delay1KTCYx(20); //Delay of 5ms
 return;
}

void main(void)
{
 char data;

 // configure external LCD
 OpenXLCD(EIGHT_BIT & LINES_5X7);

 // configure USART
 OpenUSART(USART_TX_INT_OFF & USART_RX_INT_OFF &
 USART_ASYNCH_MODE & USART_EIGHT_BIT &
 USART_CONT_RX,
 25);

 while(1)
 {
 while(!DataRdyUSART()); //wait for data
 data = ReadUSART(); //read data
 WriteDataXLCD(data); //write to LCD
 if(data=='Q')
 break;
 }

 CloseUSART();
}

 2002 Microchip Technology Inc. apRNOVT^-page 73

MPLAB® C18 C Compiler Libraries
3.3 EXTERNAL CAN2510 FUNCTIONS

This section documents the MCP2510 external peripheral library functions. The

following functions are provided:

Function Description

CAN2510BitModify Modifies the specified bits in a register to the new values.

CAN2510ByteRead Reads the MCP2510 register specified by the address.

CAN2510ByteWrite Writes a value to the MCP2510 register specified by the

address.

CAN2510DataRead Reads a message from the specified receive buffer.

CAN2510DataReady Determines if data is waiting in the specified receive

buffer.

CAN2510Disable Drives the selected PIC18CXXX I/O pin high to disable the

Chip Select of the MCP2510.*

CAN2510Enable Drives the selected PIC18CXXX I/O pin low to Chip Select

the MCP2510.*

CAN2510ErrorState Reads the current Error State of the CAN bus.

CAN2510Init Initialize the PIC18CXXX SPI port for communications to

the MCP2510 and then configures the MCP2510 registers

to interface with the CAN bus.

CAN2510InterruptEnable Modifies the CAN2510 interrupt enable bits (CANINTE

register) to the new values.

CAN2510InterruptStatus Indicates the source of the CAN2510 interrupt.

CAN2510LoadBufferStd Loads a Standard data frame into the specified transfer

buffer.

CAN2510LoadBufferXtd Loads an Extended data frame into the specified transfer

buffer.

CAN2510LoadRTRStd Loads a Standard remote frame into the specified transfer

buffer.

CAN2510LoadRTRXtd Loads an Extended remote frame into the specified

transfer buffer.

CAN2510ReadMode Reads the MCP2510 current mode of operation.

CAN2510ReadStatus Reads the status of the MCP2510 Transmit and Receive

Buffers.

CAN2510Reset Resets the MCP2510.

CAN2510SendBuffer Requests message transmission for the specified transmit

buffer(s).

CAN2510SequentialRead Reads the number of specified bytes in the MCP2510,

starting at the specified address. These values will be

stored in DataArray.

CAN2510SequentialWrite Writes the number of specified bytes in the MCP2510,

starting at the specified address. These values will be

written from DataArray.

CAN2510SetBufferPriority Loads the specified priority for the specified transmit

buffer.

CAN2510SetMode Configures the MCP2510 mode of operation.

CAN2510SetMsgFilterStd Configures ALL of the filter and mask values of the

specific receive buffer for a standard message.

CAN2510SetMsgFilterXtd Configures ALL of the filter and mask values of the

specific receive buffer for a extended message.

CAN2510SetSingleFilterStd Configures the specified Receive filter with a filter value for

a Standard (Std) message.
apRNOVT^-page 74  2002 Microchip Technology Inc.

Software Peripheral Library
CAN2510SetSingleFilterXtd Configures the specified Receive filter with a filter value for

a Extended (Xtd) message.

CAN2510SetSingleMaskStd Configures the specified Receive buffer mask with a mask

value for a Standard (Std) format message.

CAN2510SetSingleMaskXtd Configures the specified Receive buffer mask with a mask

value for an Extended (Xtd) message.

CAN2510WriteStd Writes a Standard format message out to the CAN bus

using the first available transmit buffer.

CAN2510WriteXtd Writes an Extended format message out to the CAN bus

using the first available transmit buffer.

* The functions CAN2510Enable and CAN2510Disable will need to be recompiled if:

- the PICmicro MCU assignment of the CS pin is modified from RC2

- the device header file needs to be changed

Function Description
 2002 Microchip Technology Inc. apRNOVT^-page 75

MPLAB® C18 C Compiler Libraries
3.3.1 Function Descriptions

CAN2510BitModify

Function: Modifies the specified bits in a register to the new values.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: void CAN2510BitModify(

unsigned char addr

unsigned char mask

unsigned char data);

Arguments: addr
The value of addr specifies the address of the MCP2510 register

to modify.

mask
The value of mask specifies the bits that will be modified.

data
The value of data specifies the new state of the bits.

Remarks: This function modifies the contents of the register specified by

address, the mask specifies which bits are to be modified and the

data specifies the new value to load into those bits. Only specific

registers can be modified with the Bit Modify command.

File Name: canbmod.c

CAN2510ByteRead

Function: Reads the MCP2510 register specified by the address.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510ByteRead(

unsigned char address);

Arguments: address
The address of the MCP2510 that is to be read.

Remarks: This function reads a single byte from the MCP2510 at the

specified address.

Return Value: The contents of the specified address.

File Name: readbyte.c

CAN2510ByteWrite

Function: Writes a value to the MCP2510 register specified by the address.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: void CAN2510ByteWrite(

unsigned char address,

unsigned char value);
apRNOVT^-page 76  2002 Microchip Technology Inc.

Software Peripheral Library

Arguments: address
The address of the MCP2510 that is to be written.

value
The value that is to be written.

Remarks: This function writes a single byte from the MCP2510 at the

specified address.

File Name: wrtbyte.c

CAN2510DataRead

Function: Reads a message from the specified receive buffer.

Required CAN

Mode(s): All (except Configuration mode)

Include: can2510.h

Prototype: unsigned char CAN2510DataRead(
unsigned char bufferNum,
unsigned long *msgId,
unsigned char *numBytes,
unsigned char *data);

Arguments: bufferNum
Receive buffer from which to read the message. One of the

following values:

CAN2510_RXB0 Read receive buffer 0

CAN2510_RXB1 Read receive buffer 1

msgId
Points to a location that will be modified by the function to contain

the CAN standard message identifier.

numBytes
Points to a location that will be modified by the function to contain

the number of bytes in this message.

data
Points to an array that will be modified by the function to contain

the message data. This array should be at least 8 bytes long,

since that is the maximum message data length.

Remarks: This function determines if the message is a standard or

extended message, decodes the ID and message length, and

fills in the user-supplied locations with the appropriate

information. The CAN2510DataReady function should be used to

determine if a specified buffer has data to read.

Return Value: Function returns one of the following values:

CAN2510_XTDMSG Extended format message

CAN2510_STDMSG Standard format message

CAN2510_XTDRTR Remote transmit request

(XTD message)

CAN2510_STDRTR Remote transmit request

(STD message)

File Name: canread.c

CAN2510ByteWrite (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 77

MPLAB® C18 C Compiler Libraries

CAN2510DataReady

Function: Determines if data is waiting in the specified receive buffer.

Required CAN

Mode(s): All (except Configuration mode)

Include: can2510.h

Prototype: unsigned char CAN2510DataReady(
unsigned char bufferNum);

Arguments: bufferNum
Receive buffer to check for waiting message. One of the

following values:

CAN2510_RXB0 Check Receive Buffer 0

CAN2510_RXB1 Check Receive Buffer 1

CAN2510_RXBX Check Receive Buffer 0 and Receive Buffer

1

Remarks: This function tests the appropriate RXnIF bit in the CANINTF

register.

Return Value: Returns zero if no message detected or a non-zero value if a

message was detected.

1 = buffer0

2 = buffer1

3 = both

File Name: canready.c

CAN2510Disable

Function: Drives the selected PIC18CXXX I/O pin high to disable the Chip

Select of the MCP2510.

Required CAN

Mode(s):

All

Include: canenabl.h

Note: This include file will need to be modified if the chip select

signal is not associated with the RC2 pin of the PICmicro

MCU.

Prototype: void CAN2510Disable(void);

Arguments: None

Remarks: This function requires that the user modifies the file to specify the

PIC18CXXX I/O pin (and Port) that will be used to connect to the

MCP2510 CS pin. The default pin is RC2.

Note: The source file that contains this function (and the

CAN2510Enable function) must have the definitions

modified to correctly specify the Port (A, B, C, ...) and Pin

number (1, 2, 3, ...) that is used to control the MCP2510

CS pin. After the modification, the processor-specific

library must be rebuilt. See 1.5.3 “Rebuilding” for

information on rebuilding.

File Name: canenabl.c
apRNOVT^-page 78  2002 Microchip Technology Inc.

Software Peripheral Library

CAN2510Enable

Function: Drives the selected PIC18CXXX I/O pin low to Chip Select the

MCP2510.

Required CAN

Mode(s): All

Include: canenabl.h

Note: This include file will need to be modified if the chip select

signal is not associated with the RC2 pin of the PICmicro

MCU.

Prototype: void CAN2510Enable(void);

Remarks: This function requires that the user modifies the file to specify the

PIC18CXXX I/O pin (and Port) that will be used to connect to the

MCP2510 CS pin. The default pin is RC2.

Note: The source file that contains this function (and the

CAN2510Disable function) must have the definitions

modified to correctly specify the Port (A, B, C, ...) and Pin

number (1, 2, 3, ...) that is used to control the MCP2510

CS pin. After the modification, the processor-specific

library must be rebuilt. See 1.5.3 “Rebuilding” for

information on rebuilding.

File Name: canenabl.c

CAN2510ErrorState

Function: Reads the current Error State of the CAN bus.

Required CAN

Mode(s):

Normal mode, Loopback mode, Listen Only mode

(Error counters are reset in Configuration mode)

Include: can2510.h

Prototype: unsigned char CAN2510ErrorState(void);

Remarks: This function returns the Error State of the CAN bus. The Error

State is dependent on the values in the TEC and REC registers.

Return Value: Function returns one of the following values:

CAN2510_BUS_OFF TEC > 255

CAN2510_ERROR_PASSIVE_TX TEC > 127

CAN2510_ERROR_PASSIVE_RX REC > 127

CAN2510_ERROR_ACTIVE_WITH_TXWARN TEC > 95

CAN2510_ERROR_ACTIVE_WITH_RXWARN REC > 95

CAN2510_ERROR_ACTIVE TEC ≤ 95 and REC ≤

95

File Name: canerrst.c
 2002 Microchip Technology Inc. apRNOVT^-page 79

MPLAB® C18 C Compiler Libraries
CAN2510Init

Function: Initialize the PIC18CXXX SPI port for communications to the

MCP2510 and then configures the MCP2510 registers to

interface with the CAN bus.

Required CAN

Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510Init(

unsigned short long BufferConfig,

unsigned short long BitTimeConfig,

unsigned char interruptEnables,

unsigned char SPI_syncMode,

unsigned char SPI_busMode,

unsigned char SPI_smpPhase);

Arguments: The values of the following parameters are defined in the include

file can2510.h.
BufferConfig
The value of BufferConfig is constructed through the bitwise AND

(&) operation of the following options. Only one option per group

function may be selected. The option in the bold font is the

default value.

Reset MCP2510 Device

Specifies if the MCP2510 RESET command is to be sent. This

does not correspond to a bit in the MCP2510 registers.

CAN2510_NORESET Don’t reset the MCP2510

CAN2510_RESET Reset the MCP2510

Buffer 0 Filtering

Controlled by the RXB0M1:RXB0M0 bits (RXB0CTRL register)

CAN2510_RXB0_USEFILT Receive all messages,

Use filters

CAN2510_RXB0_STDMSG Receive only Standard messages

CAN2510_RXB0_XTDMSG Receive only Extended messages

CAN2510_RXB0_NOFILT Receive all messages, NO filters

Buffer 1 Filtering

Controlled by the RXB1M1:RXB1M0 bits (RXB1CTRL register)

CAN2510_RXB1_USEFILT Receive all messages,

Use filters

CAN2510_RXB1_STDMSG Receive only Standard messages

CAN2510_RXB1_XTDMSG Receive only Extended messages

CAN2510_RXB1_NOFILT Receive all messages, NO filters

Receive Buffer 0 to Receive Buffer 1 Rollover

Controlled by the BUKT bit (RXB0CTRL register)

CAN2510_RXB0_ROLL If receive buffer 0 is full, message

goes to receive buffer

CAN2510_RXB0_NOROLL Rollover Disabled
apRNOVT^-page 80  2002 Microchip Technology Inc.

Software Peripheral Library
RX1BF Pin Setting

Controlled by the B1BFS:B1BFE:B1BFM bits (BFPCTRL register)

CAN2510_RX1BF_OFF RX1BF pin is Hi-impedance

CAN2510_RX1BF_INT RX1BF pin is an output which

indicates Receive Buffer 1 was

loaded. Can be used as an interrupt

signal.

CAN2510_RX1BF_GPOUTH RX1BF pin is a general purpose

digital output, Output High

CAN2510_RX1BF_GPOUTL RX1BF pin is a general purpose

digital output, Output Low

RX0BF Pin Setting

Controlled by the B0BFS:B0BFE:B0BFM bits (BFPCTRL register)

CAN2510_RX0BF_OFF RX0BF pin is Hi-impedance

CAN2510_RX0BF_INT RX0BF pin is an output which

indicates Receive Buffer 0 was

loaded. Can be used as an interrupt

signal.

CAN2510_RX0BF_GPOUTH RX0BF pin is a general purpose

digital output, Output High

CAN2510_RX0BF_GPOUTL RX0BF pin is a general purpose

digital output, Output Low

TX2 Pin Setting

Controlled by the B2RTSM bit (TXRTSCTRL register)

CAN2510_TX2_GPIN TX2RTS pin is a digital input

CAN2510_TX2_RTS TX2RTS pin is an input used to

initiate a Request To Send frame

from TXBUF2

TX1 Pin Setting

Controlled by the B1RTSM bit (TXRTSCTRL register)

CAN2510_TX1_GPIN TX1RTS pin is a digital input

CAN2510_TX1_RTS TX1RTS pin is an input used to

initiate a Request To Send frame

from TXBUF1

TX0 Pin Setting

Controlled by the B0RTSM bit (TXRTSCTRL register)

CAN2510_TX0_GPIN TX0RTS pin is a digital input

CAN2510_TX0_RTS TX0RTS pin is an input used to

initiate a Request To Send frame

from TXBUF0

Request Mode of Operation

Controlled by the REQOP2:REQOP0 bits (CANCTRL register)

CAN2510_REQ_CONFIG Configuration Mode

CAN2510_REQ_NORMAL Normal Operation Mode

CAN2510_REQ_SLEEP SLEEP Mode

CAN2510_REQ_LOOPBACK Loop Back Mode

CAN2510_REQ_LISTEN Listen Only Mode

CAN2510Init (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 81

MPLAB® C18 C Compiler Libraries
CLKOUT Pin Setting

Controlled by the CLKEN:CLKPRE1:CLKPRE0 bits (CANCTRL

register)

CAN2510_CLKOUT_8 CLKOUT = FOSC / 8

CAN2510_CLKOUT_4 CLKOUT = FOSC / 4

CAN2510_CLKOUT_2 CLKOUT = FOSC / 2

CAN2510_CLKOUT_1 CLKOUT = FOSC

CAN2510_CLKOUT_OFF CLKOUT is Disabled

BitTimeConfig
The value of BitTimeConfig is constructed through the bitwise

AND (&) operation of the following options. Only one option per

group function may be selected. The option in the bold font is

the default value.

