
Servo Trigger Hookup Guide 

 


Introduction
The Servo Trigger is a small board that helps you deploy hobby RC servo 
motors. When an external switch or logic signal changes state, the Servo 
Trigger tells an attached servo motor to move from position A to position B.

The Servo Trigger in action.

To use the Servo Trigger, you simply connect a hobby servo and a switch, 
then use the onboard potentiometers to adjust the start/stop positions and 
transition time. You can use a hobby servos in your projects without having 
to do any programming!

In This Tutorial

This hookup guide starts with some background information about hobby 
servo motors. From there, it jumps into getting the Servo Trigger working 
with a small servo, then examines some of the inner workings. Finally, for 
the adventurous, it explains how to customize the Servo Trigger by 
reprogramming it.

Suggested Reading

• An Introduction to Motors.
• More information about hobby servo motors.
• Some background on Pulse Width Modulation.

Servo Motor Background

Page 1 of 14



In the most generic sense, a “servomechanism” (servo for short) is a device 
that uses feedback to achieve the desired result. Feedback control is used 
in many different disciplines, controlling parameters such as speed, 
position, and temperature.

In the context we are discussing here, we are talking about hobby or radio-
control servo motors. These are small motors primarily used for steering 
radio-controlled vehicles. Because the position is easily controllable, they 
are also useful for robotics and animatronics. However, they shouldn’t be 
confused with other types of servo motors, such as the large ones used in 
industrial machinery.

An Assortment of Hobby Servos

RC servos are reasonably standardized - they are all a similar shape, with 
mounting flanges at each end, available in graduated sizes. Servos often 
come with several wheels or levers, known as “horns”, than can be 
attached to the shaft, to fit the device they are operating.

Example Servo Horns

Electrical Connection

Most hobby servos use a standard type of 3-pin plug, with the same control 
signaling, which makes RC servos reasonably interchangeable.

The connector is a 3-pin, 0.1" pitch header. One thing that can be confusing 
is that the wiring color code isn’t always consistent – there are several color 
codes at play. The good news is that the pins are usually in the same order, 
just that the colors on them are different.

Page 2 of 14



The table below summarizes common color schemes.

Pin 
Number

Signal 
Name

Color 
Scheme 

1
(Futaba)

Color 
Scheme 

2
(JR)

Color 
Scheme 

3
(Hitec)

1 Ground Black Brown Black

2
Power 
Supply

Red Red
Red or 
Brown

3
Control 
Signal

White Orange
Yellow or 

White
Servo connection Color Coding

Heads up! If you’re in doubt about your color scheme, check the 
documentation – don’t plug it in backwards!

Powering Servos

In RC vehicles, 5.5V is the nominal battery voltage. It will be somewhat 
higher after a charge, and it will droop as the batteries discharge. As the 
voltage drops, the available torque also drops – if you’ve driven RC 
vehicles, you’re no doubt familiar with the loss of control that occurs as the 
batteries get weaker. It starts to feel sluggish just before it dies.

If you’re not using batteries, the 5VDC available from a garden variety 
power supply is a good option. If you’re using the Servo Trigger to control 
your motor, the absolute maximum supply voltage that should be applied 
is 5.5 VDC.

Regardless of how you’re powering them, it’s worth noting that the current 
consumed by the motor increases as the mechanical loading increases. A 
small servo with nothing attached to the shaft might draw 10 mA, while a 
large one turning a heavy lever might draw an Ampere or more!

Control signal

Servos are controlled with a specific type of pulse train signal. The pulses 
occur at a 20 mSec (50 Hz) interval, and vary between 1 and 2 mSec in 
width. The Pulse Width Modulation hardware available on a microcontroller 
is a great way to generate servo control signals.

Common servos rotate over a range of 90° as the pulses vary between 1 
and 2 mSec – they should be at the center of their mechanical range when 
the pulse is 1.5 mSec.

