
Qwiic Kit for Raspberry Pi Hookup Guide




Introduction
Welcome to the Qwiic Kit for Raspberry Pi hookup guide. Here we are going to get started with some of the basics
surrounding I C and Python on your Raspberry Pi. Don't worry, we've done most of the work with the Python
Libraries we've written for the boards in our Qwiic Kit. This kit should help you get started whether you just want to
get data and display it on your Pi, display it on our OLED screen, or post it to the Internet.

2

SparkFun Qwiic Starter Kit for Raspberry Pi
 KIT-16841

Product Showcase: SparkFun Qwiic Kit for RaspberrProduct Showcase: SparkFun Qwiic Kit for Raspberr……

https://www.sparkfun.com/
https://www.sparkfun.com/products/15367
https://www.sparkfun.com/products/16841
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/16841
https://www.youtube.com/watch?v=W3JIYDA23Xc

Required Materials

To follow along with this tutorial, you will also need a few pieces of hardware. Single board computers with the
Raspberry Pi 40-pin GPIO header will work. We'll be using a Raspberry Pi throughout this tutorial. If you have not
worked with a Raspberry Pi, we recommend getting started with the Raspberry Pi starter kit.

Optional Materials

You have several options when it comes to working with the Raspberry Pi. Most commonly, the Pi is used as a
standalone computer, which requires a monitor, keyboard, and mouse (listed below). To save on costs, the Pi can
also be used as a headless computer (without a monitor, keyboard, and mouse). This setup has a slightly more
difficult learning curve, as you will need to use the command-line interface (CLI) from another computer.

Raspberry Pi 3 B+ Starter Kit
 KIT-15361

Raspberry Pi LCD - 7" Touchscreen
 LCD-13733

SmartiPi Touch
 PRT-14059
     8 Retired

https://learn.sparkfun.com/tutorials/headless-raspberry-pi-setup/all
https://www.sparkfun.com/products/15361
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15361
https://www.sparkfun.com/products/13733
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13733
https://www.sparkfun.com/products/retired/14059
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/retired/14059

Suggested Reading

Before you get started, I recommend taking a look at some of our other tutorials and familiarizing yourself with
some of these topics. We will end up working with the Raspberry Pi, Python programming language, and MQTT
protocol to send data over the Internet.

Multimedia Wireless Keyboard
 WIG-14271

SD Cards and Writing Images
How to upload images to an SD card for Raspberry Pi,
PCDuino, or your favorite SBC.

Python Programming Tutorial: Getting Started
with the Raspberry Pi
This guide will show you how to write programs on your
Raspberry Pi using Python to control hardware.

Introduction to MQTT
An introduction to MQTT, one of the main
communication protocols used with the Internet of
Things (IoT).

Qwiic pHAT for Raspberry Pi Hookup Guide
Get started interfacing your Qwiic enabled boards with
your Raspberry Pi. The Qwiic pHAT connects the I2C
bus (GND, 3.3V, SDA, and SCL) on your Raspberry Pi
to an array of Qwiic connectors.

https://www.sparkfun.com/products/14271
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14271
https://learn.sparkfun.com/tutorials/sd-cards-and-writing-images
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi
https://learn.sparkfun.com/tutorials/introduction-to-mqtt
https://learn.sparkfun.com/tutorials/qwiic-phat-for-raspberry-pi-hookup-guide

Qwiic
SparkFun's Qwiic System is a quick and easy way to connect I C devices to your microcontroller. Because our
Qwiic boards use a 4-pin JSH-SH connector, you don't need to solder. You just need a cable to connect your
modules. The connector is polarized meaning you can't plug it in wrong. Additionally, you can daisy chain all your
boards together.

Qwiic Connect System

Want more Python?
We are working on more tutorials, blogs, and product releases around the Python programming
language.

Would you like to be notified when new content is available?

Email*

Would you also like to subscribe to SparkFun's weekly newsletter?

Yes, sign me up!

2

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic

I C is a protocol that has been around for a while, it has a few advantages such as each device being on the same
bus but each having a unique address. Messages are sent back and forth with an address and only the device
with the correct address listens to the message. This is why we are able to daisy chain our sensors. Currently, a
large number of sensors we find communicate over I C, but what about the ones that don't? Well, some of our
Qwiic board use other types of sensors and have a small microcontroller that reads the data and then outputs via
I C, so in other words you can make anything you want to be I C. One thing to note is that each item on the bus
must have its own address. Some sensors will have jumper pads that let you change the address (you usually
have 2 or 4 options if this is the case), but not all do. This might make it difficult to have a lot of one sensor in a
chain unless you have a dedicated I C mux.

2

2

2 2

2

SparkFun's Qwiic Connect SystemSparkFun's Qwiic Connect System

no soldering

Qwiic cables (4-pin JST) plug easily from development boards to sensors, shields, accessory boards and
more, making easy work of setting up a new prototype.

https://www.sparkfun.com/products/14685
https://www.youtube.com/watch?v=x0RDEHqFIF8

The Qwiic Connect System is designed to keep your projects moving. If you have I C sensors that don't have a
Qwiic connector on them, check out our Qwiic adapter. You might have to write your own Python library, but at
least we've made the connection easier for you.