Baud Rate Prescaler (BRP)

Controlled by the BRP5:BRP0 bits (CNF1 register)

CAN2510_BRG_1X TQ = 1 x (2TOSC)

 : :

CAN2510_BRG_64X TQ = 64 x (2TOSC)

Synchronization Jump Width

Controlled by the SJW1:SJW0 bits (CNF1 register)

CAN2510_SJW_1TQ SJW length = 1 TQ

CAN2510_SJW_2TQ SJW length = 2 TQ

CAN2510_SJW_3TQ SJW length = 3 TQ

CAN2510_SJW_4TQ SJW length = 4 TQ

Phase 2 Segment Width

Controlled by the PH2SEG2:PH2SEG0 bits (CNF3 register)

CAN2510_PH2SEG_2TQ Length = 2 TQ

CAN2510_PH2SEG_3TQ Length = 3 TQ

CAN2510_PH2SEG_4TQ Length = 4 TQ

CAN2510_PH2SEG_5TQ Length = 5 TQ

CAN2510_PH2SEG_6TQ Length = 6 TQ

CAN2510_PH2SEG_7TQ Length = 7 TQ

CAN2510_PH2SEG_8TQ Length = 8 TQ

Phase 1 Segment Width

Controlled by the PH1SEG2:PH1SEG0 bits (CNF2 register)

CAN2510_PH1SEG_1TQ Length = 1 TQ

CAN2510_PH1SEG_2TQ Length = 2 TQ

CAN2510_PH1SEG_3TQ Length = 3 TQ

CAN2510_PH1SEG_4TQ Length = 4 TQ

CAN2510_PH1SEG_5TQ Length = 5 TQ

CAN2510_PH1SEG_6TQ Length = 6 TQ

CAN2510_PH1SEG_7TQ Length = 7 TQ

CAN2510_PH1SEG_8TQ Length = 8 TQ

CAN2510Init (Continued)
apRNOVT^-page 82  2002 Microchip Technology Inc.

Software Peripheral Library
Propagation Segment Width

Controlled by the PRSEG2:PRSEG0 bits (CNF2 register)

CAN2510_PROPSEG_1TQ Length = 1 TQ

CAN2510_PROPSEG_2TQ Length = 2 TQ

CAN2510_PROPSEG_3TQ Length = 3 TQ

CAN2510_PROPSEG_4TQ Length = 4 TQ

CAN2510_PROPSEG_5TQ Length = 5 TQ

CAN2510_PROPSEG_6TQ Length = 6 TQ

CAN2510_PROPSEG_7TQ Length = 7 TQ

CAN2510_PROPSEG_8TQ Length = 8 TQ

Phase 2 Source

Controlled by the BTLMODE bit (CNF2 register). This determines

if the Phase 2 length is determined by the PH2SEG2:PH2SEG0 bits

or the greater length of PH1SEG2:PH1SEG0 bits and (2TQ).

CAN2510_PH2SOURCE_PH2 Length = PH2SEG2:PH2SEG0

CAN2510_PH2SOURCE_PH1 Length = greater of

PH1SEG2:PH1SEG0 and 2TQ

Bit Sample Point Frequency

Controlled by the SAM bit (CNF2 register). This determines if the

bit is sampled 1 or 3 times at the sample point.

CAN2510_SAMPLE_1x Bit is sampled once

CAN2510_SAMPLE_3x Bit is sampled three times

RX pin Noise Filter in SLEEP Mode

Controlled by the WAKFIL bit (CNF3 register). This determines if

the RX pin will use a filter to reject noise when the device is in

SLEEP mode.

CAN2510_RX_FILTER Filtering on RX pin when in

SLEEP mode

CAN2510_RX_NOFILTER No filtering on RX pin when in

SLEEP mode

interruptEnables
The value of interruptEnables can be a combination of the

following values, combined using a bitwise AND (&) operation.

The option in the bold font is the default value. Controlled by all

bits in the CANINTE register.

CAN2510_NONE_EN No interrupts enabled

CAN2510_MSGERR_EN Interrupt on error during message

reception or transmission

CAN2510_WAKEUP_EN Interrupt on CAN bus activity

CAN2510_ERROR_EN Interrupt on EFLG error condition

change

CAN2510_TXB2_EN Interrupt on transmission buffer 2

becoming empty

CAN2510_TXB1_EN Interrupt on transmission buffer 1

becoming empty

CAN2510_TXB0_EN Interrupt on transmission buffer 0

becoming empty

CAN2510_RXB1_EN Interrupt when message received in

receive buffer 1

CAN2510_RXB0_EN Interrupt when message received in

receive buffer 0

CAN2510Init (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 83

MPLAB® C18 C Compiler Libraries

SPI_syncMode
Specifies the PIC18CXXX SPI synchronization frequency:

CAN2510_SPI_FOSC4 Communicates at FOSC/4

CAN2510_SPI_FOSC16 Communicates at FOSC/16

CAN2510_SPI_FOSC64 Communicates at FOSC/64

CAN2510_SPI_FOSCTMR2 Communicates at TMR2/2

SPI_busMode
Specifies the PIC18CXXX SPI bus mode:

CAN2510_SPI_MODE00 Communicate using SPI mode 00

CAN2510_SPI_MODE01 Communicate using SPI mode 01

SPI_smpPhase
Specifies the PIC18CXXX SPI sample point:

CAN2510_SPI_SMPMID Samples in middle of SPI bit

CAN2510_SPI_SMPEND Samples at end of SPI bit

Remarks: This function initializes the PIC18CXXX SPI module, resets the

MCP2510 device (if requested) and then configures the

MCP2510 registers.

Note: When this function is completed, the MCP2510 is left in

the Configuration mode.

Return Value: Indicates if the MCP2510 could be initialized.

0 if initialization completed

-1 if initialization did not complete

File Name: caninit.c

CAN2510InterruptEnable

Function: Modifies the CAN2510 interrupt enable bits (CANINTE register)

to the new values.

Required CAN

Mode(s): All

Include: can2510.h,
spi_can.h

Prototype: void CAN2510InterruptEnable(

unsigned char interruptEnables);

Arguments: interruptEnables
The value of interruptEnables can be a combination of the

following values, combined using a bitwise AND (&) operation.

The option in the bold font is the default value. Controlled by all

bits in the CANINTE register.

CAN2510_NONE_EN No interrupts enabled (00000000)

CAN2510_MSGERR_EN Interrupt on error during message

reception or transmission

(10000000)

CAN2510_WAKEUP_EN Interrupt on CAN bus activity

(01000000)

CAN2510_ERROR_EN Interrupt on EFLG error condition

change (00100000)

CAN2510Init (Continued)
apRNOVT^-page 84  2002 Microchip Technology Inc.

Software Peripheral Library

CAN2510_TXB2_EN Interrupt on transmission buffer 2

becoming empty (00010000)

CAN2510_TXB1_EN Interrupt on transmission buffer 1

becoming empty (00001000)

CAN2510_TXB0_EN Interrupt on transmission buffer 0

becoming empty (00000100)

CAN2510_RXB1_EN Interrupt when message received in

receive buffer 1 (00000010)

CAN2510_RXB0_EN Interrupt when message received in

receive buffer 0 (00000001)

Remarks: This function updates the CANINTE register with the value that is

determined by ANDing the desired interrupt sources.

File Name: caninte.c

CAN2510InterruptStatus

Function: Indicates the source of the CAN2510 interrupt.

Required CAN

Mode(s): All

Include: can2510.h,
spi_can.h

Prototype: unsigned char CAN2510InterruptStatus(
void);

Remarks: This function reads the CANSTAT register and specifies a code

depending on the state of the ICODE2:ICODE0 bits.

Return Value: Function returns one of the following values:

CAN2510_NO_INTS No interrupts occurred

CAN2510_WAKEUP_INT Interrupt on CAN bus activity

CAN2510_ERROR_INT Interrupt on EFLG error condition

change

CAN2510_TXB2_INT Interrupt on transmission buffer 2

becoming empty

CAN2510_TXB1_INT Interrupt on transmission buffer 1

becoming empty

CAN2510_TXB0_INT Interrupt on transmission buffer 0

becoming empty

CAN2510_RXB1_INT Interrupt when message received in

receive buffer 1

CAN2510_RXB0_INT Interrupt when message received in

receive buffer 0

File Name: canints.c

CAN2510LoadBufferStd

Function: Loads a Standard data frame into the specified transfer buffer.

Required CAN

Mode(s): All

Include: can2510.h

CAN2510InterruptEnable (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 85

MPLAB® C18 C Compiler Libraries

Prototype: void CAN2510LoadBufferStd(
unsigned char bufferNum,
unsigned int msgId,
unsigned char numBytes,
unsigned char *data);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the

following values:

CAN2510_TXB0 Transmit buffer 0

CAN2510_TXB1 Transmit buffer 1

CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 11 bits for a standard message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is

greater than 8, only the first 8 bytes of data will be stored.

data
Array of data values to be loaded. The array must be at least as

large as the value specified in numBytes.

Remarks: This function loads the message information, but does not

transmit the message. Use the CAN2510WriteBuffer() function

to write the message onto the CAN bus.

This function does not set the priority of the buffer. Use the

CAN2510SetBufferPriority() function to set buffer priority.

File Name: canloads.c

CAN2510LoadBufferXtd

Function: Loads an Extended data frame into the specified transfer buffer.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: void CAN2510LoadBufferXtd(
unsigned char bufferNum,
unsigned int msgId,
unsigned char numBytes,
unsigned char *data);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the

following values:

CAN2510_TXB0 Transmit buffer 0

CAN2510_TXB1 Transmit buffer 1

CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 29 bits for a extended message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is

greater than 8, only the first 8 bytes of data will be stored.

data
Array of data values to be loaded. The array must be at least as

large as the value specified in numBytes.

CAN2510LoadBufferStd (Continued)
apRNOVT^-page 86  2002 Microchip Technology Inc.

Software Peripheral Library

Remarks: This function loads the message information, but does not

transmit the message. Use the CAN2510WriteBuffer() function

to write the message onto the CAN bus.

This function does not set the priority of the buffer. Use the

CAN2510SetBufferPriority() function to set buffer priority.

File Name: canloadx.c

CAN2510LoadRTRStd

Function: Loads a Standard remote frame into the specified transfer buffer.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: void CAN2510LoadBufferStd(
unsigned char bufferNum,
unsigned int msgId,
unsigned char numBytes,
unsigned char *data);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the

following values:

CAN2510_TXB0 Transmit buffer 0

CAN2510_TXB1 Transmit buffer 1

CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 11 bits for a standard message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is

greater than 8, only the first 8 bytes of data will be stored.

data
Array of data values to be loaded. The array must be at least as

large as the value specified in numBytes.

Remarks: This function loads the message information, but does not

transmit the message. Use the CAN2510WriteBuffer() function

to write the message onto the CAN bus.

This function does not set the priority of the buffer. Use the

CAN2510SetBufferPriority() function to set buffer priority.

File Name: canlrtrs.c

CAN2510LoadRTRXtd

Function: Loads an Extended remote frame into the specified transfer

buffer.

Required CAN

Mode(s): All

Include: can2510.h

CAN2510LoadBufferXtd (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 87

MPLAB® C18 C Compiler Libraries

Prototype: void CAN2510LoadBufferXtd(
unsigned char bufferNum,
unsigned long msgId,
unsigned char numBytes,
unsigned char *data);

Arguments: bufferNum
Specifies the buffer to load the message into. One of the

following values:

CAN2510_TXB0 Transmit buffer 0

CAN2510_TXB1 Transmit buffer 1

CAN2510_TXB2 Transmit buffer 2

msgId
CAN message identifier, up to 29 bits for a extended message.

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is

greater than 8, only the first 8 bytes of data will be stored.

data
Array of data values to be loaded. The array must be at least as

large as the value specified in numBytes.

Remarks: This function loads the message information, but does not

transmit the message. Use the CAN2510WriteBuffer() function

to write the message onto the CAN bus.

This function does not set the priority of the buffer. Use the

CAN2510SetBufferPriority() function to set buffer priority.

File Name: canlrtrx.c

CAN2510ReadMode

Function: Reads the MCP2510 current mode of operation.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510ReadMode(void);

Remarks: This function reads the current Operating mode. The mode may

have a pending request for a new mode.

Return Value: mode
The value of mode can be one of the following values (defined in

can2510.h). Specified by the OPMODE2:OPMODE0 bits (CANSTAT

register). One of the following values:

CAN2510_MODE_CONFIG Configuration registers

can be modified

CAN2510_MODE_NORMAL Normal (send and receive

messages)

CAN2510_MODE_SLEEP Wait for interrupt

CAN2510_MODE_LISTEN Listen only, don't send

CAN2510_MODE_LOOPBACK Used for testing,

messages stay internal

File Name: canmoder.c

CAN2510LoadRTRXtd (Continued)
apRNOVT^-page 88  2002 Microchip Technology Inc.

Software Peripheral Library

CAN2510ReadStatus

Function: Reads the status of the MCP2510 Transmit and Receive Buffers.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: unsigned char CAN2510ReadStatus(void);

Remarks: This function reads the current status of the transmit and receive

buffers.

Return Value: status
The value of status (an unsigned byte) has the following format:

bit 7 TXB2IF

bit 6 TXB2REQ

bit 5 TXB1IF

bit 4 TXB1REQ

bit 3 TXB0IF

bit 2 TXB0REQ

bit 1 RXB1IF

bit 0 RXB0IF

File Name: canstats.c

CAN2510Reset

Function: Resets the MCP2510.

Required CAN

Mode(s): All

Include: can2510.h
spi_can.h
spi.h

Prototype: void CAN2510Reset(void);

Remarks: This function resets the MCP2510.

File Name: canreset.c

CAN2510SendBuffer

Function: Requests message transmission for the specified transmit

buffer(s).

Required CAN

Mode(s): Normal mode

Include: can2510.h

Prototype: void CAN2510WriteBuffer
(unsigned char bufferNum);
 2002 Microchip Technology Inc. apRNOVT^-page 89

MPLAB® C18 C Compiler Libraries

Arguments: bufferNum
Specifies the buffer to request transmission of. One of the

following values:

CAN2510_TXB0 Transmit buffer 0

CAN2510_TXB1 Transmit buffer 1

CAN2510_TXB2 Transmit buffer 2

CAN2510_TXB0_B1 Transmit buffer 0 and buffer 1

CAN2510_TXB0_B2 Transmit buffer 0 and buffer 2

CAN2510_TXB1_B2 Transmit buffer 1 and buffer 2

CAN2510_TXB0_B1_B2 Transmit buffer 0, buffer 1,

and buffer 2

Remarks: This function requests transmission of a previously loaded

message stored in the specified buffer(s). To load a message,

use the CAN2510LoadBufferStd() or

CAN2510LoadBufferXtd() routines.

File Name: cansend.c

CAN2510SequentialRead

Function: Reads the number of specified bytes in the MCP2510, starting at

the specified address. These values will be stored in DataArray.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: void CAN2510SequentialRead(

unsigned char *DataArray

unsigned char CAN2510addr

unsigned char numbytes);

Arguments: DataArray
The start address of the data array that stores the sequential

read data.

CAN2510addr
The address of the MCP2510 where the sequential reads start

from.

numbytes
The number of bytes to sequentially read.

Remarks: This function reads sequential bytes from the MCP2510 starting

at the specified address. These values are loaded starting at the

first address of the array that is specified.

File Name: readseq.c

CAN2510SequentialWrite

Function: Writes the number of specified bytes in the MCP2510, starting at

the specified address. These values will be written from

DataArray.

Required CAN

Mode(s): All

Include: can2510.h

CAN2510SendBuffer (Continued)
apRNOVT^-page 90  2002 Microchip Technology Inc.

Software Peripheral Library

Prototype: void CAN2510SequentialWrite(

unsigned char *DataArray

unsigned char CAN2510addr

unsigned char numbytes);

Arguments: DataArray
The start address of the data array that contains the sequential

write data.

CAN2510addr
The address of the MCP2510 where the sequential writes start

from.

numbytes
The number of bytes to sequentially write.

Remarks: This function writes sequential bytes to the MCP2510 starting at

the specified address. These values are contained starting at the

first address of the array that is specified.

File Name: wrtseq.c

CAN2510SetBufferPriority

Function: Loads the specified priority for the specified transmit buffer.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: void CAN2510SetBufferPriority(
unsigned char bufferNum,
unsigned char bufferPriority);

Arguments: bufferNum
Specifies the buffer to configure the priority of. One of the

following values:

CAN2510_TXB0 Transmit buffer 0

CAN2510_TXB1 Transmit buffer 1

CAN2510_TXB2 Transmit buffer 2

bufferPriority
Priority of buffer. One of the following values:

CAN2510_PRI_HIGHEST Highest message priority

CAN2510_PRI_HIGH High message priority

CAN2510_PRI_LOW Low message priority

CAN2510_PRI_LOWEST Lowest message priority

Remarks: This function loads the specified priority of an individual buffer.