Page 3 of 14



Internally, the mechanism of a servo motor uses a potentiometer attached 
to the rotating shaft to sense the position. It measures the width of the 
incoming pulse, and applies current to the motor to turn the shaft 
correspondingly.

Here are the insides of a servo that’s been dissected. You can see the DC 
motor, position potentiometer, and a small PCB. The PCB has a chip on 
one side, possibly a small microcontroller.

Inside an RC servo

The other side of the PCB has some discrete transistors, probably in an 
H-bridge configuration, which allow the controller to steer current through 
the motor in either direction, for both clockwise and counterclockwise 
rotation.

Back of the PCB

One Other Useful Servo

Ordinary RC servos turn over a 90° range – it’s useful for turning a steering 
linkage, or adjusting the control surfaces on an airplane, but not so useful 
as a drive mechanism. That’s where full or continuous rotation servos 
come in.

Page 4 of 14



Rather than controlling position, the continuous rotation servo translates the 
same pulse-train signal into the rotational speed and direction of the shaft. 
Otherwise, they’re very similar to regular RC servos – they use the same 
power supply, control signals, 3-pin connector, and are available in the 
same sizes as RC servos.

The overall speed is relatively low – around 60 RPM is a common 
maximum rate – if you need higher rotation speed, servos aren’t the best fit 
– DC gearmotors or brushless DC motors are more likely candidates, but 
they aren’t directly compatible with servo control signals.

With the Servo Trigger

The Servo Trigger is capable of controlling both regular and continuous 
rotation servos. We’ll explore some more specific use cases in the following 
sections.

Getting Started Quickly
Let’s jump in and build a circuit to show how the Servo Trigger works!

Materials and Tools

You’ll need to following materials to build this example circuit.

• The Servo Trigger module.
• A hobby servo motor - we’ll be using our micro size metal gear servo.
• A switch - any momentary-contact switch is suitable, so we’ll use a 

12mm tactile pushbutton.
• A 5V power supply.
• A barrel jack adapter to make conecting the power supply easier.
• A 3-pin section of a snappable header, either straight or right-angle.
• A small screwdriver to adjust the trimpots.
• Finally, not shown, we’ll need some hookup wire and soldering tools.

Beginning Steps

To start, solder some wires to the tactile switch. If you solder to legs on on 
opposite corners (top-right and lower-left, for instance), you can be 
confident that you’ll get a contact closure when you press the button.

Page 5 of 14



Switch Assembly

Then prepare the power plug pigtail. Take a pair of wires, and strip the 
ends, then screw them to the power jack adapter – if you look closely at the 
adaptor, you’ll notice that there are a small + and - embossed in the 
plastic. We used a red wire for VCC on the + terminal, and a black wire for 
ground on the - terminal.

Power Jack Closeup

Next, solder the 3-pin header to the 3 pads on the end the board, and plug 
the servo into the the header. Be careful to get the plug oriented correctly – 
you can check the color code table in the previous section, or consult the 
servo manufacturer’s datasheet.

Then solder the switch wires to the IN and GND pads on the Servo 
Trigger, and the power pigtail to the VCC and GND pads on the edge of the 
board. These are mirrored on opposite edges of the board – they’re wired in 
parallel, so you can use either set of pads. The red wire should connect to 
the VCC pad, and the black to GND .

Before we power up, take a moment to double-check your work against the 
photo below (click on the picture for a larger version). In particular, make 
sure that the power and servo connections are oriented correctly.

Adjust the trimpots on the back of the board. Set A fully counterclockwise, 
B fully clockwise, and set T to the middle.

Page 6 of 14



Finally, apply power. The servo will probably jump to a new position as you 
do this.

Then, press and hold the switch. The servo will rotate, taking a couple of 
seconds to reach its new position. Release the switch, and it will go back to 
the starting point.

Now you can adjust the trimpots to configure the servo.

• A sets the position the servo sits in while the switch is open.
• B sets the position the servo moves to when the switch is closed
• T sets the time it takes to get from A to B and back.