Hardware

Revision Changes: With the revision of the SparkFun Qwiic Starter Kit for Raspberry Pi, we have swapped
out an individual board inside the kit, listed below. At the time of writing we used the Qwiic pHAT v1.0. The
Qwiic pHAT v2.0 is functionally the same with additional features.

Qwiic Kit for Raspberry Pi Kit SKU Revision History

KIT-16841 Switch to Qwiic pHAT v2.0

KIT-15367 Initial release with the Qwiic pHAT

polarized connector

There's no need to worry about accidentally swapping the SDA and SCL wires on your breadboard. The
Qwiic connector is polarized so you know you’ll have it wired correctly every time, right from the start.

daisy chain-able

It’s time to leverage the power of the I C bus! Most Qwiic boards will have two or more connectors on them,
allowing multiple devices to be connected.

2

2

https://www.sparkfun.com/products/14495
https://www.sparkfun.com/products/16841
https://www.sparkfun.com/products/15367

Please refer to the following pictures if you are unsure.

Qwiic pHAT v2.0 [DEV-15945] Qwiic phAT v1.0 [DEV-15351]

The hardware we are using for this kit (other than the Pi) is the Qwiic pHAT which provides a Qwiic connector to
your Raspberry Pi, VCNL4040 Proximity sensor, Environmental combo board (which has the BME280 and
CCS811), and Qwiic micro OLED screen.

Let's start with connecting the pHAT. The pHAT should fit on the Raspberry Pi like most Pi HATs, but it should also
fit on compatible boards such as the Nvidia Jetson Nano, the Google Coral board, and others that use the
standard 2x20 GPIO header. It will even work on the Raspberry Pi Zero W. Just line up the headers and connect
the pHAT to your Raspberry Pi. If you have more questions on the pHAT check out the hookup guide for more
information.

Next, we are going to connect our boards. We've given you a selection of different cable lengths to let you
configure your boards however you like. So go ahead and daisy chain all your boards together (while you only
need 1 Qwiic connector on the pHAT, you can use as many as you'd like). It doesn't matter which order you
connect them in (or which of the connectors on the board you use), as long as they all have a path to the Pi. Keep

https://www.sparkfun.com/products/15351
https://www.sparkfun.com/products/15351
https://www.sparkfun.com/products/15945
https://www.sparkfun.com/products/15351
https://www.sparkfun.com/products/15351
https://www.sparkfun.com/products/15177
https://www.sparkfun.com/products/14348
https://www.sparkfun.com/products/14532
https://www.sparkfun.com/products/15297
https://www.sparkfun.com/products/15318
https://learn.sparkfun.com/tutorials/qwiic-phat-for-raspberry-pi-hookup-guide
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/6/Qwiic_pHat_Raspberry_Pi_Sensor.jpg

in mind that these cables are polarized and should only go in one direction (don't force it to go in the wrong
direction). Your setup should look similar to the image below with the Qwiic-enabled devices daisy chained and
stacked on a Raspberry Pi.

Configure Your Pi
We are going to assume you already have a Raspberry Pi up and running with Raspbian. We'll also assume that it
is connected to the Internet. If not, check out our starter kits and tutorials on setting up a Raspberry Pi.

Make sure to update the image so that we have the latest distribution. Enter the following commands in the
command line individually to update your image.

sudo apt-get update
sudo apt-get dist-upgrade

Note: sudo stands for "Super User Do", it is a way to give you superuser powers from the command line. Be
careful whenever using sudo .

Raspberry Pi 3 Starter Kit Hookup Guide
APRIL 11, 2016
Guide for getting going with the Raspberry Pi 3 Model B and Raspberry Pi 3
Model B+ starter kit.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Qwiic_Sensors_Raspberry_Pi_Servo_Hat_Hookup.jpg
https://learn.sparkfun.com/tutorials/terminal-basics/command-line-windows-mac-linux
https://learn.sparkfun.com/tutorials/raspberry-pi-3-starter-kit-hookup-guide

User Configuration Settings

Once you are set up, I highly recommend changing your password. At this point, we are going be dealing with the
Internet of things and don't want unsavory characters sneaking into your system using the default login:
(username: pi, password: raspberry).

The raspi-config tool is a quick way to change your password as well as setup the network, language, keyboard,
etc. Type the following command using the command line and then go through the menus to update your
information.

sudo raspi-config

You'll want to enable the I C pins using the tool to read the sensors on the I C bus.

Raspi-config for I C

I C Clock Stretching

The CCS811 sensor requires something known as I C clock stretching to work, so let's get this setup as well.
Open up the file /boot/config.txt in your favorite editor. We'll use the following command to edit the file through
the command line.

sudo nano /boot/config.txt

After typing the command, hit ENTER on your keyboard.

Scroll down until you find the block of code that contains the following lines. It will look similar to the following lines.

dtparam=i2c_arm=on
#dtparam=i2s=on
#dtparam=spi=on

2 2

2

2

2

https://learn.sparkfun.com/tutorials/raspberry-pi-3-starter-kit-hookup-guide/all#configuring-the-pi
https://learn.sparkfun.com/tutorials/terminal-basics/command-line-windows-mac-linux
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial/all#i2c-on-pi
https://cdn.sparkfun.com/assets/learn_tutorials/4/4/9/i2c-menu2.png
https://www.i2c-bus.org/i2c-primer/clock-generation-stretching-arbitration/
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Open-Config-File.jpg

Heads up! Make sure to not add spaces before and after the " = " signs. The Pi will not be able to recognize
the changes.