File Name: cansetpr.c

CAN2510SequentialWrite (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 91

MPLAB® C18 C Compiler Libraries

CAN2510SetMode

Function: Configures the MCP2510 mode of operation.

Required CAN

Mode(s): All

Include: can2510.h

Prototype: void CAN2510SetMode(unsigned char mode);

Arguments: mode
The value of mode can be one of the following values (defined in

can2510.h). Controlled by the REQOP2:REQOP0 bits

(CANCTRL register). One of the following values:

CAN2510_MODE_CONFIG Configuration registers

can be modified

CAN2510_MODE_NORMAL Normal (send and receive

messages)

CAN2510_MODE_SLEEP Wait for interrupt

CAN2510_MODE_LISTEN Listen only, don't send

CAN2510_MODE_LOOPBACK Used for testing,

messages stay internal

Remarks: This function configures the specified mode. The mode will not

change until all pending message transmissions are complete.

File Name: canmodes.c

CAN2510SetMsgFilterStd

Function: Configures ALL of the filter and mask values of the specific

receive buffer for a standard message.

Required CAN

Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510SetMsgFilteringStd(

unsigned char bufferNum,

unsigned int mask,

unsigned int *filters);

Arguments: bufferNum
Specifies the receive buffer to configure the mask and filters for.

One of the following values:

CAN2510_RXB0 Configure RXM0, RXF0 and RXF1

CAN2510_RXB1 Configure RXM1, RXF2, RXF3,

RXF4 and RXF5

mask
Value to store in the corresponding mask

filters
Array of filter values.

For Buffer 0

Standard-length messages: Array of 2 unsigned integers

For Buffer 1

Standard-length messages: Array of 4 unsigned integers
apRNOVT^-page 92  2002 Microchip Technology Inc.

Software Peripheral Library

Remarks: This function configures the MCP2510 into Configuration mode,

then writes the mask and filter values out to the appropriate

registers. Before returning, it configures the MCP2510 to the

original mode.

Return Value: Indicates if the MCP2510 modes could be modified properly.

0 if initialization and restoration of Operating mode

completed

-1 if initialization and restoration of Operating mode did

 not complete

File Name: canfms.c

CAN2510SetMsgFilterXtd

Function: Configures ALL of the filter and mask values of the specific

receive buffer for a extended message.

Required CAN

Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510SetMsgFilteringXtd(

unsigned char bufferNum,

unsigned long mask,

unsigned long *filters);

Arguments: bufferNum
Specifies the receive buffer to configure the mask and filters for

one of the following values:

CAN2510_RXB0 Configure RXM0, RXF0 and RXF1

CAN2510_RXB1 Configure RXM1, RXF2, RXF3,

RXF4 and RXF5

mask
Value to store in the corresponding mask

filters
Array of filter values.

For Buffer 0

Extened-length messages: Array of 4 unsigned integers

For Buffer 1

Extened-length messages: Array of 8 unsigned integers

Remarks: This function configures the MCP2510 into Configuration mode,

then writes the mask and filter values out to the appropriate

registers. Before returning, it configures the MCP2510 to the

original mode.

Return Value: Indicates if the MCP2510 modes could be modified properly:

0 if Initialization and restoration of Operating mode

completed

-1 if initialization and restoration of Operating mode did

 not complete

File Name: canfmx.c

CAN2510SetMsgFilterStd (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 93

MPLAB® C18 C Compiler Libraries

CAN2510SetSingleFilterStd

Function: Configures the specified Receive filter with a filter value for a

Standard (Std) message.

Required CAN

Mode(s): Configuration mode

Include: can2510.h

Prototype: void CAN2510SetSingleFilterStd(
unsigned char filterNum,
unsigned long filter);

Arguments: filterNum
Specifies the acceptance filter to configure. One of the following

values:

CAN2510_RXF0 Configure RXF0 (for RXB0)

CAN2510_RXF1 Configure RXF1 (for RXB0)

CAN2510_RXF2 Configure RXF2 (for RXB1)

CAN2510_RXF3 Configure RXF3 (for RXB1)

CAN2510_RXF4 Configure RXF4 (for RXB1)

CAN2510_RXF5 Configure RXF5 (for RXB1)
filter
Value to store in the corresponding filter

Remarks: This function writes the filter value to the appropriate registers.

The MCP2510 must be in Configuration mode before executing

this function.

File Name: canfilts.c

CAN2510SetSingleFilterXtd

Function: Configures the specified Receive filter with a filter value for a

Extended (Xtd) message.

Required CAN

Mode(s): Configuration mode

Include: can2510.h

Prototype: void CAN2510SetSingleFilterXtd(
unsigned char filterNum,
unsigned int filter);

Arguments: filterNum
Specifies the acceptance filter to configure. One of the following

values:

CAN2510_RXF0 Configure RXF0 (for RXB0)

CAN2510_RXF1 Configure RXF1 (for RXB0)

CAN2510_RXF2 Configure RXF2 (for RXB1)

CAN2510_RXF3 Configure RXF3 (for RXB1)

CAN2510_RXF4 Configure RXF4 (for RXB1)

CAN2510_RXF5 Configure RXF5 (for RXB1)
filter
Value to store in the corresponding filter

Remarks: This function writes the filter value to the appropriate registers.

The MCP2510 must be in Configuration mode before executing

this function.

File Name: canfiltx.c
apRNOVT^-page 94  2002 Microchip Technology Inc.

Software Peripheral Library

CAN2510SetSingleMaskStd

Function: Configures the specified Receive buffer mask with a mask value

for a Standard (Std) format message.

Required CAN

Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510SetSingleMaskStd(
unsigned char maskNum,
unsigned int mask);

Arguments: maskNum
Specifies the acceptance mask to configure. One of the following

values:

CAN2510_RXM0 Configure RXM0 (for RXB0)

CAN2510_RXM1 Configure RXM1 (for RXB1)
mask
Value to store in the corresponding mask

Remarks: This function writes the mask value to the appropriate registers.

The MCP2510 must be in Configuration mode before executing

this function.

File Name: canmasks.c

CAN2510SetSingleMaskXtd

Function: Configures the specified Receive buffer mask with a mask value

for an Extended (Xtd) message.

Required CAN

Mode(s): Configuration mode

Include: can2510.h

Prototype: unsigned char CAN2510SetSingleMaskXtd(
unsigned char maskNum,
unsigned long mask);

Arguments: maskNum
Specifies the acceptance mask to configure. One of the following

values:

CAN2510_RXM0 Configure RXM0 (for RXB0)

CAN2510_RXM1 Configure RXM1 (for RXB1)
mask
Value to store in the corresponding mask

Remarks: This function writes the mask value to the appropriate registers.

The MCP2510 must be in Configuration mode before executing

this function.

File Name: canmaskx.c
 2002 Microchip Technology Inc. apRNOVT^-page 95

MPLAB® C18 C Compiler Libraries

CAN2510WriteStd

Function: Writes a Standard format message out to the CAN bus using the

first available transmit buffer.

Required CAN

Mode(s): Normal mode

Include: can2510.h

Prototype: unsigned char CAN2510WriteStd(
unsigned int msgId,
unsigned char msgPriority,
unsigned char numBytes,
unsigned char *data);

Arguments: msgId
CAN message identifier, 11 bits for a standard message. This

11-bit identifier is stored in the lower 11 bits of msgId (an

unsigned integer).

msgPriority
Priority of buffer. One of the following values:

CAN2510_PRI_HIGHEST Highest message priority

CAN2510_PRI_HIGH High intermediate message priority

CAN2510_PRI_LOW Low intermediate message priority

CAN2510_PRI_LOWEST Lowest message priority

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is

greater than 8, only the first 8 bytes of data will be sent.

data
Array of data values to be written. Must be at least as large as

the value specified in numBytes.

Remarks: This function will query each transmit buffer for a pending

message, and will post the specified message into the first

available buffer.

Return Value: Value indicates which buffer was used to transmit the message

(0, 1 or 2).

-1 indicates that no message was sent.

File Name: canwrits.c

CAN2510WriteXtd

Function: Writes an Extended format message out to the CAN bus using

the first available transmit buffer.

Required CAN

Mode(s): Normal mode

Include: can2510.h

Prototype: unsigned char CAN2510WriteXtd(
unsigned long msgId,
unsigned char msgPriority,
unsigned char numBytes,
unsigned char *data);

Arguments: msgId
CAN message identifier, 29 bits for an extended message. This

29-bit identifier is stored in the lower 29 bits of msgId (an

unsigned long).
apRNOVT^-page 96  2002 Microchip Technology Inc.

Software Peripheral Library
msgPriority
Priority of buffer. One of the following values:

CAN2510_PRI_HIGHEST Highest message priority

CAN2510_PRI_HIGH High intermediate message priority

CAN2510_PRI_LOW Low intermediate message priority

CAN2510_PRI_LOWEST Lowest message priority

numBytes
Number of bytes of data to transmit, from 0 to 8. If value is

greater than 8, only the first 8 bytes of data will be sent.

data
Array of data values to be written. Must be at least as large as

the value specified in numBytes.

Remarks: This function will query each transmit buffer for a pending

message, and will post the specified message into the first

available buffer.

Return Value: Value indicates which buffer was used to transmit the message

(0, 1 or 2).

-1 indicates that no message was sent.

File Name: canwritx.c

CAN2510WriteXtd (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 97

MPLAB® C18 C Compiler Libraries
3.4 SOFTWARE I²C FUNCTIONS

These functions are designed to allow the implementation of an I2C bus using I/O pins

from a PIC18 microcontroller. The following functions are provided:

The precompiled versions of these functions use default pin assignments that can be

changed by redefining the macro assignments in the file sw_i2c.h, found in the h

subdirectory of the compiler installation:

After these definitions have been made, the user must recompile the I2C routines and

then use the updated files in the project. This can be accomplished by adding the

library source files into the project or by recompiling the library files using the provided

batch files.

Function Description

Clock_test Generate a delay for slave clock stretching.

SWAckI2C Generate an I2C bus Acknowledge condition.

SWGetcI2C Read a byte from the I2C bus.

SWGetsI2C Read a data string.

SWNotAckI2C Generate an I2C bus Acknowledge condition.

SWPutI2C Write a single byte to the I2C bus.

SWPutsI2C Write a string to the I2C bus.

SWReadI2C Read a byte from the I2C bus.

SWRestartI2C Generate an I2C bus Restart condition.

SWStartI2C Generate an I2C bus START condition.

SWStopI2C Generate an I2C bus STOP condition.

SWWriteI2C Write a single byte to the I2C bus.

I2C Line Macros Default Value Use

DATA Pin DATA_PIN

DATA_LAT

DATA_LOW

DATA_HI

PORTBbits.RB4

LATBbits.RB4

TRISBbits.TRISB4 = 0;

TRISBbits.TRISB4 = 1;

Pin used for the DATA line.

Latch associated with DATA pin.

Statement to configure the DATA

pin as an output.

Statement to configure the DATA

pin as an input.

CLOCK Pin SCLK_PIN

SCLK_LAT

CLOCK_LOW

CLOCK_HI

PORTBbits.RB3

LATBbits.LATB3

TRISBbits.TRISB3 = 0;

TRISBbits.TRISB3 = 1;

Pin used for the CLOCK line.

Latch associated with the

CLOCK pin.

Satement to configure the

CLOCK pin as an output.

Statement to configure the

CLOCK pin as an input.
apRNOVT^-page 98  2002 Microchip Technology Inc.

Software Peripheral Library
3.4.1 Function Descriptions

Clock_test

Function: Generate a delay for slave clock stretching.

Include: sw_i2c.h

Prototype: unsigned char Clock_test(void);

Remarks: This function is called to allow for slave clock stretching. The

delay time may need to be adjusted per application

requirements. If at the end of the delay period the clock line is

low, a value is returned indicating clock error.

Return Value: 0 is returned if no clock error occurred

-2 is returned if a clock error occurred

File Name: swckti2c.c

SWAckI2C
SWNotAckI2C

Function: Generate an I2C bus Acknowledge condition.

Include: sw_i2c.h

Prototype: unsigned char SWAckI2C(void);
unsigned char SWNotAckI2C(void);

Remarks: This function is called to generate an I2C bus Acknowledge

sequence.

Return Value: 0 if the slave Acknowledges

-1 if the slave does not Acknowledge

File Name: swacki2c.c

SWGetcI2C

See SWReadI2C.

SWGetsI2C

Function: Read a string from the I2C bus.

Include: sw_i2c.h

Prototype: unsigned char SWGetsI2C(
 unsigned char *rdptr,
 unsigned char length);

Arguments: rdptr
Location to store the data read from the I2C bus.
length
Number of bytes to read.

Remarks: This function reads in a string of predetermined length.

Return Value: -1 if the master generated a NOT ACK bus condition before all

bytes have been received

0 otherwise

File Name: swgtsi2c.c
 2002 Microchip Technology Inc. apRNOVT^-page 99

MPLAB® C18 C Compiler Libraries
Code Example: char x[10];
SWGetsI2C(x,5);

SWNotAckI2C

See SWAckI2C.

SWPutcI2C

See SWWriteI2C.

SWPutsI2C

Function: Write a string to the I2C bus.

Include: sw_i2c.h

Prototype: unsigned char SWPutsI2C(
 unsigned char *wrdptr);

Arguments: wrdptr
Pointer to data to be written to the I2C bus.

Remarks: This function writes out a data string up to (but not including) a

null character.

Return Value: -1 if there was an error writing to the I2C bus

0 otherwise

File Name: swptsi2c.c

Code Example: char mybuff [20];
SWPutsI2C(mybuff);

SWReadI2C
SWGetcI2C

Function: Read a byte from the I2C bus.

Include: sw_i2c.h

Prototype: unsigned char SWReadI2C(void);

Remarks: This function reads in a single data byte by generating the

appropriate signals on the predefined I2C clock line.

Return Value: This function returns the acquired I2C data byte.

-1 if there was an error in this function.

File Name: swgtci2c.c

SWGetsI2C (Continued)
apRNOVT^-page 100  2002 Microchip Technology Inc.

Software Peripheral Library

SWRestartI2C

Function: Generate an I2C Restart bus condition.

Include: sw_i2c.h

Prototype: void SWRestartI2C(void);

Remarks: This function is called to generate an I2C bus restart condition.

File Name: swrsti2c.c

SWStartI2C

Function: Generate an I2C bus START condition.

Include: sw_i2c.h

Prototype: void SWStartI2C(void);

Remarks: This function is called to generate an I2C bus START condition.

File Name: swstri2c.c

SWStopI2C

Function: Generate an I2C bus STOP condition.

Include: sw_i2c.h

Prototype: void SWStopI2C(void);

Remarks: This function is called to generate an I2C bus STOP condition.

File Name: swstpi2c.c

SWWriteI2C
SWPutcI2C

Function: Write a byte to the I2C bus.

Include: sw_i2c.h

Prototype: unsigned char SWWriteI2C(
 unsigned char data_out);

Arguments: data_out
Single data byte to be written to the I2C device.

Remarks: This function writes out a single data byte to the predefined data

pin.

Return Value: 0 if write is successful

-1 if there was an error condition

File Name: swptci2c.c

Code Example if(SWWriteI2C(0x80))
 {
 errorHandler();
 }
 2002 Microchip Technology Inc. apRNOVT^-page 101

MPLAB® C18 C Compiler Libraries
3.4.2 Example of Use

The following is a simple code example illustrating a software I2C implementation

communicating with a Microchip 24LC01B I2C EE memory device.

