

FEATURES

- No opto feedback
- Patent protected
- Four isolated output voltages suitable for powering IGBT/SiC & Mosfet gate drives simultaneously in a three phase bridge configuration
- Reinforced insulation to UL60950 with 8mm creepage & clearance recognition pending
- ANSI/AAMI ES60601-1, 2 MOPP recognition pending
- Characterised dv/dt immunity 80kV/µs at 1.6kV
- Characterised partial discharge performance
- 5.7kVDC isolation test voltage 'Hi Pot Test'
- Ultra low coupling capacitance typically 15pF
- DC link voltage 3kVDC
- 5V, 12V & 24V input voltages
- 105°C operating temperature

PRODUCT OVERVIEW

Offering four isolated output voltages of 24V, the MGJ6-3P series of DC-DC converters is ideal for powering 'high side' and 'low side' gate drive circuits simultaneously for IGBTs, Silicon and Silicon Carbide Mosfets in three phase circuits. The MGJ6-3P series is characterised for high isolation and dv/ dt requirements commonly seen in bridge circuits used in motor drives and inverters.

MGJ6 Three Phase Bridge Series

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

SELECTION GUIDE								
		Output 1 VH	A / Output 2 V VHC	'HB Output 3	Output 4 VL			
Order Code ¹	Input Voltage Range	Rated Output Voltage	Rated Output Current	Output Power	Rated Output Voltage	Rated Output Current	Output Power	
	V	V	mA	W	V	mA	W	
MGJ6Q05P24MC	4.5 - 9	24	42	1	24	125	3	
MGJ6Q12P24MC	9 - 18	24	42	1	24	125	3	
MGJ6Q24P24MC	18 - 36	24	42	1	24	125	3	

SELECTION GUIDE (Continued)

		Out	put 1 VHA / Output 3		HB	Output 4 VL				
Order Code ¹	Input Voltage Range	Load Regulation (Typ)	Load Regulation (Max)	Ripple & Noise (Typ) ²	Ripple & Noise (Max) ²	Load Regulation (Typ)	Load Regulation (Max)	Ripple & Noise (Typ) ²	Ripple & Noise (Max) ²	
	V	(%	mV	р-р	9	/ 0	mV	р-р	
MGJ6Q05P24MC	4.5 - 9	2	3	100	150	2	3	100	150	
MGJ6Q12P24MC	9 - 18	2	3	70	120	2	3	70	120	
MGJ6Q24P24MC	18 - 36	2	3	70	120	2	3	70	120	

SELECTION GUIDE (Continued)

	t	ad			MT	TF ³
Order Code1	Nominal Input Voltage	Input Current at Rated Load	Efficiency (Min)	Efficiency (Typ)	MIL 217	Telecordia
	V	mA	9	6	k⊦	Irs
MGJ6Q05P24MC	5	1500	76	79.5	671	1842
MGJ6Q12P24MC	12	600	81	84	781	1646
MGJ6Q24P24MC	24	300	82	85	787	1725

1. Components are supplied in tape and reel packaging, please refer to tape and reel specification section. Orderable part numbers are MGJ60XXP24MC-R7 (23 pieces per reel), or MGJ60XXP24MC-R13 (92 pieces per reel).

2. See ripple & noise test method.

3. Calculated using MIL-HDBK-217 FN2 and Telecordia SR-332 calculation model at TA=25°C with nominal input voltage at full load.

All specifications typical at TA=25°C, nominal input voltage and rated output current unless otherwise specified.