Add the following line(s) to enable the clock stretching.

Enable I2C clock stretching
dtparam=i2c_arm_baudrate=10000

When you are finished, you should see something similar to the image below.

Note: If the baud rate of 10000 is still too high, try using a slower baud rate like 5000 or 1000 . After
adjusting the value for clock stretching, make sure to restart your Pi for the changes to take effect.

Then save your file and exit out. We'll use the following commands CTRL + O and then Enter to save. Then
CTRL + X to exit.

You will need to restart your Pi before the settings can take effect after every change to the config.txt. After all
that hard work, let's reboot your Pi with the following command.

sudo reboot

After typing the command, hit the ENTER key.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Edit-Config-File-I2C-Clock-Stretching.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Saving-Config-File.jpg

Note: Here are some more resources on setting up a Raspberry Pi including how to connect to the Pi through
a serial connection as well as VNC into the Pi remotely. This can be handy if you want to update things in the
future without having to lug out an extra monitor, keyboard, and mouse.

Python

Notice: This tutorial was written with Raspbian version "June 2019", Python version 3.7.3, and pip 19.1.1 for
Python v3.7. Other versions may affect how some of the steps in this guide are performed.

SD Cards and Writing Images
How to upload images to an SD card for Raspberry
Pi, PCDuino, or your favorite SBC.

Getting Started with the Raspberry Pi Zero
Wireless
Learn how to setup, configure and use the smallest
Raspberry Pi yet, the Raspberry Pi Zero - Wireless.

Headless Raspberry Pi Setup
Configure a Raspberry Pi without a keyboard,
mouse, or monitor.

How to Use Remote Desktop on the
Raspberry Pi with VNC
Use RealVNC to connect to your Raspberry Pi to
control the graphical desktop remotely across the
network.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Reboot-Restart.jpg
https://learn.sparkfun.com/tutorials/sd-cards-and-writing-images
https://learn.sparkfun.com/tutorials/getting-started-with-the-raspberry-pi-zero-wireless
https://learn.sparkfun.com/tutorials/headless-raspberry-pi-setup
https://learn.sparkfun.com/tutorials/how-to-use-remote-desktop-on-the-raspberry-pi-with-vnc

Python is a great language, we actually have a great tutorial on getting started with Python programming on a
Raspberry Pi that covers everything from picking an editor and getting the code to run, to syntax and error
messages. I highly recommend reading it if you plan on writing your own code. If you just plan on running the
example code and maybe making a few changes, we'll go through a few basic things here.

Indentation

In many programming languages, we indent things to make things easier to read. In Python, those indents are part
of the code. Instead of putting brackets around your loop or if() statements, you just indent that entire chunk
with a leading whitespace. In other words, you have to make sure your indents are correct. I also recommend not
using your keyboard's TAB button to indent as various programs will read it differently (and usually incorrectly).

Commenting

Another thing to keep in mind is comments. In Python, the symbol " # " is used to denote that the line is a
comment. Unlike many other languages there is no official multi-line comment available. So you'll just have to get
use to typing # for each line when writing large comments.

Python Versions and Installing PIP

There are also 2 commonly used Python versions. Even after Python 3 came out many people continued to use
2.7 for many years. Part of the reason is that Python 3 improved on some things and in the process made it not
backwards compatible. For our example we will be using Python 3.7 (and the code will not run on 2.7). To see
what version of Python your Pi is using, open a command line and type each of the following commands
individually to check.

Python Programming Tutorial: Getting Started with the
Raspberry Pi
JUNE 27, 2018
This guide will show you how to write programs on your Raspberry Pi using
Python to control hardware.

https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/all
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/programming-in-python#indent
https://dbader.org/blog/python-multiline-comment
https://wiki.python.org/moin/Python2orPython3
https://learn.sparkfun.com/tutorials/terminal-basics/command-line-windows-mac-linux
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi

python --version
python -m pip --version

If you are not using Python 3, then we'll need to open the *.bashrc file and add an alias.

First, you will need to update the python installation package by running the following command to install pip for
Python 3. Execute the following commands.

sudo apt-get install python3-pip

Type the following command to open the file.

nano ~/.bashrc

Then add the following lines at the end. That should tell the computer whenever you want to run python to look
for the file located at /usr/bin/python3 .

alias python='/usr/bin/python3'
alias pip=pip3

To exit nano type CTRL + X and then hit Y when it asks you if you want to save and then ENTER . You can now
either reboot or type the following to force the Pi to run the */.bashrc file again.

source ~/.bashrc

Once adjusted, type the following command to ensure that pip is up to date.

python -m pip install --upgrade pip

Python Library
We will also need to install the Qwiic Python libraries. This will automatically download a folder containing all the
Qwiic_Py files and dependencies to your Raspberry Pi. Run the following command to automatically install the
modules for the Qwiic sensors and micro OLED. To ensure that you are installing to the correct path for Python 3,
make sure that you use pip3 .

sudo pip3 install sparkfun_qwiic

https://cdn.sparkfun.com/assets/learn_tutorials/7/9/8/screen_01.png
https://github.com/sparkfun/qwiic_py#installation

Tip: If you need to uninstall the library and start from scratch, simply use the uninstall with the command:

sudo pip3 uninstall sparkfun_qwiic

Setting Up MQTT and Cayenne
MQTT is a messaging protocol that works great for IoT devices. Devices can post to a topic, and/or subscribe to a
topic to receive information. Alex wrote a tutorial all about MQTT, which is a great read if you are unfamiliar with
MQTT. Amongst other things, our setup is going to act as an MQTT client and publish information to an online
service called Cayenne.