#include <p18cxxx.h>
#include <sw_i2c.h>
#include <delays.h>

// FUNCTION Prototype
void main(void);
void byte_write(void);
void page_write(void);
void current_address(void);
void random_read(void);
void sequential_read(void);
void ack_poll(void);
unsigned char warr[] = {8,7,6,5,4,3,2,1,0};
unsigned char rarr[15];
unsigned char far *rdptr = rarr;
unsigned char far *wrptr = warr;
unsigned char var;

#define W_CS PORTA.2

//**
void main(void)
{
 byte_write();
 ack_poll();
 page_write();
 ack_poll();
 Nop();
 sequential_read();
 Nop();
 while (1); // Loop indefinitely
}

void byte_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x10); // word address
 SWAckI2C();
 var = SWPutcI2C(0x66); // data
 SWAckI2C();
 SWStopI2C();
}

void page_write(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x20); // word address
 SWAckI2C();
 var = SWPutsI2C(wrptr); // data
 SWStopI2C();
}

apRNOVT^-page 102  2002 Microchip Technology Inc.

Software Peripheral Library
void sequential_read(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 SWAckI2C();
 var = SWPutcI2C(0x00); // address to read from
 SWAckI2C();
 SWRestartI2C();
 var = SWPutcI2C(0xA1);
 SWAckI2C();
 var = SWGetsI2C(rdptr, 9);
 SWStopI2C();
}

void current_address(void)
{
 SWStartI2C();
 SWPutcI2C(0xA1); // control byte
 SWAckI2C();
 SWGetcI2C(); // word address
 SWNotAckI2C();
 SWStopI2C();
}

void ack_poll(void)
{
 SWStartI2C();
 var = SWPutcI2C(0xA0); // control byte
 while(SWAckI2C())
 {
 SWRestartI2C();
 var = SWPutcI2C(0xA0); // data
 }
 SWStopI2C();
}

 2002 Microchip Technology Inc. apRNOVT^-page 103

MPLAB® C18 C Compiler Libraries
3.5 SOFTWARE SPI FUNCTIONS

These functions are designed to allow the implementation of an SPI using I/O pins

from a PIC18 microcontroller. The following functions are provided:

The precompiled versions of these functions use default pin assignments that can be

changed by redefining the macro assignments in the file sw_spi.h, found in the h

subdirectory of the compiler installation:

The libraries that are provided can operate in one of four modes. The table below lists

the macros used for selecting between these modes. Exactly one of these must be

defined when rebuilding the software SPI libraries.

Function Description

ClearSWCSSPI Clear the chip select (CS) pin.

OpenSWSPI Configure the I/O pins for use as an SPI.

putcSWSPI Write a byte of data to the software SPI.

SetSWCSSPI Set the chip select (CS) pin.

WriteSWSPI Write a byte of data to the software SPI bus.

LCD

Controller

Line

Macros Default Value Use

CS Pin SW_CS_PIN

TRIS_SW_CS_PIN

PORTBbits.RB2

TRISBbits.TRISB2

Pin used for the chip select (CS)

line.

Bit that controls the direction of

the pin associated with the CS

line.

DIN Pin SW_DIN_PIN

TRIS_SW_DIN_PIN

PORTBbits.RB3

TRISBbits.TRISB3

Pin used for the DIN line.

Bit that controls the direction of

the pin associated with the DIN

line.

DOUT Pin SW_DOUT_PIN

TRIS_SW_DOUT_PIN

PORTBbits.RB7

TRISBbits.TRISB7

Pin used for the DOUT line.

Bit that controls the direction of

the pin associated with the

DOUT line.

SCK Pin SW_SCK_PIN

TRIS_SW_SCK_PIN

PORTBbits.RB6

TRISBbits.TRISB6

Pin used for the SCK line.

Bit that controls the direction of

the pin associated with the SCK

line.

Macro Default Value Meaning

MODE0 defined CKP = 0

CKE = 0

MODE1 not defined CKP = 1

CKE = 0

MODE2 not defined CKP = 0

CKE = 1

MODE3 not defined CKP = 1

CKE = 1
apRNOVT^-page 104  2002 Microchip Technology Inc.

Software Peripheral Library
After these definitions have been made, the user must recompile the software SPI

routines and then include the updated files in the project. This can be accomplished

by adding the software SPI source files into the project or by recompiling the library

files using the provided batch files.

3.5.1 Function Descriptions

ClearSWCSSPI

Function: Clear the chip select (CS) pin that is specified in the sw_spi.h

header file.

Include: sw_spi.h

Prototype: void ClearSWCSSPI(void);

Remarks: This function clears the I/O pin that is specified in sw_spi.h to

be the chip select (CS) pin for the software SPI.

File Name: clrcsspi.c

OpenSWSPI

Function: Configure the I/O pins for the software SPI.

Include: sw_spi.h

Prototype: void OpenSWSPI(void);

Remarks: This function configures the I/O pins used for the software SPI

to the correct input or ouput state and logic level.

File Name: opensspi.c

putcSWSPI

See WriteSWSPI.

SetSWCSSPI

Function: Set the chip select (CS) pin that is specified in the sw_spi.h

header file.

Include: sw_spi.h

Prototype: void SetSWCSSPI(void);

Remarks: This function sets the I/O pin that is specified in sw_spi.h to be

the chip select (CS) pin for the software SPI.

File Name: setcsspi.c
 2002 Microchip Technology Inc. apRNOVT^-page 105

MPLAB® C18 C Compiler Libraries
3.5.2 Example of Use

#include <p18C452.h>
#include <sw_spi.h>
#include <delays.h>

void main(void)
{
 char address;

 // configure software SPI
 OpenSWSPI();

 for(address=0; address<0x10; address++)
 {
 ClearCSSWSPI(); //clear CS pin
 WriteSWSPI(0x02); //send write cmd
 WriteSWSPI(address); //send address hi
 WriteSWSPI(address); //send address low
 SetCSSWSPI(); //set CS pin
 Delay10KTCYx(50); //wait 5000,000TCY
 }
}

WriteSWSPI
putcSWSPI

Function: Write a byte to the software SPI.

Include: sw_spi.h

Prototype: char WriteSWSPI(char data);

Arguments: data
Data to be written to the software SPI.

Remarks: This function writes the specified byte of data out the software

SPI and returns the byte of data that was read. This function

does not provide any control of the chip select pin (CS).

Return Value: This function returns the byte of data that was read from the

data in (DIN) pin of the software SPI.

File Name: wrtsspi.c

Code Example: char addr = 0x10;
char result;
result = WriteSWSPI(addr);
apRNOVT^-page 106  2002 Microchip Technology Inc.

Software Peripheral Library
3.6 SOFTWARE UART FUNCTIONS

These functions are designed to allow the implementation of a UART using I/O pins

from a PIC18 microcontroller. The following functions are provided:

The precompiled versions of these functions use default pin assignments that can be

changed by redefining the equate (equ) statements in the files writuart.asm,

readuart.asm and openuart.asm, found in the src/pmc/sw_uart/18Cxx

subdirectory of the compiler installation:

If changes to these definitions are made, the user must recompile the software UART

routines and then include the updated files in the project. This can be accomplished

by adding the software UART source files into the project or by recompiling the library

files using the batch files provided with the MPLAB C18 compiler installation.

The XLCD libraries also require that the following functions be defined by the user to

provide the appropriate delays:

Function Description

getcUART Read a byte from the software UART.

getsUART Read a string from the software UART.

OpenUART Configure I/O pins for use as a UART.

putcUART Write a byte to the software UART.

putsUART Write a string to the software UART.

ReadUART Read a byte from the software UART.

WriteUART Write a byte to the software UART.

LCD

Controller

Line

Definition Default Value Use

TX Pin SWTXD

SWTXDpin

TRIS_SWTXD

PORTB

4

TRISB

Port used for the transmit line.

Bit in the SWTXD port used for the TX line.

Data direction register associated with the

port used for the TX line.

RX Pin SWRXD

SWRXDpin

TRIS_SWRXD

PORTB

5

TRISB

Port used for the receive line.

Bit in the SWRXD port used for the RX line.

Data direction register associated with the

port used for the RX line.

Function Behavior

DelayTXBitUART Delay for:

 ((((2*FOSC) / (4*baud)) + 1) / 2) - 12

cycles

DelayRXHalfBitUART Delay for:

 ((((2*FOSC) / (8*baud)) + 1) / 2) - 9

cycles

DelayRXBitUART Delay for:

 ((((2*FOSC) / (4*baud)) + 1) / 2) - 14

cycles
 2002 Microchip Technology Inc. apRNOVT^-page 107

MPLAB® C18 C Compiler Libraries
3.6.1 Function Descriptions

getcUART

See ReadUART.

getsUART

Function: Read a string from the software UART.

Include: sw_uart.h

Prototype: void getsUART(char * buffer,
 unsigned char len);

Arguments: buffer
Pointer to the string of characters read from the software UART.
len
Number of characters to be read from the software UART.

Remarks: This function reads len characters from the software UART and

places them in buffer.

File Name: getsuart.c

Code Example: char x[10];
getsUART(x, 5);

OpenUART

Function: Configure the I/O pins for the software UART.

Include: sw_uart.h

Prototype: void OpenUART(void);

Remarks: This function configures the I/O pins used for the software

UART to the correct input or ouput state and logic level.

File Name: openuart.asm

Code Example: OpenUART();

putcUART

See WriteUART.

putsUART

Function: Write a string to the software UART.

Include: sw_uart.h

Prototype: void putsUART(char * buffer);

Arguments: buffer
String to be written to the software UART.

Remarks: This function writes a string of characters to the software UART.

The entire string including the null is sent to the UART.

File Name: putsuart.c

Code Example: char mybuff [20];
putsUART(mybuff);
apRNOVT^-page 108  2002 Microchip Technology Inc.

Software Peripheral Library

3.6.2 Example of Use

#include <p18C452.h>
#include <sw_uart.h>

void main(void)
{
 char data

 // configure software UART
 OpenUART();

 while(1)
 {
 data = ReadUART(); //read a byte
 WriteUART(data); //bounce it back
 }
}

ReadUART
getcUART

Function: Read a byte from the software UART.

Include: sw_uart.h

Prototype: char ReadUART(void);

Remarks: This function reads a byte of data out the software UART.

Return Value: Returns the byte of data that was read from the receive data

(RXD) pin of the software UART.

File Name: readuart.asm

Code Example: char x;
x = ReadUART();

WriteUART
putcUART

Function: Write a byte to the software UART.

Include: sw_uart.h

Prototype: void WriteUART(char data);

Arguments: data
Byte of data to be written to software UART.

Remarks: This function writes the specified byte of data out the software

UART.

File Name: writuart.asm

Code Example: char x = ‘H’;
WriteUART(x);
 2002 Microchip Technology Inc. apRNOVT^-page 109

MPLAB® C18 C Compiler Libraries
NOTES:
apRNOVT^-page 110  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES
Chapter 4. General Software Library
4.1 INTRODUCTION

This chapter documents general software library functions found in the precompiled

clib.lib file. The source code for all of these functions is included with MPLAB C18 in

the following subdirectories of the compiler installation:

• src\string

• src\stdlib

• src\delays

• src\ctype

The following categories of routines are supported by the MPLAB C18 library:

• Character Classification Functions

• Data Conversion Functions

• Delay Functions

• Memory and String Manipulation Functions

4.2 CHARACTER CLASSIFICATION FUNCTIONS

These functions are consistent with the ANSI 1989 standard C library functions of the

same name. The following functions are provided:

Function Description

isalnum Determine if a character is alphanumeric.

isalpha Determine if a character is alphabetic.

iscntrl Determine if a character is a control character.

isdigit Determine if a character is a decimal digit.

isgraph Determine if a character is a graphical character.

islower Determine if a character is a lower case alphabetic character.

isprint Determine if a character is a printable character.

ispunct Determine if a character is a punctuation character.

isspace Determine if a character is a white space character.

isupper Determine if a character is an upper case alphabetic character.

isxdigit Determine if a character is a hexadecimal digit.
 2002 Microchip Technology Inc. apRNOVT^-page 111

MPLAB® C18 C Compiler Libraries
4.2.1 Function Descriptions

isalnum

Function: Determine if a character is alphanumeric.

Include: ctype.h

Prototype: unsigned char isalnum(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be alphanumeric if it is in the range

of ‘A’ to ‘Z’, ‘a’ to ‘z’ or ‘0’ to ‘9’.

Return Value: Non-zero if the character is alphanumeric

Zero otherwise

File Name: isalnum.c

isalpha

Function: Determine if a character is alphabetic.

Include: ctype.h

Prototype: unsigned char isalpha(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be alphabetic if it is in the range of

‘A’ to ‘Z’ or ‘a’ to ‘z’.

Return Value: Non-zero if the character is alphabetic

Zero otherwise

File Name: isalpha.c

iscntrl

Function: Determine if a character is a control character.

Include: ctype.h

Prototype: unsigned char iscntrl(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a control character if it is not a

printable character as defined by isprint().

Return Value: Non-zero if the character is a control character

Zero otherwise

File Name: iscntrl.c
apRNOVT^-page 112  2002 Microchip Technology Inc.

General Software Library
isdigit

Function: Determine if a character is a decimal digit.

Include: ctype.h

Prototype: unsigned char isdigit(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a digit character if it is in the

range of ‘0’ to ‘9’.

Return Value: Non-zero if the character is a digit character

Zero otherwise

File Name: isdigit.c

isgraph

Function: Determine if a character is a graphical character.

Include: ctype.h

Prototype: unsigned char isgraph(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a graphical case alphabetic

character if it is any printable character except space.

Return Value: Non-zero if the character is a graphical character

Zero otherwise

File Name: isgraph.c

islower

Function: Determine if a character is a lower case alphabetic character.

Include: ctype.h

Prototype: unsigned char islower(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a lower case alphabetic

character if it is in the range of ‘a’ to ‘z’.

Return Value: Non-zero if the character is a lower case alphabetic character

Zero otherwise

File Name: islower.c
 2002 Microchip Technology Inc. apRNOVT^-page 113

MPLAB® C18 C Compiler Libraries
isprint

Function: Determine if a character is a printable character.

Include: ctype.h

Prototype: unsigned char isprint(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a printable character if it is in the

range 0x20 to 0x7e, inclusive.

Return Value: Non-zero if the character is a printable character

Zero otherwise

File Name: isprint.c

ispunct

Function: Determine if a character is a punctuation character.

Include: ctype.h

Prototype: unsigned char ispunct(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a punctuation character if it is a

printable character which is neither a space nor an

alphanumeric character.

Return Value: Non-zero if the character is a punctuation character

Zero otherwise

File Name: ispunct.c

isspace

Function: Determine if a character is a white space character.

Include: ctype.h

Prototype: unsigned char isspace (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a white space character if it is

one of the following: space (‘ ’), tab(‘\t’), carriage return (‘\r’),

new line (‘\n’), form feed (‘\f’) or vertical tab (‘\v’).

Return Value: Non-zero if the character is a white space character

Zero otherwise

File Name: isspace.c
apRNOVT^-page 114  2002 Microchip Technology Inc.

General Software Library
isupper

Function: Determine if a character is an upper case alphabetic character.

Include: ctype.h

Prototype: unsigned char isupper (unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be an upper case alphabetic

character if it is in the range of ‘A’ to ‘Z’.

Return Value: Non-zero if the character is an upper case alphabetic character

Zero otherwise

File Name: isupper.c

isxdigit

Function: Determine if a character is a hexadecimal digit.

Include: ctype.h

Prototype: unsigned char isxdigit(unsigned char ch);

Arguments: ch
Character to be checked.

Remarks: A character is considered to be a HEX digit character if it is in

the range of ‘0’ to ‘9’, ‘a’ to ‘f’ or ‘A’ to ‘F’.