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

Parameter	Conditions	Min.	Тур.	Max.	Units
	5V input types	4.5	5	9	
Voltage range	12V input types	9	12	18	V
	24V input types	18	24	36	
	Turn on threshold MGJ6Q05		3.8		
	Turn off threshold MGJ6Q05		3.2		
	Turn on threshold MGJ6Q12		8.1		v
Under voltage lock out	Turn off threshold MGJ6Q12		7.5		V
	Turn on threshold MGJ6Q24		16.7		-
	Turn off threshold MGJ6Q24		16.3		
	5V input types		30		
Input ripple current	12V input types		45		mA
	24V input types		25		р-р

muRata Ps Murata Power Solutions

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
	Flash tested for 1 second (input to output)	4000			VAC
loolation toot voltage	Flash tested for 1 second (output to output)	2500			VAG
sistance	Qualification tested for 1 minute (input to output)	5700			VDC
	Qualification tested for 1 minute (output to output)	3000			VDC
Resistance	Viso = 1kVDC	100			GΩ
Continuous barrier withstand voltage	Non-safety barrier application			3000	VDC
Croopage & clearance	Input to output			8	
Creepage & clearance	Output to output			8	mm
	Primary to Output 1 VHA		15		
lociation consultance	Primary to Output 2 VHB		15		
Isolation capacitance	Primary to Output 3 VHC		15		pF
	Primary to Output 4 VL		15]

OUTPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Minimum load	Below 10% load, output may rise to 30V maximum voltage	10			%
Voltage set point accuracy	5V output types		+4 / -1		%
voltage set point accuracy	All other output types		+3 / -2		70
Total regulation				10	%
Line regulation	Low line to high line		0.5	1	%

GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Power Consumption	Disable pin pulled low		45		mW
Switching frequency			100		kHz

TEMPERATURE CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Operation	See derating graphs	See derating graphs			105	
Storage			-55		125	°C
Product temperature rise above ambient	100% Load Nam V., Still Air	5V input types		25		-0
	100% Load, Nom V _N , Still Air All other input types			19		

ABSOLUTE MAXIMUM RATINGS	
Short-circuit protection	Continuous
Input voltage, MGJ6-3P 5V input types	12V
Input voltage, MGJ6-3P 12V input types	20V
Input voltage, MGJ6-3P 24V input types	40V

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions MGJ6-3P series of DC-DC converters are all 100% production tested at 4kVACrms for 1 second from input to output and 2.5kVACrms for 1 second from output to output. Also they are all qualification tested at 5.7kVDC for 1 minute from input to output and 3kVDC for 1 minute from output to output.

A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

When the insulation in the MGJ6-3P series is not used as a safety barrier , i.e. provides functional isolation only, continuous or switched voltages across the barrier up to 3kV are sustainable. Long term reliability testing at these voltages continues. Peak Inception voltages measured were in excess of 3.5kV when testing for partial discharge in accordance with IEC 60270. Please contact Murata for further information.

The MGJ6-3P series pending recognition by Underwriters Laboratory to 250 Vrms Reinforced Insulation, please see safety approval section below.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

muRata R Murata Power Solutions

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL

ANSI/AAMI ES60601-1

The MGJ6-3P series is pending recognition by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 2 MOPP (Means Of Patient Protection) based on a working voltage of 250vrms.

UL 60950

The MGJ6-3P series is pending recognition by Underwriters Laboratory (UL) to UL60950 for reinforced insulation to a working voltage of 250Vrms with a maximum measured product operating temperature of 130°C.

Creepage and clearance 8mm, input to output & across outputs.

FUSING

The MGJ6-3P Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below. Input Voltage, 5V 4A Input Voltage, 12V 2A

Input Voltage, 24V 1A All fuses should be UL recognised, 250Vac rated.

Rohs Compliance, MSL and PSL INFORMATION

This series is compatible with Pb-Free soldering systems and is also backward compatible with Sn/Pb soldering systems. The MGJ6 three phase series has a process, moisture, and reflow sensitivity classification of MSL2 PSL R7F as defined in J-STD-020 and J-STD-075. This translates to: MSL2 = 1 year floor life, PSL R7F = Peak reflow temperature 245°C with a limitation on the time above liquidus (217°C) which for this series is 90sec max. The pin termination finish on this product series is Gold with Nickel Pre-plate.

muRata Power Solutions 5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

APPLICATION NOTES

Disable/Frequency synchronisation

Please refer to application notes for further information

		Min	Тур	Max	Units
Disable/Sync ¹	Pull Down Current		0.5		mA
	Input High	2		60	V
	Input Low	-0.6		0.8	V
Synchronisation	Frequency Range	90	100	110	kHz
Synchionisation	Duty Cycle	25		75	%