Cayenne

Cayenne is a product from myDevices that allows you to not only display data but also set up triggers, monitor
devices, control devices, etc. You can view your home's temperature remotely from their site (or app), but you can
also tell it to text you when the temperature goes below 40 so you can figure out why your furnace isn't working.
But don't worry, none of the exercises in this tutorial require you to give myDevices any money (or even a credit
card).

If you have not already, the first thing to do is make an account. Head over to Cayenne to sign up by clicking on
the link below using one of the Raspberry Pi's Internet browsers. If you have an account, just make sure to login
in.

SIGN UP WITH CAYENNE LOG IN WITH CAYENNE

Introduction to MQTT
NOVEMBER 7, 2018
An introduction to MQTT, one of the main communication protocols used with
the Internet of Things (IoT).

https://learn.sparkfun.com/tutorials/introduction-to-mqtt
https://mydevices.com/cayenne/signup/
https://accounts.mydevices.com/auth/realms/cayenne/protocol/openid-connect/auth?response_type=code&scope=email+profile&client_id=cayenne-web-app&state=Vxb2hKBy6kdvW5xHTiT6Gmtfg0nSwQq0fLkxszQo&redirect_uri=https%3A%2F%2Fcayenne.mydevices.com%2Fauth%2Fcallback
https://mydevices.com/cayenne/signup/
https://mydevices.com/cayenne/signin/
https://learn.sparkfun.com/tutorials/introduction-to-mqtt

Once you have an account we're going to start by setting up the Raspberry Pi. This is a good introduction that
provides you with some information on your Pi (RAM usage, temperature, network speed). It also allows you to
remotely reset or shutdown you Pi, toggle I/O pins and even give you the IP address of your Pi. That is one of the
nice things about Cayenne, it doesn't define devices based on IP address or network. You provide a small script
and your Pi basically tells Cayenne where it is. This is helpful if you loose power, reset your device etc., and need
to know the IP address to log back in remotely.

Adding a Device in Cayenne

You'll be greeted with a few devices. Select the Raspberry Pi.

You'll be prompted with an image of the Raspberry Pi before continuing on. Hit on the next button.

You'll be provided with a few options. We'll be following option 2. Follow the instructions provided (Cayenne has
very good instructions in when setting up your Raspberry Pi).

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Qwiic_Pi_Cayenne.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Set_Up_Your_Pi_Cayenne.jpg
https://www.youtube.com/watch?time_continue=84&v=Qx0IHv-UR-0

At this point you should have a working Cayenne account. Type (or copy and paste using your mouse's right click)
the first command and hit the ENTER button. The command will begin executing. When it is done, type (or copy
and paste) the second command and hit the ENTER button. The process may take a few minutes. When the the
command is finished executing, your Raspberry Pi will automatically restart.

After the reboot, open the browser back up and head back to Cayenne. Next, go back to adding a new device or
widget. This time you are going to select the blue "Bring Your Own Thing" button.

This will provide you with your MQTT username, password, and client ID, as well as the server information for our
project. We'll use this information later. You might want to do this on your Pi which will make it easier to copy and
paste these values into your code.

Example Code
We've written some example code to read the sensor data and display a few sensor values to the micro OLED. In
your terminal window, type the following to download the demo code from the GitHub repository.

git clone https://github.com/sparkfun/Qwiic-Kit-for-Pi.git

Then navigate to folder by typing the following command in the command line.

cd Qwiic-Kit-for-Pi

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Terminal_SSH_Option_2_Cayenne.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/NewDevice-Bring-Your-Own-Thing-Cayenne.png
https://github.com/sparkfun/Qwiic-Kit-for-Pi

You can also navigate to the folder /home/pi/Qwiic-Kit-for-Pi to open the example in your favorite Python editor.
In this case, we use opened the code in the Thonny editor.

We recommend opening the example code in a Python editor to follow along before running the demo.

Reading the Data
Now that we have everything physically hooked up and ready to go, we can set up our sensors and start reading
data. First, the code will need to run through the condition statement to give the sensor values some time to take
samples from the environment. At the top of the code, we set up a flag (i.e. initialize) and counter (i.e. n) to
keep track of whether or not we have just started the Python script. Further down in the main code under the for
loop, we'll take a few readings over a certain period of time. Once we have taken a few values, we'll update the
flag so that we can take the reading once through the for loop.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Qwiic-Python-Demo-Command-Line.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Raspberry_Pi_Qwiic_Python_Thonny_Cayenne.jpg

#These values are used to give BME280 and CCS811 some time to take samples
initialize=True
n=2
.
.
.

 if initialize==True:
 print ("Initializing: BME280 and CCS811 are taking samples before printing and publi
shing data!")
 print (" ")
 else:
 #print ("Finished initializing")
 n=1 #set n back to 1 to read sensor data once in loop
 for n in range (0,n):
 #print ("n = ", n) #used for debugging for loop
 .
 .
 .