Turning the position pots clockwise will make the motor turn further 
clockwise. If A is higher than B, then the servo will turn counterclockwise 
when the switch is actuated. The timing range is adjustable between 50 
milliseconds and 3 seconds. The transit time is constant – when set to 2 
seconds, the servo will take 2 seconds to move between A and B, 
regardless of how close the position settings are.

In the next section, we’ll explore some of the finer details of the Servo 
Trigger.

More Details

On The Board

Let’s look at the components on the board and examine how it works.

The heart of the Servo Trigger is an Atmel ATTiny84 microcontroller, 
running a small program that implements the servo control features we are 
discussing here. Just because the Servo Trigger saves you from needing to 
write code doesn’t mean that there’s no programming involved!

The servo control signal is generated using a 16-bit hardware timer. It runs 
off a 1 MHz clock, counting to 20000 to generate the 20 mSec (50 Hz) 
period and configured to generate pulses that range from 1000 to 2000 
µSec (1 to 2 milliseconds).

The three potentiometers are connected as voltage dividers between VCC 
and ground. They are read using analog inputs ADC0, ADC3, and ADC7.

The switch input is read using PortA, input pin 1. It is debounced in 
software and can be configured to watch for a switch closure, or a logic 
level pulse.

If you’re interested, you can download the schematic, PCB layout and 
firmware files from the Servo Trigger GitHub Repository. The board also 
includes the common 6-pin in-system-programming header, which we’ll 
discuss in the Expert Exercises section. But we’re getting a bit ahead of 
ourselves – there are configuration options you can use without 
programming.

Page 7 of 14



Configuration

The Servo Trigger has a couple of configuration options. If you look at the 
back of the PCB, you’ll notice two solder jumpers that can be used to 
change Servo Trigger’s response.

Configuration Jumpers, SJ1 and SJ2.

When it first powers up, the servo trigger reads these jumpers, and 
configures itself accordingly.

Modes

The Servo Trigger has two different servo control modes, selected with 
solder jumper 1 (SJ1). They can be used to tailor the response of the board 
for different applications.

The default mode implements bistable control – the servo will sit at position 
A or position B, depending on the input actuation. While the switch stays in 
a state, the servo stays in the corresponding position – it is stable in two
different states.

Jumper Cleared - Bistable Control

This behavior can be changed by flowing solder between the pads of the 
jumper.

With the solder jumper closed, the mode changes to one-shot or 
monostable. When the input is actuated, the servo will move from A to B, 
then back to A – the servo is stable in the A position, and only passes 
through the B position momentarily. Regardless of when the input is 
cleared, the servo will make a complete transit.

Page 8 of 14



Jumper Soldered - One-Shot Control

Input Polarity

The Servo Trigger input sensitivity can also be changed, using solder 
jumper 2 (SJ2).

The default configuration, with no solder applied, configures the Servo 
Trigger for use with a normally-open switch, with the internal pull-up resistor 
on the microcontroller enabled. This configuration is also suitable for use 
with an active-low logic input.

With SJ2 closed, the internal pull-up is disabled, and the input is set as an 
active-high logic input.

If SJ2 is closed, be careful about powering up the Servo Trigger when the 
input is not connected to anything. When the input is floating, it can 
randomly toggle between active and inactive and may cause the motor to 
behave unpredictably.

A note about nomenclature here: since the input polarity can be swapped, it 
can be hard to talk about – the voltage might be high, but when the sense is 
inverted, it indicates that the input isn’t being actuated. To help navigate 
this, the polarity-neutral terms active or asserted are used to describe 
when the input is being used, and inactive or deasserted to describe the 
default state.

More components

The servo trigger can be used with a wider variety of external components 
than used in the example above. We used a mid-sized servo, though we 
have many other candidates, in a wide variety of sizes & torque ratings.

You can also use different switches, such as micro switches and foot pedal 
switches.

