

AOZ32034AQV

Coil Driver for Wireless Charger Transmitter with Slew-Rate Control

General Description

The AOZ32034AQV is an integrated half-bridge solution with intelligent slew-rate control for wireless charger application. The device includes the high-side, low-side N-channel MOSFETs and its driver circuit. Typically, it's dedicated for the design of wireless charger transmitter circuit which is composed of full-bridge topology with resonant tank circuit to get best efficiency of power converter.

The AOZ32034AQV provides adjustable gate drive sink and source current control, by doing this control methodology, it's able to optimize EMI and driver losses to improve overall efficiency performance. Moreover, the features of AOZ32034AQV have multiple protection functions such as V_{CC} UVLO, over temperature protection to make the design more robust.

The AOZ32034AQV is available in a 4mm×4mm QFN-23L package and is rated over a -40°C to +125°C ambient temperature range.

Features

- Maximum input voltage 28V
 - -Support 12V & 24V voltage rail system
- 15W~50W Coil Driver
 - -For wireless charger transmitter circuit
- Slew-rate control to improve EMI performance
- Low R_{DS(ON)} internal NFETs – 7.5mΩ for Both HS/LS
- Integrated Bootstrap Diode
- Support protections – OTP, UVLO
- Thermally enhanced 23-pin 4×4 QFN

Applications

• Wireless charger TX

Typical Application (Wireless Charger TX)

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental		
AOZ32034AQV	-40°C to +125°C	23-Pin 4x4 QFN	Green		

All AOS products are offered in packages with Pb-free plating and compliant to RoHS standards. Please visit http://www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Pin Configuration

23-Pin 4mm x 4mm QFN

Pin Description

Pin Number	Pin Name	Pin Function
1	NC ⁽¹⁾	No connect
2	SRC	Slew-Rate Control to Adjust Driver Speed of Internal MOSFET
3	NC	No connect
4	HIN	PWM Input for High-Side MOSFET
5	LIN	PWM Input for Low-Side MOSFET
6	NC	No connect
7, 8, 9, 22	VIN	Supply Input. All IN pins must be connected together
10, 11, 16, 17, 18	VHB	Switching Node for Half-Bridge. All VHB must be connected together
12, 13, 14, 15	PGND	Power Ground
19	BST	Bootstrap Capacitor Connection. Connect an external capacitor between BST and VHB for supplying high-side MOSFET
20	VCC	Supply Input for Analog Functions. Bypass VCC to AGND with a 0.1uF~10uF ceramic capacitor and as close to VCC pin as possible
21	NC	No connect
23	AGND	Analog Ground

Note:

1. NC must be floating.

Absolute Maximum Ratings⁽¹⁾

Parameter	Rating
VIN to AGND	-0.3V to 30V
VHB to AGND	-0.3V to 30V
BST to AGND	-0.3V to 40V
BST to VHB	-0.3 to 6V
SRC, VCC to AGND	-0.3V to 6V
PGND to AGND	-0.3V to +1V
Junction Temperature (T _J)	+150°C
Storage Temperature (T _S)	-65°C to +150°C
ESD Rating	±2kV

Notes:

1. Exceeding the Absolute Maximum ratings may damage the device.

2. The device is not guaranteed to operate beyond the Maximum Operating ratings.

Electrical Characteristics

 $T_A = -40^{\circ}C$ to 125°C unless otherwise specified.

Recommend Operating Ratings⁽²⁾

Parameter	Rating
Supply Voltage (V _{IN})	3.8V to 28V
Supply Voltage (V _{CC})	4.75V to 5.5V
Ambient Temperature (T _A)	-40°C to +125°C
Package Thermal Resistance (Θ_{JA}) (Θ_{JC})	40°C/W 0.6°C/W