 #Give some time for the BME280 and CCS811 to initialize when starting up
 if initialize==True:
 time.sleep(10)
 initialize=False

Reading the Sensors Values

Python does not require you to initialize and type your variables, we just get to go ahead and use them. We've
highlighted most of the user functions in the main code under the for loop below as well as a few of the
configuration functions. You'll also notice that the CCS811 has a few extra functions that read and calculate the
necessary values before we actually grab them.

 #Proximity Sensor variables - these are the available read functions
 proximity = prox.get_proximity()
 ambient = prox.get_ambient()
 white = prox.get_white()
 close = prox.is_close()
 .
 .
 .

 #BME280 sensor variables
 pressure = bme.get_reference_pressure() #in Pa
 altitudef = bme.get_altitude_meters()
 humidity = bme.read_humidity()
 tempf = bme.get_temperature_fahrenheit()
 .
 .
 .

 #CCS811 sensor variables
 ccs.read_algorithm_results() #updates the TVOC and CO2 values
 tvoc = ccs.get_tvoc()
 co2 = ccs.get_co2()
 .
 .
 .

Now that we've read all our data, let's figure out what we want to do with it all. Our different outputs will each
display a different set of variables based on the application. Feel free to comment out any variables you are not
using in your code using a " # " or choose to display different variables. The actual code has a lot more variables
and functions listed that you probably won't need.

Display Data to Your Pi
Once we've read the data from the 3 sensors it is time to display that information on the Pi's console, the OLED
screen, and send the information to be displayed by Cayenne. Let's dig into the code a bit deeper.

Comments and Libraries

Starting at the very first line you'll see a line of code that looks like a comment (comments start with #). This line
actually tells us that we will by using Python 3 which is what is used for the Qwiic Pi libraries. After the header
comment is a line to import a few libraries to help us keep things clean between Python 2 and Python 3. Next, we
are going to add in a few libraries including an mqtt client, our Qwiic library, the time library, and the system library.

Definitions

If you scroll down a bit you'll, see our Qwiic board definitions. As we add more libraries you'll want to periodically
download those updates, each sensor has its own *.py file or module. Inside that file you should find the class
definition as well as all the functions. We can then setup that device in our code (the example code has already
done this, but if you want to add new sensors from new libraries you'll need to do this yourself). Don't forget the
begin() call to get your sensor up and running.

Then we get to the main part of our code, which is in a while() loop. This will loop forever (unless we exit out).
Here is where we define and read the variables from the sensors as we talked about earlier. We do this every time
through the loop so we always have new data. Next, we'll get into printing the data to the screen. We've selected
some of the variables to print out as well as the time. When you run this code, this information will all display on
the console.

#printing time and some variables to the screen
#https://docs.python.org/3/library/time.html
#print (time.strftime("%a %b %d %Y %H:%M:%S", time.localtime())) #24-hour time
print (time.strftime("%a %b %d %Y %I:%M:%S%p", time.localtime())) #12-hour time

print ("BME Temperature %.1f F" %tempf)
print ("Humidity %.1f" %humidity)

print ("Pressure %.2f Pa" %pressure)
print ("Altitude %.2f ft" %altitudef)

#print ("CCS Temperature %.1f F" %ccstemp)
print ("Distance %.2f " %proximity)
print ("Ambient Light %.2f" %ambient)

print ("TVOC %.2f" %tvoc)
print ("CO2 %.2f" %co2)

print (" ") #blank line for easier readability

Displaying Data to Your OLED
Next, we are going to look at the Qwiic micro OLED screen. The OLED module should have the same functions as
our OLED Arduino library, but they might look a bit different. Let's start with a few basic commands...

Initializing the Micro OLED

We start by defining our OLED screen like we did with our sensors at the top of the code as well as run the
initilization.

oled = qwiic.QwiicMicroOLED()
oled.begin()

Clearing the Screen

Next, we are going to clear the screen. This actually will clear the entire buffer.

oled.clear(oled.ALL)

Then we can display the cleared screen. This will display what is in the buffer which at this point is nothing.

oled.display()

Font Size

Next, we can set the font type. The module comes with 4 different fonts. Unless you just need to display 2-3 digits,
I recommend sticking with font 0 or font 1 as they will give you enough room to display a few lines of information.
This is the end of the commands we'll use to setup the screen at the beginning of the code

oled.set_font_type(1)

Setting Cursor Position

When we are ready to actually print to the screen we'll set the cursor to the top left.

oled.set_cursor(0,0)

Printing

Then we can print some text. When we print the temperature, we don't want to print all the decimal places, partly
because the limit of the screen size. The "int" command takes the tempf variable and gives us an integer and then
we can print that.

oled.print("Tmp:")
oled.print(int(tempf))

If we want, we can move the cursor to a different line, print more data, etc.

Displaying

Finally, we will want to display all of this to the screen.

oled.display()

Also, keep in mind you might want to add delays when using an OLED screen so that the information isn't
flickering too fast. In this case, we already have a 1 second delay each time through the loop so we should be fine.

Because we already have the variables setup, we just need to pick a few we think would be useful and print them
to our OLED display. We can get about 3 lines of code here comfortably, but you might want to change the font
type and just display temperature so that you can view it from more than 12 inches away.