Power Notes

Compared to a servo motor, the Servo Trigger board draws very little 
current – roughly 5 mA.

The motors draw significantly more – a quick bench test using a small 
servo, with only a lightwieght horn attached, shows the motor draws 10 mA 
sitting idle, and about 70 mA while moving. Grabbing the horn and twisting 
causes the controller to apply current to the motor, counteracting the twist. 
It drew 700 mA during this test – a larger servo could draw even more!

These currents can get surprisingly high as you add more motors to the 
system – you’ll need to select a power supply with adequate capacity.

The Servo Trigger is designed to make it easy to daisy chain boards – you 
can simply connect the VCC and GND pads on adjacent boards.

Page 9 of 14



In applications where the motors are moving non-trivial loads, it’s a better 
bet to use heavier gauge wires and give each Servo Trigger a direct 
connection to the power supply. The configuration is commonly known as 
“star power.”

When in doubt, grab a multimeter, measure the current consumed, and 
check whether VCC at the board input is falling below the rated voltage 
when the servos are turning.

Troubleshooting

If there’s no motion when you actuate the input, first check that A and B are 
not set the same, otherwise there’s no position change!

If you’re feeding the input with a logic signal from an external device, be 
sure to drive the signal for more than 50 milliseconds. The PWM signal is 
updated every 50 mSec, and events shorter than that may missed.

It’s also possible to set T shorter than the time it take the servo motor to 
physically rotate. In this case, the motor may not reach B before returning 
to A. Try turning up T, to see if a longer transition time allows the motor to 
turn.

Expert Exercises

Customizing the Servo Trigger

Page 10 of 14



The Servo Trigger was designed to make using servo motors easy, but it 
may not fit every application. You might need different timing, or different 
logic that interprets how the input is translated into the motor drive signal.

Since the heart of the Servo Trigger is a microcontroller, the firmware on 
that controller can be reprogrammed. And because the design is released 
as Open Source Hardware, the source code for the firmware is published in 
the device’s GitHub Repository. You’re welcome to download and modify it!

Toolchain

The Servo Trigger firmware was developed in Atmel Studio 6.2.1153, using 
a JTAGICE3 debugging module. The JTAGICE3 can configure and 
program the chip, and also offers a full-featured interactive debugger. You 
can pause execution and inspect the chip internals, which makes 
troubleshooting the application significantly simpler – especially because 
the Tiny84 lacks a serial port that could print debugging information.

If you’re using Atmel Studio, the /firmware/ directory in the repo contains 
the project and solution files.

While Atmel Studio makes a nice graphical front end and has a full-featured 
debugger, it is not required to recompile the firmware or reprogram the IC. 
You can use the command-line WinAVR tools, and program the board 
using an AVR-Dude compatible programmer, like our Tiny AVR 
Programmer. If you’re going this route, Firmware\ServoTrigger\Debug
contains the WinAVR compatible makefile.

Firmware Modifications

Timing

The range of transit times accessed by the T potentiometer is defined by a 
table of software values – the table interprets pot position using an 
exponential curve, which allows for fine control of very short times on the 
low end, but still premits a useful longer range at the top. But perhaps these 
times don’t fit your application especially well – maybe you need extra 
resolution at the low end, or much longer times at the top end. You can 
change the timing table to do this.

The table is calculated using the “translation.ods” spreadsheet. Simply type 
the desired time in seconds into the green cells. The sheet recalculates the 
timing values, and updates the yellow cells. Cut and paste the yellow cells 
into the timelut array.

The table is only 17 entries long, which seems rather short – but keep in 
mind we’re using a microcontroller with only 8KB of flash memory and 512 
Bytes of RAM – we wouldn’t want the timing table to fill the whole memory. 
To increase resolution between the table entries, the firmware performs 
linear interpolation to create more finely grained points in between.

Modes

Page 11 of 14



The Servo Trigger comes with a couple of response modes that should be 
useful for most servo control needs, but in the case they’re not a good fit, 
they can be modified.

