DrGaN^{PLUS} Development Board - EPC9202 Quick Start Guide

Optimized Half-Bridge Circuit for eGaN® FETs

DESCRIPTION

This development board, measuring 0.36" x 0.36", contains two enhancement mode (*eGaN*[®]) field effect transistors (FETs) arranged in a half bridge configuration with an onboard Texas Instruments LM5113 gate drive and is driven by a single PWM input. The purpose of these development boards is to simplify the evaluation process by optimizing the layout and including all the critical components on a single board that can be easily connected into

any existing converter. A complete block diagram of the circuit is given in Figure 1.

For more information on EPC's family of *eGaN* FETs, please refer to the datasheets available from EPC at www.epc-co.com. The datasheet should be read in conjunction with this quick start guide

Table 1: Performance Summary (TA = 25° C)								
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	UNITS			
$V_{\rm DD}$	Gate Drive Input Supply Range		4.5	5	V			
$V_{\rm IN}$	Bus Input Voltage Range			70*	V			
V _{OUT}	Switch Node Output Voltage			100	V			
I _{OUT}	Switch Node Output Current			10*	A			
V _{PWM}	PWM Logic Input Voltage Threshold	Input 'High'	3.5	6	V			
		Input 'Low'	0	1.5	V			
	Minimum 'High' State Input Pulse Width	V_{PWM} rise and fall time < 10ns	60		ns			
	Minimum 'Low' State Input Pulse Width	V_{PWM} rise and fall time < 10ns	200 #		ns			

* Assumes inductive load, maximum current depends on die temperature – actual maximum current with be subject to switching frequency, bus voltage and thermals.

Limited by time needed to 'refresh' high side bootstrap supply voltage.

THERMAL CONSIDERATIONS

The development board is intended for bench evaluation with low ambient temperature and convection cooling. The addition of heat-sinking and forced air cooling can significantly increase the current rating of these devices, but care must be taken to not exceed the absolute maximum die temperature of 125°C.

NOTE. The development board does not have any current or thermal protection on board.

TYPICAL PERFORMANCE

EPC9202

Figure 2: Typical switch node voltage rising waveform for $V_{\rm IN}=48$ V to Vout =12 V, lout =10 A, $f_{\rm SW}{=}300$ kHz buck converter

Figure 3: Typical efficiency for V_M =48 V to V_{OUT} = 12 V buck converter with 100 V devices (Inductor: Coilcraft SER1390-103MLB)

DESIGN CONSIDERATIONS

To improve the electrical and thermal performance of the DrGaN^{PLUS} development board some design considerations are recommended:

- Large copper planes should be connected to the development board to improve thermal performance as shown in figures 4 through 6. If filled vias are used in the board design, thermal vias should be placed under the device as shown in figure 4 to better distribute heat through buried inner layers. For a design without filled vias, thermal vias should be located outside of the development board as shown in figure 6. Also, for a design without filled vias, the vias to make the V_{DD} connection should be tented and located outside of the V_{DD} pad.
- 2. To reduce conduction losses, the inductor and output capacitors should be located in close proximity to the development board.
- 3. The smaller IC ground connection (pin 6 in mechanical drawings), should be isolated from the power ground connection (pin 3 in mechanical drawings).
- 4. If additional input filter capacitance is required, it can be placed outside the module. Due to the internal on-board input capacitance, minimizing the distance of the additional input capacitors to the development board, while preferred, is not a design requirement.

Figure 4: Top layer layout with filled thermal vias

Figure 5: Bottom layer layout

Figure 6: Top layer layout without filled thermal vias

MECHANICAL DATA

A	9.15 mm			
В	9.15 mm			
C	2.5 mm			
D	2.5 mm			
E	2.6 mm			
F	0.525 mm			
G	0.525 mm			
H	8.475 mm			
I	6.15 mm			
J	0.525 mm			
K	K 0.2 mm			
L	0.475 mm			
м	M 0.45 mm N 1.8 mm			
N				
0	0 1.4 mm			
P	0.8 mm			

Table 2 : Bill of Materials

ltem	Board Qty	Part Description	Manufacturer / Part #	Component
1	3	C11, C22, C23	Capacitor, 1uF, 20%, 100V, X7S, 0805	TDK, C2012X7S2A105M125AB
2	2	Q1, Q2	100 V 25 A eGaN FET	EPC, EPC2001
3	4	R19, R20, R23, R24	Resistor, 0 Ohm, 1/16W	Stackpole, RMCF0402ZT0R00TR
4	1	C9	Capacitor, 0.1uF, 10%, 25V, X5R	TDK, C1005X5R1E104K050BC
5	1	C19	Capacitor, 1uF, 10%, 16V, X5R	TDK, C1005X5R1C105K050BC
6	1	U2	I.C., Gate driver	Texas Instruments, LM5113
7	2	D1, D2	Diode Schottky 40 V 0.12A SOD882	NXP, BAS40L,315
8	1	U4	IC GATE AND UHS 2-INP 6-MICROPAK	Fairchild, NC7SZ08L6X
9	1	U1	IC GATE NAND UHS 2-INP 6MICROPAK	Fairchild, NC7SZ00L6X
10	1	R1	Resistor, 10K Ohm 1/20W 1% 0201	Stackpole, RMCF0201FT10K0
11	2	C6, C7	Capacitor, CER 100pF 25V 5% NP0 0201	TDK, C0603C0G1E101J030BA
12	1	R4	Resistor, 0 OHM 1/20W 0201 SMD	Panasonic, ERJ-1GN0R00C
13	1	R5	Resistor, 56 Ohm 1/20W 1% 0201 SMD	Panasonic, ERJ-1GEF56R0C