Return Value: Non-zero if the character is a HEX digit character

Zero otherwise

File Name: isxdig.c
 2002 Microchip Technology Inc. apRNOVT^-page 115

MPLAB® C18 C Compiler Libraries
4.3 DATA CONVERSION FUNCTIONS

Except as noted in the function descriptions, these functions are consistent with the

ANSI 1989 standard C library functions of the same name. The following functions are

provided:

4.3.1 Function Descriptions

Function Description

atob Convert a string to an 8-bit signed byte.

atof Convert a string into a floating point value.

atoi Convert a string to a 16-bit signed integer.

atol Convert a string into a long integer representation.

btoa Convert an 8-bit signed byte to a string.

itoa Convert a 16-bit signed integer to a string.

ltoa Convert a signed long integer to a string.

rand Generate a pseudo-random integer.

srand Set the starting seed for the pseudo-random number generator.

tolower Convert a character to a lower case alphabetical ASCII character.

toupper Convert a character to an upper case alphabetical ASCII character.

ultoa Convert an unsigned long integer to a string.

atob

Function: Convert a string to an 8-bit signed byte.

Include: stdlib.h

Prototype: signed char atob(const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into an 8-bit signed

byte (-128 to 127). The input string must be in base 10 (decimal

radix) and can begin with a character indicating sign ('+' or '-').

Overflow results are undefined. This function is an MPLAB C18

extension to the ANSI standard libraries.

Return Value: 8-bit signed byte for all strings in the range (-128 to 127).

File Name: atob.asm
apRNOVT^-page 116  2002 Microchip Technology Inc.

General Software Library

atof

Function: Convert a string into a floating point value.

Include: stdlib.h

Prototype: double atof (const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into a floating point

value. Examples of floating point strings that are recognized are:
-3.1415
1.0E2
1.0E+2
1.0E-2

Return Value: The function returns the converted value.

File Name: atof.c

atoi

Function: Convert a string to a 16-bit signed integer.

Include: stdlib.h

Prototype: int atoi(const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into an 16-bit signed

integer (-32768 to 32767). The input string must be in base 10

(decimal radix) and can begin with a character indicating sign

('+' or '-'). Overflow results are undefined. This function is an

MPLAB C18 extension to the ANSI standard libraries.

Return Value: 16-bit signed integer for all strings in the range (-32768 to

32767).

File Name: atoi.asm

atol

Function: Convert a string into a long integer representation.

Include: stdlib.h

Prototype: long atol(const char * s);

Arguments: s
Pointer to ASCII string to be converted.

Remarks: This function converts the ASCII string s into a long value. The

input string must be in base 10 (decimal radix) and can begin

with a character indicating sign ('+' or '-'). Overflow results are

undefined. This function is an MPLAB C18 extension to the

ANSI standard libraries.

Return Value: The function returns the converted value.

File Name: atol.asm
 2002 Microchip Technology Inc. apRNOVT^-page 117

MPLAB® C18 C Compiler Libraries
btoa

Function: Convert an 8-bit signed byte to a string.

Include: stdlib.h

Prototype: char * btoa(signed char value,
 char * string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string that will hold the result. string must be

long enough to hold the ASCII representation, including the sign

character for negative values and a trailing null character.

Remarks: This function converts the 8-bit signed byte in the argument

value to a ASCII string representation.

This function is an MPLAB C18 extension of the ANSI required

libraries.

Return Value: Pointer to the result string.

File Name: btoa.asm

itoa

Function: Convert a 16-bit signed integer to a string.

Include: stdlib.h

Prototype: char * itoa(int value,
 char * string);

Arguments: value
An 8-bit signed byte.
string
Pointer to ASCII string that will hold the result. string must be

long enough to hold the ASCII representation, including the sign

character for negative values and a trailing null character.

Remarks: This function converts the 16-bit signed integer in the argument

value to a ASCII string representation.

This function is an MPLAB C18 extension of the ANSI required

libraries.

Return Value: Pointer to the result string.

File Name: itoa.asm
apRNOVT^-page 118  2002 Microchip Technology Inc.

General Software Library
ltoa

Function: Convert a signed long integer to a string.

Include: stdlib.h

Prototype: char * ltoa(long value,
 char * string);

Arguments: value
A signed long integer to be converted.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the signed long integer in the argument

value to a ASCII string representation. string must be long

enough to hold the ASCII representation, including the sign

character for negative values and a trailing null character. This

function is an MPLAB C18 extension to the ANSI required

libraries.

Return Value: Pointer to the result string.

File Name: ltoa.asm

rand

Function: Generate a pseudo-random integer.

Include: stdlib.h

Prototype: int rand(void);

Remarks: Calls to this function return pseudo-random integer values in the

range [0,32767]. To use this function effectively, you must seed

the random number generator using the srand() function. This

function will always return the same sequence of integers when

identical seed values are used.

Return Value: A psuedo-random integer value.

File Name: rand.asm

srand

Function: Set the starting seed for the pseudo-random number sequence.

Include: stdlib.h

Prototype: void rand(unsigned int seed);

Arguments: seed
The starting value for the pseudo-random number sequence.

Remarks: This function sets the starting seed for the pseudo-random

number sequence generated by the rand() function. The

rand() function will always return the same sequence of

integers when identical seed values are used. If rand() is called

without srand() having first been called, the sequence of num-

bers generated will be the same as if srand() had been called

with a seed value of 1.

File Name: rand.asm
 2002 Microchip Technology Inc. apRNOVT^-page 119

MPLAB® C18 C Compiler Libraries
tolower

Function: Convert a character to a lower case alphabetical ASCII

character.

Include: ctype.h

Prototype: char tolower(char ch);

Arguments: ch
Character to be converted.

Remarks: This function converts ch to a lower case alphabetical ASCII

character provided that the argument is a valid upper case

alphabetical character.

Return Value: This function returns a lower case character if the argument was

upper case to begin with; otherwise the original character is

returned.

File Name: tolower.c

toupper

Function: Convert a character to an upper case alphabetical ASCII

character.

Include: ctype.h

Prototype: char toupper(char ch);

Arguments: ch
Character to be converted.

Remarks: This function converts ch to a upper case alphabetical ASCII

character provided that the argument is a valid lower case

alphabetical character.

Return Value: This function returns a lower case character if the argument was

upper case to begin with; otherwise the original character is

returned.

File Name: toupper.c

ultoa

Function: Convert an unsigned long integer to a string.

Include: stdlib.h

Prototype: char * ultoa(unsigned long value,
 char * string);

Arguments: value

An unsigned long integer to be converted.
string
Pointer to ASCII string that will hold the result.

Remarks: This function converts the unsigned long integer in the argument

value to a ASCII string representation. string must be long

enough to hold the ASCII representation, including a trailing null

character. This function is an MPLAB C18 extension to the ANSI

required libraries.

Return Value: Pointer to the result string.

File Name: ultoa.asm
apRNOVT^-page 120  2002 Microchip Technology Inc.

General Software Library
4.4 MEMORY AND STRING MANIPULATION FUNCTIONS

Except as noted in the function descriptions, these functions are consistent with the

ANSI (1989) standard C library functions of the same name. The following functions

are provided:

Function Description

memchr Search for a value in a specified memory region.

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm

Compare the contents of two arrays.

memcpy
memcpypgm2ram

Copy a buffer from data or program memory into data

memory.

memmove
memmovepgm2ram

Copy a buffer from data or program memory into data

memory.

memset Initialize an array with a single repeated value.

strcat
strcatpgm2ram

Append a copy of the source string to the end of the

destination string.

strchr Locate the first occurrence of a value in a string.

strcmp
strcmppgm2ram

Compare two strings.

strcpy
strcpypgm2ram

Copy a string from data or program memory into data

memory.

strcspn Calculate the number of consecutive characters at the

beginning of a string that are not contained in a set of

characters.

strlen Determine the length of a string.

strlwr Convert all upper case characters in a string to lower case.

strncat
strncatpgm2ram

Append a specified number of characters from the source

string to the end of the destination string.

strncmp Compare two strings, up to a specified number of characters.

strncpy
strncpypgm2ram

Copy characters from the source string into the destination

string, up to the specified number of characters.

strpbrk Search a string for the first occurrence of a character from a

set of characters.

strrchr Locate the last occurrence of a specified character in a string.

strspn Calculate the number of consecutive characters at the

beginning of a string that are contained in a set of characters.

strstr Locate the first occurrence of a string inside another string.

strtok Break a string into substrings, or tokens, by inserting null

characters in place of specified delimiters.

strupr Convert all lower case characters in a string to upper case.
 2002 Microchip Technology Inc. apRNOVT^-page 121

MPLAB® C18 C Compiler Libraries
4.4.1 Function Descriptions

memchr

Function: Locate the first occurrence of a byte value in a specified mem-

ory region.

Include: string.h

Prototype: void * memchr(const void *mem,
 unsigned char c,
 size_t n);

Arguments: mem
Pointer to a memory region.
c
Byte value to find.
n
Maximum number of bytes to search.

Remarks: This function searches up to n bytes of the region mem to find the

first occurrence of c.

This function differs from the ANSI specified function in that c is

defined as an unsigned char parameter rather than an int

parameter.

Return Value: If c appears in the first n bytes of mem, this function returns a

pointer to the character in mem. Otherwise, it returns a null

pointer.

File Names: memchr.asm

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm

Function: Compare the contents of two arrays of bytes.

Include: string.h

Prototype: signed char memcmp(
 const void * buf1,
 const void * buf2,
 size_t memsize);
signed char memcmppgm(
 const rom void * buf1,
 const rom void * buf2,
 sizerom_t memsize);
signed char memcmppgm2ram(
 const void * buf1,
 const rom void * buf2,
 sizeram_t memsize);
signed char memcmpram2pgm(
 const rom void * buf1,
 const void * buf2,
 sizeram_t memsize);
apRNOVT^-page 122  2002 Microchip Technology Inc.

General Software Library
Arguments: buf1
Pointer to first array.
buf2
Pointer to second array.
memsize
Number of elements to be compared in arrays.

Remarks: This function compares the first memsize number of bytes in

buf1 to the first memsize number of bytes in buf2 and returns a

value indicating whether the buffers are less than, equal to or

greater than each other.

Return Value: memcmp returns a value that is:

<0 if buf1 is less than buf2

==0 if buf1 is the same as buf2

>0 if buf1 is greater than buf2

File Names: memcmp.asm
memcmpp2p.asm
memcmpp2r.asm
memcmpr2p.asm

memcpy
memcpypgm2ram

Function: Copy the contents of the source buffer into the destination

buffer.

Include: string.h

Prototype: void * memcpy(
 void * dest,
 const void * src,
 size_t memsize);
void * memcpypgm2ram(
 void * dest,
 const rom void * src,
 sizeram_t memsize);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
memsize
Number of bytes of src array to copy into dest.

Remarks: This function copies the first memsize number of bytes in src to

the array dest. If src and dest overlap, the behavior is

undefined.

Return Value: This function returns the value of dest.

File Names: memcpy.asm
memcpyp2r.asm

memcmp
memcmppgm
memcmppgm2ram
memcmpram2pgm (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 123

MPLAB® C18 C Compiler Libraries

memmove
memmovepgm2ram

Function: Copy the contents of the source buffer into the destination

buffer, even if the regions overlap.

Include: string.h

Prototype: void * memmove(void * dest,
 const void * src,
 size_t memsize);
void * memmovepgm2ram(
 void * dest,
 const rom void * src,
 sizeram_t memsize);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
memsize
Number of bytes of src array to copy into dest.

Remarks: This function copies the first memsize number of bytes in src to

the array dest. This function performs correctly even if src and

dest overlap.

Return Value: This function returns the value of dest.

File Names: memmove.asm
memmovp2r.asm

memset

Function: Copy the specified character into the destination array.

Include: string.h

Prototype: void * memset(void * dest,
 unsigned char value,
 size_t memsize);

Arguments: dest
Pointer to destination array.
value
Character value to be copied.
memsize
Number of bytes of dest into which value is copied.

Remarks: This function copies the character value into the first memsize

bytes of the array dest. This functions differs from the ANSI

specified function in that value is defined as an unsigned char

rather than as an int parameter.

Return Value: This function returns the value of dest.

File Name: memset.asm
apRNOVT^-page 124  2002 Microchip Technology Inc.

General Software Library

strcat
strcatpgm2ram

Function: Append a copy of the source string to the end of the destination

string.

Include: string.h

Prototype: char * strcat(char * dest,
 const char * src);
char * strcatpgm2ram(
 char * dest,
 const rom char * src);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.

Remarks: This function copies the string in src to the end of the string in

dest. The src string starts at the null in dest. A null character is

added to the end of the resulting string in dest. If src and dest

overlap, the behavior is undefined.

Return Value: This function returns the value of dest.

File Names: strcat.asm
scatp2r.asm

strchr

Function: Locate the first occurrence of a specified character in a string.

Include: string.h

Prototype: char * strchr(const char * str,
 const char c);

Arguments: str
Pointer to a string to be searched.
c
Character to find.

Remarks: This function searches the string str to find the first occurrence

of character c.

This function differs from the ANSI specified function in that c is

defined as an unsigned char parameter rather than an int

parameter.

Return Value: If c appears in str, this function returns a pointer to the

character in str. Otherwise, it returns a null pointer.

File Names: strchr.asm
 2002 Microchip Technology Inc. apRNOVT^-page 125

MPLAB® C18 C Compiler Libraries

strcmp
strcmppgm2ram

Function: Compare two strings.

Include: string.h

Prototype: signed char strcmp(
 const char * str1,
 const char * str2);
signed char strcmppgm2ram(
 const char * str1,
 const rom char * str2);

Arguments: str1
Pointer to first string.
str2
Pointer to second string.

Remarks: This function compares the string in str1 to the string in str2

and returns a value indicating if str1 is less than, equal to or

greater than str2.

Return Value: strcmp returns a value that is:

<0 if str1 is less than str2

==0 if str1 is the same as str2

>0 if str1 is greater than str2

File Name: strcmp.asm
scmpp2r.asm

strcpy
strcpypgm2ram

Function: Copy the source string into the destination string.

Include: string.h

Prototype: char * strcpy(char * dest,
 const char * src);
char * strcpypgm2ram(
 char * dest,
 const rom char *src);

Arguments: dest
Pointer to destination string.
src
Pointer to source string.

Remarks: This function copies the string in src to dest. Characters in src

are copied up to, and including, the terminating null character in

src. If src and dest overlap, the behavior is undefined.

Return Value: This function returns the value of dest.

File Name: strcpy.asm
scpyp2r.asm
apRNOVT^-page 126  2002 Microchip Technology Inc.

General Software Library
strcspn

Function: Calculate the number of consecutive characters at the

beginning of a string that are not contained in a set of

characters.

Include: string.h

Prototype: size_t * strcspn(const char * str1,
 const char * str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will determine the number of consecutive

characters from the beginning of str1 that are not contained in

str2. For example:

str1 str2 result

"hello" "aeiou" 1

"antelope" "aeiou" 0

"antelope" "xyz" 8

Return Value: This function returns the number of consecutive characters from

the beginning of str1 that are not contained in str2, as shown

in the examples above.

File Names: strcspn.asm

strlen

Function: Return the length of the string.

Include: string.h

Prototype: size_t strlen(const char * str);

Arguments: str
Pointer to string.

Remarks: This function determines the length of the string, not including

the terminating null character.

Return Value: This function returns the length of the string.

File Name: strlen.asm

strlwr

Function: Convert all upper case characters in a string to lower case.

Include: string.h

Prototype: char * strlwr(char * str);

Arguments: str
Pointer to string.

Remarks: This function converts all upper case characters in str to lower

case characters. All characters that are not upper case (A to Z)

are not affected.

Return Value: This function returns the value of str.

File Name: strlwr.asm
 2002 Microchip Technology Inc. apRNOVT^-page 127

MPLAB® C18 C Compiler Libraries
strncat
strncatpgm2ram

Function: Append a specified number of characters from the source string

to the destination string.

Include: string.h

Prototype: char * strncat(char * dest,
 const char * src,
 size_t n);
char * strncatpgm2ram(
 char * dest,
 const rom char * src,
 sizeram_t n);

Arguments: dest
Pointer to destination array.
src
Pointer to source array.
n
Number of characters to append.

Remarks: This function appends exactly n characters from the string in

src to the end of the string in dest. If a null character is copied

before n characters have been copied, null characters will be

appended to dest until exactly n characters have been

appended.

If src and dest overlap, the behavior is undefined.

If a null character is not encountered, then a null character is not

appended.

Return Value: This function returns the value of dest.