Symbol	Parameter Conditions		Min	Тур.	Max.	Units
V _{UVLO_R}	Vcc UVLO Rising	V _{IN} =12V, Vcc increase, Monitor SRC from low to high		4.3		V
V _{UVLO_F}	Vcc UVLO Falling	V _{IN} =12V, Vcc decrease, Monitor SRC from high to low		4.2		V
V _{BST_UVLO_R}	V_{BST} - V_{HB} UVLO Rising	V _{IN} =20V, (V _{BST} -V _{HB}) increase, Monitor V _{HB} from low to high		4.3		V
V _{BST_UVLO_F}	V_{BST} - V_{HB} UVLO Falling	$\rm V_{IN}$ =20V, (V_{BST} -V_{HB}) decrease, Monitor V_{HB} from high to low		4.2		V
I _{VIN_QC}	I _{VIN} Quiescent Current	V_{IN} =12V, V_{CC} =5V, HIN=LIN=0V, SRC=100k Ω		20		μA
I _{VCC_QC}	IVCC Quiescent Current	V_{IN} =12V, V_{CC} =5V, HIN=LIN=0V, SRC=100k Ω		180		μA
I _{BST-VHB_QC}	I _{BST-VHB} Quiescent Current	HIN/LIN=0V, V _{HB} =1V, (V _{BST} -V _{HB})=5V, Monitor (V _{BST} -V _{HB}) Current			40	mA
V _{HLIN_L}	HIN/LIN Logic Low Voltage	V _{IN} =12V	0.7	0.9	1.1	V
V _{HLIN_H}	HIN/LIN Logic High Voltage	V _{IN} =12V	1.2	1.4	1.6	V
R _{HLIN_IN}	HIN/LIN Input Pull Low Impedance			280		kΩ
t _{HIN_RP}	HIN Rising Propagation Delay	V _{IN} =10V, V _{CC} =5V, SRC=20kΩ, VHB to GND=100Ω, HIN=Low to High, Monitor V _{HB} Low to High	62	87	110	ns
t _{HIN_FP}	HIN Falling Propagation Delay	V_{IN} =10V, V_{CC} =5V, SRC=20k Ω , VHB to GND=100 Ω , HIN=High to Low, Monitor V_{HB} High to Low		86	110	ns
t _{LIN_RP}	LIN Rising Propagation Delay	V_{IN} =10V, V_{CC} =5V, SRC=20kΩ,VHB to GND=100Ω, LIN=Low to High, Monitor V_{HB} High to Low	72	91	105	ns
t _{LIN_FP}	LIN Falling Propagation Delay	V _{IN} =10V, V _{CC} =5V, SRC=20kΩ,VHB to GND=100Ω, LIN=High to Low, Monitor V _{HB} Low to High	50	75	95	ns

Electrical Characteristics

 T_A = -40°C to 125°C unless otherwise specified.

Symbol	Parameter	Parameter Conditions				
T _{DM_R}	Delay Matching Rising	Difference between $t_{HIN_{RP}}$ and $t_{LIN_{RP}}$		4		ns
T _{DM_F}	Delay Matching Falling	Difference between t _{HIN_FP} and t _{LIN_FP}		11		ns
V _{SRC}	SRC	V _{IN} =12V, V _{CC} =5V, SRC=20kΩ	0.97	1	1.03	V
I _{SRC_MIN}	SRC Min. Source Current	V _{IN} =12V, V _{CC} =5V, SRC=4V		0.5		μA
I _{SRC_MAX}	SRC Max. Source Current	V _{IN} =12V, V _{CC} =5V, SRC=0.8V		140		μA
SR _{HIN_R}	HIN Rising Slew Rate (SRC=20kΩ)	VIN=10V, V_{CC} =5V, V_{HB} to GND=100 Ω , HIN=Low to High, Monitor V_{HB} Rising Slew Rate		0.4		V/ns
SR _{HIN_F}	HIN Falling Slew Rate (SRC=20kΩ)	VIN=10V, V_{CC} =5V, V_{HB} to GND=100 Ω , HIN=High to Low, Monitor V_{HB} Falling Slew Rate		0.5		V/ns
SR _{LIN_R}	LIN Rising Slew Rate (SRC=20kΩ)	VIN=10V, V _{CC} =5V, V _{HB} to VIN=100Ω, LIN=High to Low, Monitor V _{HB} Rising Slew Rate		0.5		V/ns
SR _{LIN_F}	LIN Falling Slew Rate (SRC=20kΩ)	VIN=10V, V _{CC} =5V, V _{HB} to VIN=100Ω, LIN=Low to High Monitor V _{HB} Falling Slew Rate		0.4		V/ns
R _{H_ON}	V _{IN} -V _{HB} RON	V _{IN} =12V, V _{CC} =5V, HIN=5V, (V _{BST} -V _{HB})=5V, I _{VHB} =1A		7.5		mΩ
R _{L_ON}	V _{HB} -PGND RON	V _{IN} =12V, V _{CC} =5V, LIN=5V, PGND=0, I _{VHB} =1A		7.5		mΩ
V _{SD}	Boost Diode Forward Voltage	Forward Current = 2mA		0.42		V
T _{OTP}	OTP	V _{IN} =12V, V _{CC} =5V		150		°C

Functional Block Diagram

Start-up Sequence

Typical Performance Characteristics

Figure 5. $V_{BST\text{-}VHB}$ UVLO Rising Threshold

Figure 2. $V_{BST-VHB}$ UVLO Falling Threshold

Figure 4. Input Standby Current

Figure 6. V_{CC} Standby Current

Typical Performance Characteristics (Continued)

Detailed Description

The AOZ32034AQV is an integrated half-bridge solution with intelligent slew-rate control for wireless charger application. The device includes the high-side, low-side N-channel MOSFETs and its driver circuit. Typically, it's dedicated for the design of wireless charger transmitter circuit which is composed of full-bridge topology with resonant tank circuit to get best efficiency of power converter.

The AOZ32034AQV provides adjustable gate drive sink and source current control, by doing this control methodology, it's able to optimize EMI and driver losses to improve overall efficiency performance.

In addition, the AOZ32034AQV provides several fault protections, such as UVLO, OTP and non-overlapping mechanism.

The AOZ32034AQV is available in 23-pin 4mm×4mm QFN package.