More with Cayenne
Now let's look at the Cayenne part of our code. Let's start with the the definitions. Remember the username,
password, and client ID we got earlier? We are going to copy and paste these into the code for the respective
username , password , and clientid . Now our code knows not only to post to Cayenne, but who's account and

what project this is for.

username = "______ENTER_MQTT_USERNAME____"
password = "______ENTER_MQTT_PASSWORD____"
clientid = "___ENTER_CAYENNE_CLIENTE_ID___"
mqttc=mqtt.Client(client_id = clientid)
mqttc.username_pw_set(username, password = password)
mqttc.connect("mqtt.mydevices.com", port=1883, keepalive=60)
mqttc.loop_start()

Topics

Next, we are going to setup our topics. Topics are how MQTT keeps track of what is what. Each topic gets a
different channel which is the number at the end of the line. Otherwise, the code is exactly the same for each topic
name. We just need to figure out once at the beginning what pieces of data we want to send.

#set MQTT topics (we are not setting topics for everything)
topic_bme_temp = "v1/" + username + "/things/" + clientid + "/data/1"
topic_bme_hum = "v1/" + username + "/things/" + clientid + "/data/2"
topic_bme_pressure = "v1/" + username + "/things/" + clientid + "/data/3"
topic_bme_altitude = "v1/" + username + "/things/" + clientid + "/data/4"

topic_prox_proximity = "v1/" + username + "/things/" + clientid + "/data/5"
topic_prox_ambient = "v1/" + username + "/things/" + clientid + "/data/6"

topic_ccs_temp = "v1/" + username + "/things/" + clientid + "/data/7"
topic_ccs_tvoc = "v1/" + username + "/things/" + clientid + "/data/8"
topic_ccs_co2 = "v1/" + username + "/things/" + clientid + "/data/9"

Publishing Sensor Data to the Cloud

Once in the main part of the code, we are going to publish data to each of those topics so Cayenne will see this.
You'll notice we are using the topics we set up earlier, as well as setting the payload to the variable we want to
send with it.

#publishing data to Cayenne (we are not publishing everything)
mqttc.publish (topic_bme_temp, payload = tempf, retain = True)
mqttc.publish (topic_bme_hum, payload = humidity, retain = True)
mqttc.publish (topic_bme_pressure, payload = pressure, retain = True)
mqttc.publish (topic_bme_altitude, payload = altitudef, retain = True)

mqttc.publish (topic_prox_proximity, payload = proximity, retain = True)
mqttc.publish (topic_prox_ambient, payload = ambient, retain = True)

#mqttc.publish (topic_ccs_temp, payload = ccstemp, retain = True)
mqttc.publish (topic_ccs_tvoc, payload = tvoc, retain = True)
mqttc.publish (topic_ccs_co2, payload = co2, retain = True)

Let's Run the Code Already!
OK, now that we've updated our code to submit data to our Cayenne account and figured out which variables we
want to send where we can run the code. Make sure you save your code (with your Cayenne account information
and any other changes you wanted to make). Then open a terminal window and navigate to the folder where your
code is if you have not already. Type the following command and ENTER to run the script. Our code actually runs a
loop until we decide to cancel the program CTRL + C .

python qwiic_kit_for_pi_demo.py

Or hit the Run button in your Python editor to start executing the script. To stop, simply click on the Stop button
with your mouse.

Assuming you don't get any errors you should see some of the sensor data displayed on your screen.

Running Demo via Command Line Running Demo via Thonny Editor

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Qwiic-Python-Run-Demo-Command-Line.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Qwiic-Python-Run-Demo-Thonny-Editor.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Qwiic-Python-Demo-Command-Line-Sensor-Output_Running.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Qwiic-Python-Demo-Thonny-Editor_Running.jpg

Click on images for a closer look!

If you look at the microOLED, you will also notice some of the BME280 sensor data on the display.

Note: If you do not give the sensors enough time to start, the output for the BME280 and CCS811 may
appear to be incorrect. You'll notice that the pressure and altitude may be off by about 40,000 Pa and 10,000
ft, respectively. The TVOC and CO2 values may start with 0.00 and 400.00. This is normal. You'll need to
give the sensors a few seconds to take a readings from the environment. The CCS811 will take longer for the
sensor values to stabilize after the burn-in and run-in values. For more information, check out the CCS811
datasheet or note used in the gator:environment board. The gator:environment uses the same CCS811 and
BME280 sensor.

Thu Jun 27 2019 03:03:39PM
BME Temperature 81.3 F
Humidity 30.2
Pressure 121347.04 Pa
Altitude -5078.29 ft
CCS Temperature 80.9 F
Distance 1.00
Ambient Light 412.00
TVOC 0.00
CO2 400.00

You will also start seeing the green boxes popping up on Cayenne as well so you can add them to your dashboard
and move them around.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Qwiic_Sensor_microOLED_Raspberry_Pi_Servo_Hat_Demo.jpg
https://cdn.sparkfun.com/assets/2/c/c/6/5/CN04-2019_attachment_CCS811_Datasheet_v1-06.pdf
https://learn.sparkfun.com/tutorials/sparkfun-gatorenvironment-hookup-guide/hardware-overview
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Qwiic-IoT-Cayenne-Sensor-Output-Environment.jpg

Congratulations, you now know how to read Qwiic sensors on a Pi, display data to your Pi, display data on the
Qwiic micro OLED screen, and get that information to display on the web. Try adjusting the code to send data to
the web at a slower rate or calibrate the sensor readings for stable readings. Keep checking the Qwiic_Py repo for
more Python libraries for our Qwiic boards or write your own and start experimenting.