File Names: strncat.asm
sncatp2r.asm

strncmp

Function: Compare two strings, up to a specified number of characters.

Include: string.h

Prototype: signed char strncmp(const char * str1,
 const char * str2,
 size_t n);

Arguments: str1
Pointer to first string.
str2
Pointer to second string.
n
Maximum number of characters to compare.

Remarks: This function compares the string in str1 to the string in str2

and returns a value indicating if str1 is less than, equal to or

greater than str2. If n characters are compared and no

differences are found, this function will return a value indicating

that the strings are equivalent.
apRNOVT^-page 128  2002 Microchip Technology Inc.

General Software Library

Return Value: strncmp returns a value based on the first character that differs

between str1 and str2. It returns:

<0 if str1 is less than str2

==0 if str1 is the same as str2

>0 if str1 is greater than str2

File Name: strncmp.asm

strncpy
strncpypgm2ram

Function: Copy characters from the source string into the destination

string, up to the specified number of characters.

Include: string.h

Prototype: char * strncpy(char * dest,
 const char * src,
 size_t n);
char *strncpypgm2ram(
 char * dest,
 const rom char * src,
 sizeram_t n);

Arguments: dest
Pointer to destination string.
src
Pointer to source string.
n
Maximum number of characters to copy.

Remarks: This function copies the string in src to dest. Characters in src

are copied into dest until the terminating null character or n

characters have been copied. If n characters were copied and

no null character was found then dest will not be

null-terminated.

If copying takes place between objects that overlap, the

behavior is undefined.

Return Value: This function returns the value of dest.

File Name: strncpy.asm
sncpyp2r.asm

strncmp (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 129

MPLAB® C18 C Compiler Libraries
strpbrk

Function: Search a string for the first occurrence of a character from a

specified set of characters.

Include: string.h

Prototype: char * strpbrk(const char * str1,
 const char * str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.

Remarks: This function will search str1 for the first occurrence of a

character contained in str2.

Return Value: If a character in str2 is found, a pointer to that character in str1

is returned. If no character from str2 is found in str1, a null

pointer is returned.

File Names: strpbrk.asm

strrchr

Function: Locate the last occurrence of a specified character in a string.

Include: string.h

Prototype: char * strrchr(const char * str,
 const char c);

Arguments: str
Pointer to a string to be searched.
c
Character to find.

Remarks: This function searches the string str, including the terminating

null character, to find the last occurrence of character c.

This function differs from the ANSI specified function in that c is

defined as an unsigned char parameter rather than an int

parameter.

Return Value: If c appears in str, this function returns a pointer to the

character in str. Otherwise, it returns a null pointer.

File Names: strrchr.asm

strspn

Function: Calculate the number of consecutive characters at the

beginning of a string that are contained in a set of characters.

Include: string.h

Prototype: size_t * strspn(const char * str1,
 const char * str2);

Arguments: str1
Pointer to a string to be searched.
str2
Pointer to a string that is treated as a set of characters.
apRNOVT^-page 130  2002 Microchip Technology Inc.

General Software Library
Remarks: This function will determine the number of consecutive

characters from the beginning of str1 that are contained in

str2. For example:

str1 str2 result

"banana" "ab" 2

"banana" "abn" 6

"banana" "an" 0

Return Value: This function returns the number of consecutive characters from

the beginning of str1 that are contained in str2, as shown in

the examples above.

File Names: strspn.asm

strstr

Function: Locate the first occurrence of a string inside another string.

Include: string.h

Prototype: char * strstr(const char * str,
 const char * substr);

Arguments: str
Pointer to a string to be searched.
substr
Pointer to a string pattern for which to search.

Remarks: This function will find the first occurrence of the string substr

(excluding the null terminator) within string str.

Return Value: If the string is located, a pointer to that string in str will be

returned. Otherwise a null pointer is returned.

File Names: strstr.asm

strtok

Function: Break a string into substrings, or tokens, by inserting null

characters in place of specified delimiters.

Include: string.h

Prototype: char * strtok(char * str,
 const char * delim);

Arguments: str
Pointer to a string to be searched.
delim
Pointer to a set of characters that indicate the end of a token.

strspn (Continued)
 2002 Microchip Technology Inc. apRNOVT^-page 131

MPLAB® C18 C Compiler Libraries
Remarks: This function can be used to split up a string into substrings by

replacing specified characters with null characters. The first time

this function is invoked on a particular string, that string should

be passed in str. After the first time, this function can continue

parsing the string from the last delimiter by invoking it with a null

value passed in str.

When strtok is invoked with a non-null parameter for str, it

starts searching str from the beginning. It skips all leading

characters that appear in the string delim, then skips all

characters not appearing in delim, then sets the next character

to null.

When strtok is invoked with a null parameter for str, it

searches the string that was most recently examined, beginning

with the character after the one that was set to null during the

previous call. It skips all characters not appearing in delim, then

sets the next character to null.

If strtok finds the end of the string before it finds a delimiter, it

does not modify the string.

The set of characters that is passed in delim need not be the

same for each call to strtok.

Return Value: If a delimiter was found, this function returns a pointer into str

to the first character that was searched that did not appear in

the set of characters delim. This character represents the first

character of a token that was created by the call.

If no delimiter was found prior to the terminating null character, a

null pointer is returned from the function.

File Names: strtok.asm

strupr

Function: Convert all lower case characters in a string to upper case.

Include: string.h

Prototype: char * strupr(char * str);

Arguments: str
Pointer to string.

Remarks: This function converts all lower case characters in str to upper

case characters. All characters that are not lower case (a to z)

are not affected.

Return Value: This function returns the value of str.

File Name: strupr.asm

strtok (Continued)
apRNOVT^-page 132  2002 Microchip Technology Inc.

General Software Library
4.5 DELAY FUNCTIONS

The delay functions execute code for a specific number of processor instruction

cycles. For time-based delays, the processor operating frequency must be taken into

account. The following routines are provided:

4.5.1 Function Descriptions

Function Description

Delay1TCY Delay one instruction cycle.

Delay10TCYx Delay in multiples of 10 instruction cycles.

Delay100TCYx Delay in multiples of 100 instruction cycles.

Delay1KTCYx Delay in multiples of 1,000 instruction cycles.

Delay10KTCYx Delay in multiples of 10,000 instruction cycles.

Delay1TCY

Function: Delay 1 instruction cycle (Tcy).

Include: delays.h

Prototype: void Delay1TCY(void);

Remarks: This function is actually a #define for the NOP() instruction.

When encountered in the source code, the compiler simply

inserts a NOP().

File Name: #define in delays.h

Delay10TCYx

Function: Delay in multiples of 10 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10TCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range

[1,255] will delay (unit * 10) cycles. A value of 0 causes a delay

of 2,560 cycles.

Remarks: This function creates a delay in multiples of 10 instruction

cycles.

File Name: d10tcyx.asm

Delay100TCYx

Function: Delay in multiples of 100 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay100TCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range

[1,255] will delay (unit * 100) cycles. A value of 0 causes a

delay of 25,600 cycles.

Remarks: This function creates a delay in multiples of 100 instruction

cycles.

File Name: d100tcyx.asm
 2002 Microchip Technology Inc. apRNOVT^-page 133

MPLAB® C18 C Compiler Libraries
Delay1KTCYx

Function: Delay in multiples of 1,000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay1KTCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range

[1,255] will delay (unit * 1000) cycles. A value of 0 causes a

delay of 256,000 cycles.

Remarks: This function creates a delay in multiples of 1,000 instruction

cycles.

File Name: d1ktcyx.asm

Delay10KTCYx

Function: Delay in multiples of 10,000 instruction cycles (Tcy).

Include: delays.h

Prototype: void Delay10KTCYx(unsigned char unit);

Arguments: unit
The value of unit can be any 8-bit value. A value in the range

[1,255] will delay (unit * 10000) cycles. A value of 0 causes a

delay of 2,560,000 cycles.

Remarks: This function creates a delay in multiples of 10,000 instruction

cycles.

File Name: d10ktcyx.asm
apRNOVT^-page 134  2002 Microchip Technology Inc.

General Software Library
4.6 RESET FUNCTIONS

The RESET functions may be used to help determine the source of a RESET or

wake-up event and for reconfiguring the processor status following a RESET. The

following routines are provided:

4.6.1 Function Descriptions

Function Description

isBOR Determine if the cause of a RESET was the Brown-Out Reset circuit.

isLVD Determine if the cause of a RESET was a low voltage detect condi-

tion.

isMCLR Determine if the cause of a RESET was the MCLR pin.

isPOR Detect a Power-on RESET condition.

isWDTTO Determine if the cause of a RESET was a watchdog timer time out.

isWDTWU Determine if the cause of a wake-up was the watchdog timer.

isWU Detects if the microcontroller was just waken up from SLEEP from the

MCLR pin or an interrupt.

StatusReset Set the POR and BOR bits.

Note: If you are using Brown-out Reset (BOR) or the Watchdog Timer (WDT),

you must define the enable macros (#define BOR_ENABLED and #define

WDT_ENABLED, respectively) in the header file reset.h and recompile the

source code.

isBOR

Function: Determine if the cause of a RESET was the Brown-out Reset

circuit.

Include: reset.h

Prototype: char isBOR(void);

Remarks: This function detects if the microcontroller was reset due to the

Brown-out Reset circuit. This condition is indicated by the fol-

lowing status bits:

POR = 1

BOR = 0

Return Value: 1 if the RESET was due to the Brown-out Reset circuit

0 otherwise

File Name: isbor.c
 2002 Microchip Technology Inc. apRNOVT^-page 135

MPLAB® C18 C Compiler Libraries

isLVD

Function: Determine if the cause of a RESET was a low voltage detect

condition.

Include: reset.h

Prototype: char isLVD(void);

Remarks: This function detects if the voltage of the device has become

lower than the value specified in the LVDCON register

(LVDL3:LVDL0 bits.)

Return Value: 1 if a RESET was due to LVD during normal operation

0 otherwise

File Name: islvd.c

isMCLR

Function: Determine if the cause of a RESET was the MCLR pin.

Include: reset.h

Prototype: char isMCLR(void);

Remarks: This function detects if the microcontroller was reset via the

MCLR pin while in normal operation. This situation is indicated

by the following status bits:

POR = 1

If Brown-out is enabled, BOR = 1

If WDT is enabled, TO = 1

PD = 1

Return Value: 1 if the RESET was due to MCLR during normal operation

0 otherwise

File Name: ismclr.c

isPOR

Function: Detect a Power-on Reset condition.

Include: reset.h

Prototype: char isPOR(void);

Remarks: This function detects if the microcontroller just left a Power-on

Reset. This condition is indicated by the following status bits:

POR = 0

BOR = 0

TO = 1

PD = 1

This condition also can occur for MCLR during normal operation

and when the CLRWDT instruction is executed.

After isPOR is called, StatusReset should be called to set the

POR and BOR bits.

Return Value: 1 if the device just left a Power-on Reset

0 otherwise

File Name: ispor.c
apRNOVT^-page 136  2002 Microchip Technology Inc.

General Software Library
isWDTTO

Function: Determine if the cause of a RESET was a watchdog timer

(WDT) time out.

Include: reset.h

Prototype: char isWDTTO(void);

Remarks: This function detects if the microcontroller was reset due to the

WDT during normal operation. This condition is indicated by the

following status bits:

POR = 1

BOR = 1

TO = 0

PD = 1

Return Value: 1 if the RESET was due to the WDT during normal operation

0 otherwise

File Name: iswdtto.c

isWDTWU

Function: Determine if the cause of a wake-up was the watchdog timer

(WDT).

Include: reset.h

Prototype: char isWDTWU(void);

Remarks: This function detects if the microcontroller was brought out of

SLEEP by the WDT. This condition is indicated by the following

status bits:

POR = 1

BOR = 1

TO = 0

PD = 0

Return Value: 1 if device was brought out of SLEEP by the WDT

0 otherwise

File Name: iswdtwu.c

isWU

Function: Detects if the microcontroller was just waken up from SLEEP via

the MCLR pin or interrupt.

Include: reset.h

Prototype: char isWU(void);

Remarks: This function detects if the microcontroller was brought out of

SLEEP by the MCLR pin or an interrupt. This condition is

indicated by the following status bits:

POR = 1

BOR = 1

TO = 1

PD = 0

Return Value: 1 if the device was brought out of SLEEP by the MCLR pin or

an interrupt

0 otherwise

File Name: iswu.c
 2002 Microchip Technology Inc. apRNOVT^-page 137

MPLAB® C18 C Compiler Libraries
StatusReset

Function: Set the POR and BOR bits in the CPUSTA register.

Include: reset.h

Prototype: void StatusReset(void);

Remarks: This function sets the POR and BOR bits in the CPUSTA register.

These bits must be set in software after a Power-on Reset has

occurred.

File Name: statrst.c
apRNOVT^-page 138  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES
Chapter 5. Math Libraries
5.1 INTRODUCTION

This chapter documents math library functions. For more information on math

libraries, see the Embedded Control Handbook, Volume 2 (DS00167). See the

MPASM User's Guide with MPLINK and MPLIB for more information on creating and

using libraries in general.

This chapter includes the following sections:

• 32-Bit Integer and 32-Bit Floating Point Math Libraries

• Decimal/Floating Point and Floating Point/Decimal Conversions

5.2 32-BIT INTEGER AND 32-BIT FLOATING POINT MATH LIBRARIES

The math routines used by MPLAB C18 are based on the Microchip Application Note

AN575. Source code for the routines may be found in the src\math subdirectory of

the compiler installation. These source files have been compiled into object code and

added to the clib.lib standard library, which may be found in the lib subdirectory.

The clib.lib file is included when using the linker script files provided with

MPLAB C18.

The mathematical functions performed by the floating point library routines are: 32-bit

signed integer multiplication and division, 32-bit unsigned integer multiplication and

division and 32-bit floating-point multiplication and division. The routines also contain

functions that convert from 8-, 16-, 24- and 32-bit signed and unsigned integers to

32-bit floating point, as well as a 32-bit floating point conversion to 32-bit integer.

5.2.1 Floating Point Representation

Floating point numbers are represented in a modified IEEE-754 format. This format

allows the floating-point routines to take advantage of the processor architecture and

reduce the amount of overhead required in the calculations. The representation is

shown below compared to the IEEE-754 format:

where s is the sign bit, y is the LSb of the exponent and x is a placeholder for the

mantissa and exponent bits.

The two formats may be easily converted from one to the other by manipulation of the

Exponent and Mantissa 0 bytes. The following assembly code shows an example of

this operation.

Format Exponent Mantissa 0 Mantissa 1 Mantissa 2

IEEE-754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx

Microchip xxxx xxxy sxxx xxxx xxxx xxxx xxxx xxxx
 2002 Microchip Technology Inc. apRNOVT^-page 139

MPLAB® C18 C Compiler Libraries
EXAMPLE 5-1: IEEE-754 TO MICROCHIP

Rlcf MANTISSA0
Rlcf EXPONENT
Rrcf MANTISSA0

EXAMPLE 5-2: MICROCHIP TO IEEE-754

Rlcf MANTISSA0
Rrcf EXPONENT
Rrcf MANTISSA0

5.2.2 Variables Used by the Floating Point Libraries

Several 8-bit RAM registers are used by the math routines to hold the operands for

and results of floating point and integer operations. Since there may be two operands

required for a floating point operation (such as multiplication or division), there are two

sets of exponent and mantissa registers reserved (A and B). For argument A, AEXP

holds the exponent and AARGB0, AARGB1 and AARGB2 hold the mantissa. For

argument B, BEXP holds the exponent and BARGB0, BARGB1 and BARGB2 hold the

mantissa.

For 32-bit integers, AARGB0, AARGB1, AARGB2 and AARGB3 or BARGB0,

BARGB1, BARGB2 and BARGB3 are used to hold the operands. Results of integer

operations will be placed in AARGB0, AARGB1, AARGB2 and AARGB3. In the case

of 32-bit division, the remainder is placed in an additional set of registers, REMB0,

REMB1, REMB2 and REMB3. The MSB of the 32-bit integer is contained in AARGB0,

BARGB0 or REMB0.