Non-overlapping

For forbidding shoot-through, HIN or LIN is invalid when HIN or LIN goes high state before other one. For example, low-side gate state keeps low regardless of the state of LIN when HIN is high at first, and vice versa.

Fault Protection

In order to protect power MOSFETs, over temperature protection (OTP) is implemented. AOZ32034AQV will be shutdown when OTP is occurred until VCC is reset. The threshold of OTP is 140°C.

Adjustable Source/Sink Current

It's hard to meet all of EMI specifications in different applications. So, AOZ32034AQV provides external adjustable resistors for tuning gate drive source and sink current.

SRC is used to tune gate drive source and sink current, respectively. A resistor connects between SRC pin and GND to setting gate drive source / sink current by internal current mirror, as illustrated Figure 11. Source and sink current use maximum capability to drive when SRC pin is floating or the voltage on SRC pin is exceed 4V. The suggestion range of R_{SRC} is $10k\Omega \sim 100k\Omega$.

Fig. 11 Source/Sink Current Setting

In addition, source and sink current controls are implemented only during MOSFET Miller effect and VGS >1V, as illustrated Figure 12.

Fig. 12 Source /Sink Current Implement Waveform

Layout Considerations

Several layout tips are listed below for the best electric and thermal performance.

- 1. The VIN pins and pad are connected to internal high side switch drain. They are also low resistance thermal conduction path. Connected a large copper plane to VIN pins to help thermal dissipation.
- 2. Input capacitors should be connected to the VIN pins and the PGND pins as close as possible to reduce the switching spikes.
- 3. The VHB pins and pad are connected to internal low side switch drain. They are low resistance thermal

conduction path and most noisy switching node. Connected a large copper plane to VHB pins to help thermal dissipation.

- 4. Decoupling capacitor C_{VCC} should be connected to VCC and AGND as close as possible.
- 5. Bootstrap capacitor C_B should be connected to BST and VHB as close as possible.
- 6. A ground plane is preferred. PGND and AGND must be connected to the ground plane through vias.
- 7. Keep sensitive signal traces such as feedback trace and digital signals far away from the VHB pins.

Figure 13. Layout Placement

Package Dimensions, QFN4x4-23L

RECOMMENDED LAND PATTERN

Option 1

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES			
STMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
А	0.80	0.90	1.00	0.031	0.035	0.039	
A1	0.00		0.05	0.000		0.002	
A2		0.2 REF			0.008 REF		
Е	3.90	4.00	4.10	0.153	0.157	0.161	
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.65	1.75	1.85	0.065	0.069	0.073	
E3	2.95	3.05	3.15	0.116	0.120	0.124	
D	3.90	4.00	4.10	0.153	0.157	0.161	
D1	0.65	0.75	0.85	0.026	0.030	0.034	
D2	0.85	0.95	1.05	0.033	0.037	0.041	
D3	1.24	1.34	1.44	0.049	0.053	0.057	
L	0.35	0.40	0.45	0.014	0.016	0.018	
L1	0.57	0.62	0.67	0.022	0.024	0.026	
L2	0.23	0.28	0.33	0.009	0.011	0.013	
L3	0.57	0.62	0.67	0.022	0.024	0.026	
L4	0.30	0.35	0.40	0.012	0.014	0.016	
b	0.20	0.25	0.30	0.008	0.010	0.012	
e		0.50 BSC			0.020 BSC		

Option 2

NOTE

1. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

2. TOLERANCE :±0.05 UNLESS OTHERWISE SPECIFIED.

3. RADIUS ON ALL CORNER ARE 0.152 MAX., UNLESS OTHERWISE SPECIFIED.

4. PACKAGE WARPAGE: 0.012 MAX.

5. NO ANY PLASTIC FLASH ALLOWED ON THE TOP AND BOTTOM LEAD SURFACE.

6. PAD PLANARITY: ±0.102

7. CRACK BETWEEN PLASTIC BODY AND LEAD IS NOT ALLOWED.

Tape and Reel Dimensions, QFN4x4-23L

UNIT: MM

PACKAGE	A0	BO	К0	DO	D1	E	E1	E2	P0	P1	P2	Т
QFN4x4 (12 mm)	4.35 ±0.10	4.35 ±0.10	1.10 ±0.10	1.50 MIN.	1.50 +0.1 -0.0	12.0 ±0.3	1.75 ±0.10	5.50 ±0.05	8.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.30 ±0.05

QFN4x4 Reel

QFN4x4 Tape

Leader / Trailer & Orientation	÷	÷	÷	÷ (+	÷	\oplus	÷ (+	\oplus	\oplus	÷	7 (Ð	\oplus	\oplus	Ð
Normal					ABCOEF		ABCEDEFF	ABCIEF						
Unit Per Reel:		• 												

+2.6

±1.0

+2.0

 \vee

Part Marking

PART NO.	DESCRIPTION	CODE
AOZ32034AQV	Green Product	DU00

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: <u>http://www.aosmd.com/terms_and_conditions_of_sale</u>

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.