The Disable/Synchronization pin has three modes:

- 1. When a DC logic low voltage is applied to this pin the MGJ6-3P is disabled and enters a low quiescent current sleep mode.
- When this pin is left floating or a DC logic high (CMOS/TTL compatible) voltage is applied the MGJ6-3P is enabled and operates at the programmed frequency of 100kHz.
- 3. When a square wave of between 90kHz and 110kHz is applied to this pin, the switcher operates at the same frequency as the square wave. The falling edge of the square wave corresponds to the start of the switching cycle. If the signal is slower than 25Hz, it will be interpreted as enabling and disabling the part. If the MGJ6-3P is disabled, it must be disabled for 7 clock cycles before being re-enabled.

Note: The Dis/Sync pin is a high impedance TTL input and can be triggered by noise from external circuits if not treated carefully.

Please refer to "LAYOUT CONSIDERATIONS" and "SYNCHRONISATION CIRCUIT" for further details.

Click here for general guidance for gate drive applications.

LAYOUT CONSIDERATIONS

Unlike standard isolated DC-DC products the MGJ6-3P series has been designed specifically for high side gate drive applications where the outputs are being driven to a high voltage at a very high dV/dT. This is possible due to minimum transformer coupling capacitance and considered circuit design regarding common mode transient immunity. It is important that these few simple pcb layout guidelines are implemented so as not to compromise the performance of the DC-DC and that of the overall system.

- The keep clear area shown must not have any copper traces even on internal layers. This is not only to avoid compromising the creepage and clearance distance but also to minimise capacitive coupling between the noisy output circuits and input control circuits. In general it is good practice to maintain the same band of clearance area running directly through both the DC-DC and the gate drive isolators as shown so that input and output are kept separate and do not overlap or mesh together at any point.
- A top layer ground plane copper area connected to -Vin can be used to create an effective screen to the underside of the MGJ6-3P series and can also be used as a
 guard ring for the gate drive isolator inputs. If the Dis/Synch pin is being used then it is imperative that it follows a route covered by this screen to avoid differential
 pick up. It should also be kept as short as possible.

Please refer to "PACKAGE SPECIFICATIONS" for recommended layout.

- 1. A suggested synchronisation circuit is shown. C1 and C2 are 100nF capacitors. D1 and D2 are schottky diodes. The capacitive coupling and close connected diode ensures that a transition from high to low is seen at the input pin even in a noisy environment or when there is a slight ground shift between devices.
- 2. If the Dis/Sync pin is not used for synchronisation, then a 22nF capacitor can be added between the Dis/Sync pin and –Vin pin to improve noise immunity. If the functionality of Dis/Sync is not required, the Dis/Sync pin can be connected directly to the +Vin pin to improve noise immunity.
- 3. One very effective method to reduce common mode transient interference is to add a common mode filter to the DC input. It may only be necessary to add one before splitting the supply to each DC-DC.

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

art-up times						
vpical start up times for this se aximum additional output cap			Outp	put capacitance must not e	exceed:	
Part No.	Start-up times			Output Voltage	Maximum output capacitance	
MGJ6Q05P24MC	ms 30			V	μF	
	30	_		24 VHA	18	
MGJ6Q12P24MC		_		24 VHB	18	
MGJ6Q24P24MC	30			24 VHC	18	
				24 VL	56	
Itput configurations for powe	er switches					
les for various power switche	s using circuit A.					
Component		IGBT		SIC	MOSFET	
Component Zener diode ¹		IGBT 9V1		SIC 5V1	MOSFET 9V1	
Zener diode ¹	ZX84C.	9V1		5V1 18K	9V1 15K	
Zener diode ¹ Resistor	ZX84C.	9V1 15K +24V	+Vgate	5V1	9V1 15K	
Zener diode ¹ Resistor 1. Suggested zener diode is B	+Vgate	9V1 15K		5V1 18K	9V1 15K	
Zener diode ¹ Resistor 1. Suggested zener diode is B	+Vgate	9V1 15K +24V	2	5V1 18K 42 42 44 42 44	9V1 15K	

muRata Ps Murata Power Solutions _ 5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

muRata Power Solutions MGJ6 Three Phase Bridge Series

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

APPLICATION NOTES (Continued)