5.3 DECIMAL/FLOATING POINT AND FLOATING POINT/DECIMAL
CONVERSIONS

The details of how decimal numbers are converted to floating point numbers and how

floating point numbers are converted to decimal numbers are discussed in the

following sections.

5.3.1 Converting Decimal to Microchip Floating Point

There are several methods that will allow the conversion of decimal (base 10)

numbers to Microchip floating point format. Microchip provides a PC utility called

FPREP.EXE, which will convert decimal numbers to floating point for use in the math

library routines. This utility may be downloaded from the Microchip web site along with

the AN575 source code.

Alternatively, the floating point equivalent to decimal numbers may be calculated

longhand. To calculate the floating point via a longhand method, both the exponent

and mantissa must be found.

Note: The MSB of the mantissa is stored in the AARGB0 or BARGB0 byte.

Results of the floating point routines are placed in the AEXP and

AARGB0:2 registers.
apRNOVT^-page 140  2002 Microchip Technology Inc.

Math Libraries
To find the exponent, the following formulae are used:

EQUATION 5-1:

2Z = A10

EQUATION 5-2:

Exp = int(Z)

where Z is the fractional exponent, A10 is the original decimal number, and Exp is the

integer portion of Z.

To solve for the exponent, first begin by rearranging Equation 5-1 to solve for Z.

If Z is positive, then it is rounded to the next larger integer value. If Z is negative, then

it is rounded to the next smaller integer value. The resulting value is Exp.

Finally, a bias value of 0x7F is added to convert Exp to Microchip floating point format

(ExpMFP).

ExpMFP = Exp + 0x7F

To find the mantissa, the exponent value just determined must be removed from the

original decimal number, using division.

EQUATION 5-3:

where x is the fractional portion of the mantissa, and A10 and Z are values as

described above.

To determine the binary representation of the mantissa, x is compared in turn to

decreasing powers of 2, starting with 20 and decreasing to 2-23. If x is greater than or

equal to the power of 2 currently being compared, a ‘1’ is placed in the corresponding

bit position of the binary representation and the power of 2 value is subtracted from x.

The new x is then used for the next decreasing power of 2 comparison. If x is less

than the power of 2 currently being compared, a ‘0’ is placed in the bit position and no

subtraction occurs. The same value of x is used to compare to the next power of 2

value.

This process repeats until all 24 bits have been determined or until subtraction yields

an x value of 0. Finally, to convert this 24-bit value to Microchip floating point format,

the MSb is substituted with the sign of the original decimal number, i.e., ‘1’ for

negative or ‘0’ for positive.

Note: x will always be a value greater than 1.

Z =
ln (A10)

ln (2)

x =
A10

2Z
 2002 Microchip Technology Inc. apRNOVT^-page 141

MPLAB® C18 C Compiler Libraries
To demonstrate the method of conversion, the same example as in AN575 will be

used, where A10 = 0.15625.

First, find the exponent:

2Z = 0.15625

Exp = int(Z) = -3

Next calculate the fractional portion of the mantissa:

And then the binary representation:

Therefore, the binary representation is:

A2=1.01000000000000000000000.

Finally, convert to Microchip floating point format by placing the proper sign bit in the

MSb of the mantissa and add 0x7F to the calculated exponent. The Microchip floating

point representation of 0.156256 is then 0x7C200000. For more details on the floating

point conversion, please consult AN575.

5.3.2 Converting Microchip Floating-Point to Decimal

The process of converting floating-point number to decimal is relatively simple and

can be done by hand (or using a calculator) to check your results. To convert from

floating point to decimal, the following formula is used:

EQUATION 5-4:

A10 = 2Exp • A2

where Exp is the unbiased exponent and A is the binary expansion of the mantissa.

Some processing of the values stored in AEXP and AARGB0:2 must be performed in

order to use the above formula. The exponent is stored in a biased format, which

simply means that 0x7F has been added to the true exponent that of the number. To

extract the exponent to be used in the above calculation, subtract 0x7F from the value

stored in AEXP.

The sign bit is stored in the MSB of the mantissa. To allow the full 24-bit precision of

the mantissa, the MSB is assumed to be 1 explicitly, once the sign bit is stripped out.

To calculate A2, a simple binary expansion is used, as shown in the formula below.

Since the MSB is explicitly 1, the expansion will always contain the term 20.

x = 1.25 ≥ 20? Yes bit = 1; x = 1.25 - 1 = 0.25

x = 0.25 ≥ 2-1? No bit = 0; x = 0.25

x = 0.25 ≥ 2-2? Yes bit = 1; x = 0.25 - 0.25 = 0

x = 0 Process complete

Z =
ln (0.15625)

ln (2)
= -2.6780719

x =
0.15625

2-3
= 1.25
apRNOVT^-page 142  2002 Microchip Technology Inc.

Math Libraries
EQUATION 5-5:

A2 = 20 + (Bit22) • 2-1 + (Bit21) • 2-2 + ... + (Bit0) • 2-23

As in AN575, we will use the example of the decimal number 50.2654824574. which

has a floating point representation of 0x84490FDB, with the biased exponent being

0x84 and the mantissa (including sign bit) being 0x490FDB. The unbiased exponent is

calculated to be Exp = 0x84 - 0x7F = 0x05. To process the mantissa, it is first

translated to binary format and the MSB is set to prepare for the expansion.

0x490FDB =

0100 1001 0000 1111 1101 10112 →

1100 1001 0000 1111 1101 10112

The expansion is then performed according to Equation 5-5.

A2 = 20 + 2-1 + 2-4 + 2-7 + 2-12 + 2-13 + 2-14 + 2-15 + 2-16 + 2-17 +

2-19 + 2-20 + 2-22 + 2-23

A2 = 1.570796371

Finally, to calculate the actual floating point number, the exponent and expanded

mantissa are plugged into the conversion formula (Equation 5-4).

A10= 25 • 1.570796371

A10= 50.26548387

The result of these calculations are accurate out to about 5 decimal places, with

rounding and calculation errors creating some degree of uncertainty for the remaining

decimal places. For more details on the sources of error, please consult AN575.
 2002 Microchip Technology Inc. apRNOVT^-page 143

MPLAB® C18 C Compiler Libraries
NOTES:
apRNOVT^-page 144  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES
Glossary
A

absolute section

A section with a fixed address that cannot be changed by the linker.

access memory

Special general purpose registers on the PIC18 PICmicro microcontrollers that allow

access regardless of the setting of the bank select register (BSR).

address

The code that identifies where a piece of information is stored in memory.

anonymous structure

An unnamed object.

ANSI

American National Standards Institute

assembler

A language tool that translates assembly source code into machine code.

assembly

A symbolic language that describes the binary machine code in a readable form.

assigned section

A section that has been assigned to a target memory block in the linker command file.

asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to

interrupts that may occur at any time during processor execution.

B

binary

The base two numbering system that uses the digits 0-1. The right-most digit counts

ones, the next counts multiples of 2, then 22 = 4, etc.

C

central processing unit

The part of a device that is responsible for fetching the correct instruction for execution,

decoding that instruction, and then executing that instruction. When necessary, it works

in conjunction with the arithmetic logic unit (ALU) to complete the execution of the

instruction. It controls the program memory address bus, the data memory address

bus, and accesses to the stack.

compiler

A program that translates a source file written in a high-level language into machine

code.
 2002 Microchip Technology Inc. apRNOVT^-page 145

MPLAB® C18 C Compiler Libraries
conditional compilation

The act of compiling a program fragment only if a certain constant expression, specified

by a preprocessor directive, is true.

CPU

Central Processing Unit

E

endianness

The ordering of bytes in a multi-byte object.

error file

A file containing the diagnostics generated by the MPLAB C18

F

fatal error

An error that will halt compilation immediately. No further messages will be produced.

frame pointer

A pointer that references the location on the stack that separates the stack-based

arguments from the stack-based local variables.

free-standing

An implementation that accepts any strictly conforming program that does not use

complex types and in which the use of the features specified in the library clause (ANSI

‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,

<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h>, and <stdint.h>.

H

hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f).

The digits A-F represent decimal values of 10 to 15. The right-most digit counts ones,

the next counts multiples of 16, then 162 = 256, etc.

high-level language

A language for writing programs that is further removed from the processor than

assembly.

I

ICD

In-Circuit Debugger

ICE

In-Circuit Emulator

IDE

Integrated Development Environment

IEEE

Institute of Electrical and Electronics Engineers

interrupt

A signal to the CPU that suspends the execution of a running application and transfers

control to an ISR so that the event may be processed. Upon completion of the ISR,

normal execution of the application resumes.
apRNOVT^-page 146  2002 Microchip Technology Inc.

Glossary
interrupt service routine

A function that handles an interrupt.

ISO

International Organization for Standardization

ISR

Interrupt Service Routine

L

latency

The time between when an event occurs and the response to it.

librarian

A program that creates and manipulates libraries.

library

A collection of relocatable object modules.

linker

A program that combines object files and libraries to create executable code.

little endian

Within a given object, the Least Significant byte is stored at lower addresses.

M

memory model

A description that specifies the size of pointers that point to program memory.

microcontroller

A highly integrated chip that contains a CPU, RAM, some form of ROM, I/O ports, and

timers.

MPASM assembler

Microchip Technology's relocatable macro assembler for PICmicro microcontroller

families.

MPLIB object librarian

Microchip Technology's librarian for PICmicro microcontroller families.

MPLINK object linker

Microchip Technology's linker for PICmicro microcontroller families.

O

object file

A file containing object code. It may be immediately executable or it may require linking

with other object code files, e.g. libraries, to produce a complete executable program.

object code

The machine code generated by an assembler or compiler.

octal

The base 8 number system that only uses the digits 0-7. The right-most digit counts

ones, the next digit counts multiples of 8, then 82 = 64, etc.
 2002 Microchip Technology Inc. apRNOVT^-page 147

MPLAB® C18 C Compiler Libraries
P

pragma

A directive that has meaning to a specific compiler.

R

RAM

Random Access Memory

random access memory

A memory device in which information can be accessed in any order.

read only memory

Memory hardware that allows fast access to permanently stored data but prevents

addition to or modification of the data.

ROM

Read Only Memory

recursive

Self-referential (e.g., a function that calls itself). See recursive.

reentrant

A function that may have multiple, simultaneously active instances. This may happen

due to either direct or indirect recursion or through execution during interrupt

processing.

relocatable

An object whose address has not been assigned to a fixed memory location.

runtime model

Set of assumptions under which the compiler operates.

S

section

A portion of an application located at a specific address of memory.

section attribute

A characteristic ascribed to a section (e.g., an access section).

special function register

Registers that control I/O processor functions, I/O status, timers or other modes or

peripherals.

storage class

Determines the lifetime of the memory associated with the identified object.

storage qualifier

Indicates special properties of the objects being declared (e.g., const).

V

vector

The memory locations that an application will jump to when either a RESET or interrupt

occurs.
apRNOVT^-page 148  2002 Microchip Technology Inc.

MPLAB® C18 C COMPILER

LIBRARIES

Index
Numerics

18CXX Directory ... 107

A

A/D Converter ... 12

Busy ... 12

Close .. 12

Convert .. 12

Example of Use .. 19

Open .. 13, 14, 16

Read .. 18

Set Channel ... 18

AARG ... 140, 142

AckI2C .. 24

AEXP .. 140, 142

Alphabetical Character 112

Alphanumeric Character 112

ANSI ... 7

Asynchronous Mode 61

atob .. 116

atof ... 117

atoi .. 117

atol .. 117

B

BARG ... 140

BEXP .. 140

Brown-out Reset ... 135

btoa .. 118

build.bat .. 7

BusyADC .. 12

BusyUSART ... 58

BusyXLCD .. 69

C

c018.o ... 7

c018i.o .. 7

c018iz.o .. 7

CAN2510, External ... 74

Bit Modify ... 76

Byte Read .. 76

Byte Write .. 76

Data Read .. 77

Data Ready .. 78

Disable ... 78

Enable .. 79

Error State .. 79

Initialize .. 80

Interrupt Enable .. 84

Interrupt Status ... 85

Load Extended to Buffer 86

Load Extended to RTR 87

Load Standard to Buffer 85

Load Standard to RTR 87

Read Mode ... 88

Read Status ... 89

Reset .. 89

Send Buffer .. 89

Sequential Read 90

Sequential Write 90

Set Buffer Priority 91

Set Message Filter to Extended 93

Set Message Filter to Standard 92

Set Mode .. 92

Set Single Filter to Extended 94

Set Single Filter to Standard 94

Set Single Mask to Extended 95

Set Single Mask to Standard 95

Write Extended Message 96

Write Standard Message 96

CAN2510BitModify ... 76

CAN2510ByteRead .. 76

CAN2510ByteWrite ... 76

CAN2510DataRead .. 77

CAN2510DataReady 78

CAN2510Disable .. 78

CAN2510Enable ... 79

CAN2510ErrorState .. 79

CAN2510Init ... 80

CAN2510InterruptEnable 84

CAN2510InterruptStatus 85

CAN2510LoadBufferStd 85

CAN2510LoadBufferXtd 86

CAN2510LoadRTRStd 87

CAN2510LoadRTRXtd 87

CAN2510ReadMode 88

CAN2510ReadStatus 89

CAN2510Reset ... 89

CAN2510SendBuffer 89

CAN2510SequentialRead 90

CAN2510SequentialWrite 90
 2002 Microchip Technology Inc. DS51297A-page 149

MPLAB® C18 C Compiler Libraries
CAN2510SetBufferPriority91

CAN2510SetMode ..92

CAN2510SetMsgFilterStd92

CAN2510SetMsgFilterXtd93

CAN2510SetSingleFilterStd94

CAN2510SetSingleFilterXtd94

CAN2510SetSingleMaskStd95

CAN2510SetSingleMaskXtd95

CAN2510WriteStd ..96

CAN2510WriteXtd ..96

Capture ...20, 21

Close ..20

Example of Use ..23

Open ...20

Read ...22

Character Classification

Alphabetic ...112

Alphanumeric ...112

Control ..112

Decimal ..113

Graphical ..113

Hexadecimal ...115

Lower Case Alphabetic113

Printable ...114

Punctuation ..114

Upper Case Alphabetic115

White Space ...114

Character Classification Functions111

ClearSWCSSPI ...105

clib.lib ..8, 111, 139

Clock_test ...99

CloseADC ...12

CloseCapture ..20

CloseI2C ...25

CloseMwire ...36

ClosePORTB ..33

ClosePWM ..41

CloseRBxINT ..33

CloseSPI ...44

CloseTimer ...50

CloseUSART ..58

Control Character ...112

ConvertADC ..12

Customer Support ...4

D

Data Conversion Functions116

Byte to String ..118

Convert Character to Lower Case120

Convert Character to Upper-case120

Integer to String118

Long to String ...119

String to Byte ..116

String to Float ...117

String to Integer117

String to Long ...117

Unsigned Long to String120

Data Initialization ...7

DataRdyI2C ...25

DataRdyMwire ...36

DataRdySPI ..44

DataRdyUSART ..59

Delay ...133

1 Tcy ...133

1,000 Tcy Multiples134

10 Tcy Multiples133

10,000 Tcy Multiples134

100 Tcy Multiples133

Delay100TCYx ..133

Delay10KTCYx ..134

Delay10TCYx ..133

Delay1KTCYx ..134

Delay1TCY ..133

Directories

18CXX ..107

h ..67, 98, 104

lib ..7, 139

math ..139

pmc ...11, 67

src ...7

startup ...7

DisablePullups ..33

Documentation

Conventions ..2

Layout ...1

Numbering Conventions2

Updates ..2

E

EE Memory Device Interface Functions29

EEAckPolling ...29

EEByteWrite ..29

EECurrentAddRead ..30

EEPageWrite ...30

EERandomRead ...31

EESequentialRead ..31

EnablePullups ...34

Examples

A/D Converter ...19

Capture ...23
DS51297A-page 150  2002 Microchip Technology Inc.