There are several other modes hidden in the source file. In addition to the 
two default modes, there are three other modes. You can select among 
these by changing the compile-time symbols in the project. In Atmel Studio, 
select the “Servo Trigger” tab, then navigate to “Toolchain-> AVR/GNU C 
Compiler->Symbols” item.

If you’re using the command-line tools, the symbol definitions are found in 
the compiler invocation in the Makefile.

The FSMA and FSMB symbols determine which modes are programmed on 
the Servo Trigger. FSMA defines the unjumpered (default) mode, and 
FSMB defines the jumpered mode. There are five modes currently defined 
in the source file.

1. bistableFSM - The default mode - when the input is asserted, it 
moves from position A to B. While input is held, it will stay at B. When 
released, it moves back to A.

2. oneshotFSM - Does a complete cycle every time the input is asserted 
- from A to B, then back to A.

3. ctpFSM - A customization of the oneshotFSM for interactive artist 
Christopher T Palmer, which allows the B-to-A return cycle to be 
interrupted by a fresh input actuation.

4. togglingFSM - Each time the input is asserted, it changes from A to 
B, or B to A. This mode is especially useful for driving continous 
rotation servos.

5. astableFSM - When the input is asserted, it cycles back and forth 
between A and B. When the input is inactive, it sits where it was.

You can put any mode in either slot, or even put the same mode in both.

Implementation Details

As you may have guessed from the names, the modes are implemented 
using Finite State Machines. Finite state machines are a design concept the 
defines a set of states, and a corresponding set of rules that determine how 
to transition between the states.

Within the Servo Trigger, each mode uses the same basic set of states, 
which in turn describe how it drives the servo. The states are:

1. Sitting at position A.
2. Moving from A to B.
3. Sitting in position B.
4. Moving from B to A.

Page 12 of 14



The rules that define when the states can change can alter the behavior in 
significant ways. The different modes of the Servo Trigger are all 
implemented using the same states, but with different transition rules.

FSMs are commonly illustrated using “bubble diagrams,” which draw the 
states as circles, and the rules as arrows between the circles. Here’s the 
bubble diagram for the bistable FSM.

Building New State Machines

In the Servo Trigger, a state machine is implemented as a single function, 
which contains a switch statement wherein each state is a case . At the 
start of every PWM cycle, the state machine function is called to determine 
the pulse width, and possibly move to new states.

If you want to implement a new state machine, it can be useful to start by 
drawing the bubble diagram.

If your new FSM is a slight alteration to an existing one, the next best place 
to look at the existing FSMs – it might be as simple as transplanting a state 
transition rule from one function to another. If your FSM is more ambitious, 
it’s still useful to read and understand how the FSM interacts with the rest of 
the firmware.

Your application may need a subtle variation of an existing FSM, or a 
complete re-formulation. Since the source code is available, you’re 
welcome to modify it to suit your needs!

Resources and Going Further
Now that you’ve got your Servo Trigger running, it’s time to incorporate it 
into your own project!

If you have any feedback, please visit the comments or contact our 
technical support team at TechSupport@sparkfun.com.

Resources

• The design documentation is available for download from the Servo 
Trigger Github Repository.

• The firmware was developed using Atmel Studio, with a JTAG-ICE3
debug module.

• Without the JTAG-ICE, you can still reprogram the board with the 
Tiny programmer. You might want to use it with the pogopin adapter. 
You’ll also need the command-line WinAVR tools.

Going Further

• The Servo Trigger can control any of our hobby servos.
• You can trigger it using many of our buttons and switches.
• The Open Servo is a different approach to controlling servo motors 

by enabling them to speak I2C.

Page 13 of 14



• Wikipedia has a very detailed article about Finite State Machines.

Page 14 of 14

3/29/2016https://learn.sparkfun.com/tutorials/servo-trigger-hookup-guide?_ga=1.235617985.193945...