Customizing Data on Cayenne's Dashboard
Once Cayenne sees this data, you should get a green box pop up on your Cayenne dashboard. Click the "+" in the
upper right hand corner to permanently add it to your dashboard. By default, the values will be displayed with the
associated channel. You will need to head into the settings and assign a name to be displayed for each channel in
order to easily read the sensor data. You can also assign an icon to the channel, drag and drop widgets, and
resize each window if you prefer.

After customizing according to your personal preference, the channels may look similar to the image below.

Triggers and Notifications

While we are not going to go into this in this tutorial, Cayenne will also let you setup triggers and other things to
text you, email you, or change things on any of your other devices (such as turn on an I/O pin on the Pi). You can
start playing with Cayenne and its various features. Just make sure you don't overwhelm your inbox with
notifications by sending texts 100 times per second.

Troubleshooting
Below are a few additional troubleshooting tips and tricks when using the Qwiic devices with a single board
computer.

The Demo Code is Not Running

If you are having trouble running the demo code, there are a few reasons why the Python script may not be
executing. Below are two common reasons why the demo code may not be running.

https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Greenboxes.PNG
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Pi-Qwiic-IoT-Cayenne-Sensor-Output-Environment.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/0/7/Trigger.PNG

Library Not Installed

If the libraries are not installed properly, you may receive an error similar to the output below when trying to
execute the Python script:

 Traceback (most recent call last):
 File "./qwiic_kit_for_pi_demo.py", line 24, in <module>
 import qwiic
ImportError: No module named 'qwiic'

The ImportError indicates that the module(s) was not installed properly. Make sure that the Python modules are
installed on the Pi in order to run the demo.

I C Bus Not Turned On

If you receive an error similar to the one below, there may be something with the interface settings for the I C bus.

Error: Failed to connect to I2C bus 1. Error: [Errno 2] No such file or directory
Error connecting to Device: 60, 'NoneType' object has no attribute 'write_byte'
Error: Failed to connect to I2C bus 1. Error: [Errno 2] No such file or directory
Traceback (most recent call last):
 File "/home/pi/Qwiic-Kit-for-Pi/qwiic_kit_for_pi_demo.py", line 50, in <module>
 bme.begin()
 File "/home/pi/.local/lib/python3.7/site-packages/qwiic_bme280.py", line 160, in begin
 chipID = self._i2c.readByte(self.address, self.BME280_CHIP_ID_REG)
 File "/home/pi/.local/lib/python3.7/site-packages/qwiic_i2c/linux_i2c.py", line 142, in readBy
te
 return self.i2cbus.read_byte_data(address, commandCode)
AttributeError: 'NoneType' object has no attribute 'read_byte_data'

The Error: Failed to connect to I2C bus 1. Error: [Errno 2] No such file or directory at the beginning
of the error indicates that the I bus is not turned on. Make sure to use the raspi-config to ensure that I C bus is
turned on as opposed to using the graphical user interface.

I C Device Not Connected

If you receive an error similar to the one below, it means that the bus is having issues reading a sensor.

Traceback (most recent call last):
 File "/home/pi/qwiicpy/qwiic_kit_for_pi_demo.py", line 117, in <module>
 ccs.readAlgorithmResults() #updates the TVOC and CO2 values
 File "/home/pi/qwiicpy/qwiic/qwiic_ccs811.py", line 159, in readAlgorithmResults
 data = self.readBlock(CSS811_ALG_RESULT_DATA, 4)
 File "/home/pi/qwiicpy/qwiic/qwiicdevice.py", line 119, in readBlock
 return self._i2cDriver.readBlock(self.address, commandCode, nBytes)
 File "/home/pi/qwiicpy/qwiic/qwiic_i2c/linux_i2c.py", line 144, in readBlock
 return self.i2cbus.read_i2c_block_data(address, commandCode, nBytes)
OSError: [Errno 121] Remote I/O error

The OSError: [Errno 121] Remote I/O error indicates that an I C device is not connected to the bus. Make
sure that the sensors and micro OLED are securely connected to the I C bus. The demo code currently checks to
see if the CCS811, BME280, VCNL4040, and micro OLED are connected to the Pi's I C bus before executing.

2

2

2 2

2

2

2

2

https://learn.sparkfun.com/tutorials/qwiic-kit-for-raspberry-pi-hookup-guide#configure-your-pi

Don't forget to setup the clock stretching for the Raspberry Pi, this is required for the CCS811 to work correctly on
the bus. If 10000 is still too fast, try using a slower baud rate. Make sure to reboot for the changes to take effect.
In some cases, adding the clock stretching and then turning on the I C via the raspi-config will overwrite the
settings for the .../boot/config.txt. If you see this configuration:

Enable I2C clock stretching
dtparam=i2c_arm=on

Make sure to adjust the line back to the following. Then save the changes and reboot the Pi for the changes to
take effect.

Enable I2C clock stretching
dtparam=i2c_arm_baudrate=10000

I'm Having Problems Reading the CCS811's NTC Thermistor.

