Quick Start Guide HMC3-M1210Y0201

Description:

HMC3-M1210Y0201 I/O expansion module with 12 digital bidirectional inputs, 8 relay outputs, 2 PNP-type sourcing outputs, 2 analog inputs, and 1 analog output Contents:

1 HMC3-M1210Y0201 (in plastic bag)

Quick Start Guide

Programming software (MAPware-7000), cables, and power supply purchased separately.

Specifications

Specifications:	
Power:	12VDC from HMC3000 base
Isolation:	I/O optically isolated from internal circuit
Digital Inputs:	12 bidirectional inputs
Rated Input Voltage:	24VDC
Rated Input Current:	up to 5mA (per contact)
Input Impedance:	зкΩ
Minimum ON voltage:	15 VDC
Maximum OFF voltage:	5 VDC
Turn ON/OFF time:	10 msec
Special Input Functions:	
High Speed Channels:	2 inputs, X0 and X2
Maximum Input Freq:	200KHz
Maximum Input Count:	4,294,967,295 (32-bit)
Digital Outputs:	8 Relays, 2 sourcing outputs (PNP-type)
Output Current:	300mA maximum (per contact)
Rated Load:	300mA@24VDC (PNP)
	230VAC/2A, 30VDC/2A (relay)
Nominal Load:	96Ω / 6W (Resistive) @ 24VDC
	6VA (Inductive, Unity Power Factor)
Special Output Functions:	
High Speed Channels:	2 outputs, Y0 and Y1
Maximum Output Freq:	1KHz
PWM duty cycle:	0 to 100%
Analog Inputs:	2 input channels
Voltage Input:	0 - 10V, 0 - 5V
Current Input:	0 - 20mA, 4 - 20mA
Resolution:	16-bit
Accuracy:	0.2% of full scale @ 25° C
Analog Outputs:	1 output channel
Current Output:	4 - 20mA, 0 - 20mA
Voltage Output:	0 - 10V, 0 - 5V
Resolution:	12-bit
Accuracy:	0.2% of full scale @ 25° C
Input Power Supply:	
Input Voltage:	24VDC +/- 15%
Connection Method:	Removable terminals (3.81 mm pitch)
Operating Temp: 0 to 55° C	
Humidity:	10% to 90% (non-condensing)
Dimensions (WxHxD):	1.89 x 4.25 x 1.61 inches [48x108x41mm]
Doc. No. 1011-0309	

Mounting Module to HMC3000:

The HMC3 I/O module must be mounted onto the back of a HMC3000 Series unit using one of the HMC expansion ports.

When locating equipment behind the HMC3000 ensure that AC power wiring, PLC output modules, contactors, starters, relay and any other source of electrical interference are located away from the HMC3000. Make sure that variable speed drives and switching power supplies are located away from the unit.

Step 1: Remove protective tab on HMC3000 expansion port to expose socket. Step 2: Align I/O module screws with screw holes, then carefully press down to establish contact between I/O interconnect plug on I/O module and the socket. Step 3: Tighten the two screws of the I/O module to the base (approx. 0.1Nm torque).

Wiring I/O Expansion Modules:

The HMC3 I/O module has green block terminals that are used to wire the module to the digital input devices (i.e. switches, contacts, etc.). The block terminals can be physically removed from the module to facilitate connection (18-gauge wire recommended) Note: A 3/32" flat blade screwdriver should be used to tighten the screws of the terminal block.

Connecting to bidirectional inputs:

1. Normal

3. HSC - Single Phase Down Counter

н

Μ

С

3

Μ

1 101

2

0

Y Y1

0

0

Maple X10 Systems, Inc. Y8

H/W Rev.: A0

LISTED USE IN MAZ. LO GROUP A B C D Surrounding Air Temp Ta+ Max. 5 Temp Code T5

COM2 IND. CONT. EQ. FOR USE IN HAZ. LOC. CLASS1 DIV2 GROUP AB C D

24V

vo

AGND

Y

ov

Y3

Y4 - 1

COM1

Ye

AGND

V1

X3 2 Y2

xa

X9

X11

сом

Pulse I/P0

Pul

4. HSC – Quadrature 4X Mode

Pulse I/P0

Rev 00, 11/13/2017

5. PNP-type sourcing outputs:

6. Analog Input:

Configuration:

Use MAPware-7000 to configure the expansion port, in which the module is installed, using the module's model number.