Index
I2C, Hardware .. 32

I2C, Software ... 102

LCD .. 73

Microwire ... 39

SPI, Hardware ... 47

SPI, Software ... 106

Timers .. 56

UART, Software 109

USART, Hardware 65

Exponent 139, 141, 142

F

Floating Point

Conversion ... 140

Libraries ... 139

Representation 139

FPREP ... 140

G

getcI2C ... 25

getcMwire ... 36

getcSPI ... 44

getcUART ... 108

getcUSART .. 59

getsI2C ... 25

getsMwire ... 37

getsSPI ... 45

getsUART ... 108

getsUSART .. 59

Graphical Character 113

H

h Directory .. 67, 98, 104

I

I/O Port ... 33

I2C, Hardware ... 24

Acknowledge ... 24

Close .. 25

Data Ready .. 25

EEPROM Acknowledge Polling 29

EEPROM Byte Write 29

EEPROM Current Address Read 30

EEPROM Page Write 30

EEPROM Random Read 31

EEPROM Sequential Read 31

Example of Use 32

Get Character .. 25

Get String ... 25

Idle ... 26

No Acknowledge 26

Open .. 26

Put Character ... 26

Put String ... 27

Read ... 27

Restart .. 27

Start .. 28

Stop .. 28

Write ... 28

I2C, Software .. 98

Acknowledge .. 99

Clock Test .. 99

Example of Use 102

Get Character ... 99

Get String ... 99

No Acknowledge 99, 100

Put Character ... 100

Put String ... 100

Read ... 100

Restart .. 101

Start .. 101

Stop .. 101

Write ... 101

IdleI2C .. 26

IEEE Floating Point Representation 139

Initialized Data .. 7

interrupt service routine 146, 147

isalnum ... 112

isalpha .. 112

isBOR ... 135

iscntrl .. 112

isdigit .. 113

isgraph .. 113

islower .. 113

isLVD .. 136

isMCLR ... 136

isPOR ... 136

isprint .. 114

ispunct .. 114

isspace ... 114

isupper .. 115

isWDTTO .. 137

isWDTWU ... 137

isWU ... 137

isxdigit ... 115

itoa .. 118

L

LCD, External ... 67

Busy ... 69

Example of Use .. 73
 2002 Microchip Technology Inc. DS51297A-page 151

MPLAB® C18 C Compiler Libraries
Open ...69

Put Character69, 72

Put ROM String ..69

Put String ..69

Read Address ...70

Read Data ..70

Set Character Generator Address71

Set Display Data Address71

Write Command71

Write Data ..72

lib Directory ...7, 139

Libraries ..3

Processor-Independent8

Processor-Specific8

Rebuilding ..7–9

Source Code ..7–9

Library Overview ...7

little endian ..147

Lower-Case Characters113, 120, 127

ltoa ..119

M

main ..7

makeclib.bat ..8

makeplib.bat ...9

Mantissa139, 141, 142

math Directory ..139

MCLR ..136

memchr ...122

memcmp ...122

memcmppgm ..122

memcmppgm2ram ..122

memcmpram2pgm ..122

memcpy ..123

memcpypgm2ram ...123

memmove ...124

memmovepgm2ram124

Memory Manipulation Functions121

Compare ...122

Copy ...123

Move ...124

Search ..122

Set ..124

memset ...124

Microwire ..36

Close ..36

Data Ready ..36

Example of Use ..39

Get Character ...36

Get String ...37

Open ...37

Put Character ...37

Read ...38

Write ...38

MPASM Assembler8, 9

MPLAB C17 Libraries ..3

MPLIB Librarian ..8, 9

N

NotAckI2C ...26

O

OpenADC ..13, 14, 16

OpenCapture ...20

OpenI2C ..26

OpenMwire ..37

OpenPORTB ...34

OpenPWM ...41

OpenRBxINT ...34

OpenSPI ..45

OpenSWSPI ..105

OpenTimer ..50–54

OpenUART ..108

OpenUSART ...60

OpenXLCD ..69

P

Peripheral Libraries ...8

pmc Directory ..11, 67

PORTB

Close ..33

Disable Interrupts33

Disable Pullups ...33

Enable Interrupts34

Enable Pullups ..34

Open ...34

Pulse Width Modulation Functions41

putcI2C ..26

putcMwire ..37

putcSPI ..46

putcSWSPI ..105

putcUART ..108

putcUSART ...61

putcXLCD ..69, 72

putrsUSART ..62

putrsXLCD ...69

putsI2C ..27

putsSPI ..46

putsUART ..108

putsUSART ...62
DS51297A-page 152  2002 Microchip Technology Inc.

Index
putsXLCD ... 69

PWM ... 41

Close .. 41

Open .. 41

Set Duty Cycle ... 42

Set ECCP Output 42

R

rand .. 119

ReadADC ... 18

ReadAddrXLCD .. 70

ReadCapture .. 22

ReadDataXLCD .. 70

ReadI2C ... 27

README File ... 3

ReadMwire ... 38

ReadSPI ... 46

ReadTimer .. 54

ReadUART ... 109

ReadUSART ... 62

References ... 3

REMB ... 140

Reset Functions ... 135

Brown-out .. 135

Low Voltage Detect 136

Master Clear .. 136

Power-on ... 136

Status ... 138

Wake-up .. 137

Watchdog Timer Time-out 137

Watchdog Timer Wake-up 137

RestartI2C .. 27

S

SetCGRamAddr ... 71

SetChanADC .. 18

SetDCPWM .. 42

SetDDRamAddr .. 71

SetOutputPWM .. 42

SetSWCSSPI ... 105

SFR Definitions .. 8

Sleep .. 137

SPI, Hardware .. 44

Close .. 44

Data Ready .. 44

Example of Use 47

Get Character .. 44

Get String ... 45

Open .. 45

Put Character ... 46

Put String ... 46

Read ... 46

Write ... 46

SPI, Software .. 104

Clear Chip Select 105

Example of Use 106

Open .. 105

Put Character ... 105

Set Chip Select 105

Write ... 106

srand ... 119

src Directory ... 7

SSP .. 24, 25

Stack, Software .. 7

StartI2C .. 28

Startup Code .. 7

startup Directory ... 7

StatusReset .. 138

StopI2C ... 28

strcat ... 125

strcatpgm2ram .. 125

strchr ... 125

strcmp ... 126

strcmppgm2ram .. 126

strcpy .. 126

strcpypgm2ram ... 126

strcspn .. 127

String Manipulation Functions 121

Append ... 125, 128

Compare .. 126, 128

Convert to Lower case 127

Convert to Upper case 132

Copy ... 126, 129

Length .. 127

Search 125, 130, 131

Tokenize ... 131

strlen ... 127

strlwr ... 127

strncat ... 128

strncatpgm2ram .. 128

strncmp ... 128

strncpy .. 129

strncpypgm2ram ... 129

strpbrk ... 130

strrchr ... 130

strspn .. 130

strstr .. 131

strtok ... 131

strupr .. 132
 2002 Microchip Technology Inc. DS51297A-page 153

MPLAB® C18 C Compiler Libraries
Support

Customer ..4

SWAckI2C ..99, 100

SWGetcI2C ...99

SWGetsI2C ...99

SWNotAckI2C ...99

SWPutcI2C ...100

SWPutsI2C ...100

SWReadI2C ..100

SWRestartI2C ...101

SWStartI2C ...101

SWStopI2C ...101

SWWriteI2C ..101

Synchronous Mode ...61

T

Timers ...50

Close ..50

Example of Use ..56

Open ...50–54

Read ...54

Write ...55

tolower ..120

toupper ..120

Troubleshooting ..4

U

UART, Software ..107

Example of Use109

Get Character ...108

Get String ...108

Open ...108

Put Character ...108

Put String ..108

Read ...109

Write ...109

ultoa ..120

Upper-Case Characters115, 120, 127

USART, Hardware ..57

Busy ...58

Close ..58

Data Ready ..59

Example of Use ..65

Get Character ...59

Get String ...59

Open ...60

Put Character ...61

Put String ..62

Read ...62

Write ...64

W

Watchdog Timer (WDT)137

WriteCmdXLCD ...71

WriteDataXLCD ...72

WriteI2C ..28

WriteMwire ..38

WriteSPI ..46

WriteSWSPI ..106

WriteTimer ...55

WriteUART ..109

WriteUSART ..64
DS51297A-page 154  2002 Microchip Technology Inc.

Index
NOTES:
 2002 Microchip Technology Inc. DS51297A-page 155

DS51297A-page 156  2002 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/18/02

WORLDWIDE SALES AND SERVICE

	Preface
	Chapter 1. Overview
	1.1 Introduction
	1.2 MPLAB C18 Libraries Overview
	1.3 Start-up Code
	1.3.1 Overview
	1.3.2 Source Code
	1.3.3 Rebuilding

	1.4 Processor-Independent Library
	1.4.1 Overview
	1.4.2 Source Code
	1.4.3 Rebuilding

	1.5 Processor-Specific Libraries
	1.5.1 Overview
	1.5.2 Source Code
	1.5.3 Rebuilding

	Chapter 2. Hardware Peripheral Functions
	2.1 Introduction
	2.2 A/D Converter Functions
	BusyADC
	Is A/D converter currently performing a conversion?
	CloseADC
	Disable the A/D converter.
	ConvertADC
	Start an A/D conversion.
	OpenADC
	Configure the A/D convertor.
	ReadADC
	Read the results of an A/D conversion.
	SetChanADC
	Select A/D channel to be used.
	2.2.1 Function Descriptions
	2.2.2 Example Use of the A/D Converter Routines

	2.3 Input Capture Functions
	CloseCapturex
	Disable capture peripheral x.
	OpenCapturex
	Configure capture peripheral x.
	ReadCapturex
	Read a value from capture peripheral x.
	2.3.1 Function Descriptions
	2.3.2 Example Use of the Capture Routines

	2.4 I·C® Functions
	AckI2C
	Generate I2C bus Acknowledge condition.
	CloseI2C
	Disable the SSP module.
	DataRdyI2C
	Is the data available in the I2C buffer?
	getcI2C
	Read a single byte from the I2C bus.
	getsI2C
	Read a string from the I2C bus operating in master I2C mode.
	IdleI2C
	Loop until I2C bus is idle.
	NotAckI2C
	Generate I2C bus Not Acknowledge condition.
	OpenI2C
	Configure the SSP module.
	putcI2C
	Write a single byte to the I2C bus.
	putsI2C
	Write a string to the I2C bus operating in either Master or Slave mode.
	ReadI2C
	Read a single byte from the I2C bus.
	RestartI2C
	Generate an I2C bus Restart condition.
	StartI2C
	Generate an I2C bus START condition.
	StopI2C
	Generate an I2C bus STOP condition.
	WriteI2C
	Write a single byte to the I2C bus.
	EEAckPolling
	Generate the Acknowledge polling sequence.
	EEByteWrite
	Write a single byte.
	EECurrentAddRead
	Read a single byte from the next location.
	EEPageWrite
	Write a string of data.
	EERandomRead
	Read a single byte from an arbitrary address.
	EESequentialRead
	Read a string of data.
	2.4.1 Function Descriptions
	2.4.2 EE Memory Device Interface Function Descriptions
	2.4.3 Example of Use

	2.5 I/O Port Functions
	ClosePORTB
	Disable the interrupts and internal pull-up resistors for PORTB.
	CloseRBxINT
	Disable interrupts for PORTB pin x .
	DisablePullups
	Disable the internal pull-up resistors on PORTB.
	EnablePullups
	Enable the internal pull-up resistors on PORTB.
	OpenPORTB
	Configure the interrupts and internal pull-up resistors on PORTB.
	OpenRBxINT
	Enable interrupts for PORTB pin x .
	2.5.1 Function Descriptions

	2.6 Microwire® Functions
	CloseMwire
	Disable the SSP module used for Microwire communication.
	DataRdyMwire
	Indicate completion the internal write cycle.
	getcMwire
	Read a byte from the Microwire device.
	getsMwire
	Read a string from the Microwire device.
	OpenMwire
	Configure the SSP module for Microwire use.
	putcMwire
	Write a byte to the Microwire device.
	ReadMwire
	Read a byte from the Microwire device.
	WriteMwire
	Write a byte to the Microwire device.
	2.6.1 Function Descriptions
	2.6.2 Example of Use

	2.7 Pulse Width Modulation Functions
	ClosePWMx
	Disable PWM channel x.
	OpenPWMx
	Configure PWM channel x.
	SetDCPWMx
	Write a new duty cycle value to PWM channel x.
	SetOutputPWMx
	Sets the PWM output configuration bits for ECCP.

	2.8 SPI™ Functions
	CloseSPI
	Disable the SSP module used for SPI communications.
	DataRdySPI
	Determine if a new value is available from the SPI buffer.
	getcSPI
	Read a byte from the SPI bus.
	getsSPI
	Read a string from the SPI bus.
	OpenSPI
	Initialize the SSP module used for SPI communications.
	putcSPI
	Write a byte to the SPI bus.
	putsSPI
	Write a string to the SPI bus.
	ReadSPI
	Read a byte from the SPI bus.
	WriteSPI
	Write a byte to the SPI bus.
	2.8.1 Function Descriptions
	2.8.2 Example of Use

	2.9 Timer Functions
	CloseTimerx
	Disable timer x.
	OpenTimerx
	Configure timer x.
	ReadTimerx
	Read the value of timer x.
	WriteTimerx
	Write a value into timer x.
	2.9.1 Function Descriptions
	2.9.2 Example of Use

	2.10 USART Functions
	BusyUSART
	Is the USART transmitting?
	CloseUSART
	Disable the USART.
	DataRdyUSART
	Is data available in the USART read buffer?
	getcUSART
	Read a byte from the USART.
	getsUSART
	Read a string from the USART.
	OpenUSART
	Configure the USART.
	putcUSART
	Write a byte to the USART.
	putsUSART
	Write a string from data memory to the USART.
	putrsUSART
	Write a string from program memory to the USART.
	ReadUSART
	Read a byte from the USART.
	WriteUSART
	Write a byte to the USART.
	BusyxUSART
	Is USART x transmitting?
	ClosexUSART
	Disable USART x.
	DataRdyxUSART
	Is data available in the read buffer of USART x?
	getcxUSART
	Read a byte from USART x.
	getsxUSART
	Read a string from USART x.
	OpenxUSART
	Configure USART x.
	putcxUSART
	Write a byte to USART x.
	putsxUSART
	Write a string from data memory to USART x.
	putrsxUSART
	Write a string from program memory to USART x.
	ReadxUSART
	Read a byte from USART x.
	WritexUSART
	Write a byte to USART x.
	2.10.1 Function Descriptions
	2.10.2 Example of Use

	Chapter 3. Software Peripheral Library
	3.1 Introduction
	3.2 External LCD Functions
	3.2.1 Function Descriptions
	3.2.2 Example of Use

	3.3 External CAN2510 Functions
	3.3.1 Function Descriptions

	3.4 Software I·C Functions
	3.4.1 Function Descriptions
	3.4.2 Example of Use

	3.5 Software SPI Functions
	3.5.1 Function Descriptions
	3.5.2 Example of Use

	3.6 Software UART Functions
	3.6.1 Function Descriptions
	3.6.2 Example of Use

	Chapter 4. General Software Library
	4.1 Introduction
	4.2 Character Classification Functions
	4.2.1 Function Descriptions

	4.3 Data Conversion Functions
	4.3.1 Function Descriptions

	4.4 Memory and String Manipulation Functions
	4.4.1 Function Descriptions

	4.5 Delay Functions
	4.5.1 Function Descriptions

	4.6 Reset Functions
	4.6.1 Function Descriptions

	Chapter 5. Math Libraries
	5.1 Introduction
	5.2 32-Bit Integer and 32-Bit Floating Point Math Libraries
	5.2.1 Floating Point Representation
	5.2.2 Variables Used by the Floating Point Libraries

	5.3 Decimal/Floating Point and Floating Point/Decimal Conversions
	5.3.1 Converting Decimal to Microchip Floating Point
	5.3.2 Converting Microchip Floating-Point to Decimal

	Glossary
	Index
	Worldwide Sales and Service