If you receive this error, this is because there is no NTC thermistor connected on the environmental combo board!
You will not want to call this function if you are using the CCS811/BME280 environmental combo breakout.

Traceback (most recent call last):
 File "/home/pi/Qwiic-Kit-for-Pi/qwiic_kit_for_pi_demo.py", line 128, in <module>
 ccs.readNTC() #updates temp value
 File "/home/pi/.local/lib/python3.7/site-packages/qwiic_ccs811.py", line 356, in readNTC
 self.resistance = self.ntcCounts * self.refResistance / float(self.vrefCounts)
ZeroDivisionError: float division by zero

I'm Having Problems Getting the Qwiic_Py Library.

If you are having trouble installing the modules, you may receive this error:

Could not install packages due to an EnvironmentError: 404 Client Error: Not Found for url: http
s://www.piwheels.org/simple/sparkfun-qwiic/

Make sure that you are connected to the Internet to install the modules. Also, make sure that you are using
Python3 and pip3 with the correct alias as stated earlier.

If you receive this error when trying to install the modules:

ERROR: Could not install packages due to an EnvironmentError: [Errno 13] Permission denied: '/us
r/local/lib/python3.7/dist-packages/sparkfun_qwiic_i2c-0.8.3.dist-info'
Consider using the `--user` option or check the permissions.

This is due to your user permissions. Make sure to use sudo with your command:

sudo pip install sparkfun_qwiic

Or --user to the command.

2

https://learn.sparkfun.com/tutorials/qwiic-kit-for-raspberry-pi-hookup-guide#configure-your-pi

pip install --user sparkfun_qwiic

I Don't Want to Use Cayenne or Another 3rd Party Service.

That's perfectly alright, you can delete or comment out all the relevant commands as that is not will not affect the
rest of the code.

I Can't Connect to Cayenne.

Make sure you have copied your username , password , and clientid correctly from Cayenne into the code
before executing the Python script. Also, ensure that you have a reliable connection to the Internet.

How Do I Add _____ Qwiic Sensor?

Right now we only have a few Qwiic sensors in the Qwiic Py library, but we are looking to keep adding more.
Please periodically check back to see if the sensor you want is available. You can also check the Internet for
existing Python code for that sensor or write your own library.

Resources and Going Further
For more information, check out the resources below:

GitHub
Python Modules (i.e. Libraries)

Qwiic_I2C_Py
Qwiic_CCS811_Py
Qwiic_BME280_Py
Qwiic_Proximity_Py
Qwiic_Micro_OLED_Py
Qwiic_Py

Qwiic Kit for Pi Demo Code
SFE Product Showcase

https://github.com/sparkfun/Qwiic_I2C_Py
https://github.com/sparkfun/Qwiic_CCS811_Py
https://github.com/sparkfun/Qwiic_BME280_Py
https://github.com/sparkfun/Qwiic_Proximity_Py
https://github.com/sparkfun/Qwiic_Micro_OLED_Py
https://github.com/sparkfun/Qwiic_Py
https://github.com/sparkfun/Qwiic-Kit-for-Pi
https://youtu.be/W3JIYDA23Xc

Looking for more inspiration? Check out these other Raspberry Pi projects and Python tutorials.:

Want more Python?
We are working on more tutorials, blogs, and product releases around the Python programming
language.

Would you like to be notified when new content is available?

Email*

Would you also like to subscribe to SparkFun's weekly newsletter?

Yes, sign me up!

Graph Sensor Data with Python and Matplotlib
Use matplotlib to create a real-time plot of temperature
data collected from a TMP102 sensor connected to a
Raspberry Pi.

Python GUI Guide: Introduction to Tkinter
Tkinter is the standard graphical user interface
package that comes with Python. This tutorial will show
you how to create basic windowed applications as well
as complete full-screen dashboard examples complete
with live graph updates from matplotlib.

How to Run a Raspberry Pi Program on Startup
In this tutorial, we look at various methods for running a
script or program automatically whenever your
Raspberry Pi (or other Linux computer) boots up.

https://learn.sparkfun.com/tutorials/graph-sensor-data-with-python-and-matplotlib
https://learn.sparkfun.com/tutorials/python-gui-guide-introduction-to-tkinter
https://learn.sparkfun.com/tutorials/how-to-run-a-raspberry-pi-program-on-startup
https://learn.sparkfun.com/tutorials/sparkfun-top-phat-hookup-guide
https://learn.sparkfun.com/tutorials/working-with-qwiic-on-a-jetson-nano-through-jupyter-notebooks

Or check out some of these blog posts for ideas:

SparkFun Top pHAT Hookup Guide
The pHAT to sit above your other HATs. Does that
make it the "king" of the pHATs? This guide will help
you get started using the Top pHAT with the Raspberry
Pi.

Working with Qwiic on a Jetson Nano through
Jupyter Notebooks
We created a few Jupyter Notebooks to make using
our Qwiic boards with your Jetson Nano even easier!

Raspberry Pi Python IDE Comparison
JUNE 12, 2018

Python for SparkFun's Qwiic Connect System
JULY 9, 2019

https://learn.sparkfun.com/tutorials/sparkfun-top-phat-hookup-guide
https://learn.sparkfun.com/tutorials/working-with-qwiic-on-a-jetson-nano-through-jupyter-notebooks
https://www.sparkfun.com/news/2706
https://www.sparkfun.com/news/2958