Schematic for driving IGBT

For some high frequency applications where each low side device has a kelvin sense terminal or it is necessary to connect the gate drive supply as close to the device terminal as possible the following circuit can be used. By adding 100hm resistors in the positive and negative gate supply lines to each gate drive circuit it is possible to create a high frequency separation between the supplies. This means it is possible to significantly reduce the emitter inductance in the gate driving loop without the need for separate isolated supplies.

www.murata-ps.com/support

KDC_MGJ6C-3P.B03 Page 8 of 17

muRata Power Solutions MGJ6 Three Phase Bridge Series

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

APPLICATION NOTES (Continued)

Schematic for Powering Three Phase Drivers on Electrical Vehicle Systems

For three phase drives on an Electric Vehicle system it is sometimes necessary, for safety and diagnostic reasons to power the high side switches independently to the Low side switches. This means that if a fault occurs on a the high side switch it is possible to disable all of the high side switches without disabling the low side switches. In this case it is recommended that two full bridge MGJ6 units are used. The circuit below shows how two full bridge MGJ6 units can be connected to achieve this, for more information on the full bridge MGJ6 series please refer to the datasheet.

www.murata-ps.com/support

KDC_MGJ6C-3P.B03 Page 9 of 17

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

APPLICATION NOTES (Continued)

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

APPLICATION NOTES (Continued)

SLIC Circuits

Power source is preferred to the telephone system power due to either the power quality of the telecommunications system power supply or to avoid potential power line disturbances, such as lightning strikes and access switching, which will affect the target circuit function.

Another application area is in fibre-in-the-loop (FITL) or radio-in-the-loop (RITL) interfacing via a standard telecommunication SLIC, where the usual telecommunication battery voltage is not available due to the transmission media in use (fibre or radio). In particular, FITL/RITL interfaces directly on PC cards, in local monitor and boost circuits and at exchanges between the fibre/radio and wire media. The supply rails can be used for ringing generators as well as SLIC circuits or where both are combined, such as in the AMD AM79R79 Ringing SLIC device (see figure 2). The -72V rail is used primarily for the generation of the ringing signal (VBAT1), the -48V rail is used to supply in line access circuitry (VBAT2) and the -24V supply for the on-chip regulator for the logic interface (VNEG). Alternative devices from other manufacturers could use the +/-24V outputs for their internal circuit supply and -72V for ringing.

muRata P. Murata Power Solutions _ 5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

TEMPERATURE DERATING

Derating curves are based on IPC-9592. With no derating some components may be operating at the manufacturers maximum temperature ratings.

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

EMC FILTERING AND SPECTRA

FILTERING

The following filter circuit and filter table shows the input filters typically required to meet conducted emissions limits for EN 55022 curve B using Quasi-Peak (pink line) and average (green line) detectors according to CISPR22. The following plots show measurements of the positive (L1) and negative (L2) inputs for both Quasi-peak limit B adherence and Average limit B adherence. If a high dv/dt above 80kV/us is expected from output to input it is advised that a common mode filter is used on each output as this will reduce the common mode current circulating between outputs and input and causing interference.

C1, C2 & C3 Polyester or ceramic capacitor

C4 Electrolytic capacitor (note R1 could be omitted if C4 has ESR >= R1)

TO MEET CURVE B							
Part Number	C1	L1	Part Number	C2	C3	R1	C4
MGJ6Q05P24MC	10µF	1mH	51105C	1nF	1nF	1Ω	470µF
MGJ6Q12P24MC	10µF	1mH	51105C	1nF	1nF	1Ω	470µF
MGJ6Q24P24MC	10µF	1mH	51105C	1nF	1nF	1Ω	470µF

MGJ6Q12P24MC (Average)

muRata P. Murata Power Solutions 5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

5.7kVDC 6W Quad Output Isolated Gate Drive SM DC-DC Converters

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>: Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. @ 2019 Murata Power Solutions, Inc.