The input (X and XW), outputs (Y and YW), and configuration (M and MW) memory addresses are used to interact with the module. These addresses are created according to the slot location of the module, where nn refers to the slot number (ex. 01...05):

Function	Register	Access
X0-X15 Inputs	Xnn000-015 (XWnn00)	Rd Only
Slot nn- CH1 Rate	XWnn01	Rd Only
Register		
Slot nn- CH2 Rate	XWnn03	Rd Only
Register		
Slot nn- CH1 Pulses	XWnn05	Rd Only
Per Scan Register		
Slot nn- CH2 Pulses	XWnn07	Rd Only
Per Scan Register		
Y0-Y15 Outputs	Ynn000-015 (YWnn00)	Rd/Write

High Speed Counter Configuration:

Function	HSC Channel 1	HSC Channel 2	Access
Pulse Input Pin	XO	X2	Rd Only
Direction Pin*	X1	X3	Rd Only
Reset HW Pin	X4	X5	Rd Only
Preset Reached	Y2	Y3	Rd Only
Pin			
Enable Counting	Mnn080	Mnn176	Rd/Write
Reset SW Bit	Mnn081	Mnn177	Rd/Write
Preset Reached	Mnn083	Mnn179	Rd Only
Configuration	MWnn00	MWnn06	Rd/Write
Register			
Current Value	MWnn01	MWnn07	Rd Only
Preset Value	MWnn03	MWnn09	Rd/Write

 $^{*}\mbox{-}$ X1 and X3 are used as Encoder pins 1B and 2B respectively when using Quadrature 4X mode.

Pulse Width Modulation (PWM) Configuration:

Pulse Width	PWM Channel 1	PWM	
Modulation		Channel 2	
Option			
PWM Output	Y0 (terminal)	Y1 (terminal)	Rd/Write
PWM	MWnn24	MWnn30	Rd/Write
Configuration			
Register			
PWM Frequency	MWnn25	MWnn31	Rd/Write
or Minimum	MWnn26	MWnn32	
Freq. Setting			
Register			
PWM ON Duty	MWnn27	MWnn33	Rd/Write
or Maximum	MWnn28	MWnn34	
Freq. Setting			
Register			
PWM	MWnn37	MWnn38	Rd/Write
Acceleration			
Time			
PWM	MWnn39	MWnn40	Rd/Write
Deceleration			
Time			
PWM Total	MWnn41	MWnn43	Rd/Write
Pulse	MWnn42	MWnn44	
PWM Elapsed	MWnn45	MWnn47	Rd/Write
Pulse	MWnn46	MWnn48	nuy write
PWM	MWnn50	MWnn52	Rd/Write
Trapezoidal	MWnn51	MWnn53	Ku/ White
Minimum Pulse	INIVALIDI	1010011133	
Count			
PWM ON Duty	Mnn466	Mnn471	Rd/Write
Setting Error	101111400	101111471	Ku/ Write
Flag PWM Frequency	Mnn467	Mnn472	Rd/Write
, ,	Winn467	IVINN472	Kd/ write
Setting Error			
Flag	14	Mnn473	D. LALLA
	Mnn468	Mnn473	Rd/Write
Acceleration			
Time Setting			
Error Flag			
PWM	Mnn469	Mnn474	Rd/Write
Deceleration			
Time Setting			
Error Flag			
PWM No of	Mnn470	Mnn475	Rd/Write
Total Pulses			
Setting Error			
Flag			
PWM Pulse	Mnn576	Mnn577	Rd/Write
Enable Flag			
PWM End of	Mnn784	Mnn785	Rd/Write
Total Pulses			

To implement High Speed Counter Operation:

- 1. Connect a device to X0 (Channel 1) or X5 (Channel 2) that will provide the high speed pulses to the expansion module.
- 2. Configure for HSC mode using the configuration register MWnn00 (Channel 1) or MWnn06 (Channel 2).
- 3. Write the HSC preset count value in MWnn03 (Channel 1) or MWnn09 (Channel 2).
- 4. Enable the HSC by setting the HSC Enable bit Mnn080 (Channel 1) or MWnn09 (Channel 2).

- HSC increments (starting from 0) the current value register in MWnn01 (Channel 1) or MWnn07 (Channel 2) until the preset value is reached. Then HSC sets Y1 (Channel 1) or Y6 (Channel 2).
- 6. Enable the HSC Reset Bit by setting Mnn081 (Channel1) ...
- To start the process again, simply reset (clear) the HSC Reset Bit and set the HSC Enable Bit. Note: if the HSC Enable Bit is still ON, you must reset (clear) this bit, and then set it again.

Additional Resources:

Detailed instructions on the operation and installation of the HMC3000 Series are available in the HMC3000 Programming Manual that is included with the MAPware-7000 configuration software. MAPware-7000 also includes help files that provide detailed information on using the configuration software.

This equipment is suitable for use in Class I, Division 2, Groups A, B, C, and D or non-hazardous locations only.

This equipment is suitable for use in Class I, Division 2, Groups A, B, C and D or non-hazardous locations only.

▲ WARNING – EXPLOSION HAZARD – Do not disconnect equipment unless power has been removed or the area is known to be non-hazardous.

▲ WARNING – EXPLOSION HAZARD - Substitution of components may impair suitability for Class I, Division 2.

▲ WARNING - CAUTION, battery may explode if mistreated. Do not recharge, disassemble or dispose of in fire.

It is recommended that the user periodically inspect the sealed devices used, check for any degradation of properties, and replace as necessary.

For Technical Support:

Please contact Maple Systems if you have any questions regarding this product. We ask that you provide us with the unit serial number and firmware revision number written on the product label of the unit.

Maple Systems Inc. 808 134th St. SW, STE 120 Everett, WA 98204 Tel: 425-745-3229 Fax: 425-745-3429 Email: <u>support@maplesystems.com</u> Website: www.maplesystems.com