

HI-3000, HI-3001, HI-3002

October 2015

1Mbps Avionics CAN Transceiver with Low Power Standby Mode

GENERAL DESCRIPTION

The HI-3000 is a 1 Mbps Controller Area Network (CAN) transceiver optimized for use in aerospace applications. It interfaces between a CAN protocol controller and the physical wires of the bus in a CAN network. Differential output amplitude and current drive capability are specifically enhanced to meet the needs of long cable runs typical of aerospace applications.

The HI-3000 supports two modes of operation: Normal Mode and Standby Mode. The Standby Mode is a very low-current mode which continues to monitor bus activity and allows an external controller to manage wake-up.

Superior common-mode receiver performance makes the device especially suitable for applications where ground reference voltages may vary from point to point over long distances along the CAN bus. In addition, the HI-3000 provides a SPLIT pin to give an output reference voltage of VDD/2 which can be used for stabilizing the recessive bus level when the split termination technique is used to terminate the bus.

A TXD dominant time-out feature also protects the bus from being driven into a permanent dominant state (socalled "babbling idiot") if pin TXD becomes permanently low due to application failure.

The device also has short circuit protection to +/-58V on CANH, CANL and SPLIT pins and ESD protection to +/- 6kV on all pins.

The HI-3001 is identical to the HI-3000 except the SPLIT pin is substituted with a VIO supply voltage pin. This allows the HI-3001 to interface directly with controllers with 3.3V supply voltages.

The HI-3002 provides both the SPLIT and VIO supply voltage pins in a compact 16-pin QFN.

All three devices are available in industrial -40° C to $+85^{\circ}$ C and extended -55° C to $+125^{\circ}$ C temperature ranges. "RoHS compliant" lead-free options are also available with optional burn-in for the extended temperature range.

PIN CONFIGURATIONS (Top Views)

16 - PIN PLASTIC 4 x 4mm QFN

FEATURES

- Compatible with ARINC 825 and ISO 11898-5 standards.
- Signaling rates up to 1Mbit/s.
- Internal VDD/2 voltage source available to stabilize the recessive bus level if split termination is used (HI-3000 SPLIT pin).
- VIO input on HI-3001 allows for direct interfacing with 3.3V controllers.
- Detection of permanent dominant on TXD pin (babbling idiot protection).
- High impedance allows connection of up to 120 nodes.
- Input levels compatible with 3.3V or 5V controllers.
- CANH, CANL and SPLIT pins short-circuit proof to +/-58V.
- Will not disturb the bus if unpowered.
- Extended temperature range and burn-in options for high reliability applications.
- Compatible with CAN 2.0A & CAN 2.0B Specification controllers

PIN DESCRIPTIONS

SIGNAL	FUNCTION	DESCRIPTION			
TXD	INPUT	100kOhm internal pull-up. Transmit Data Input.			
GND	POWER	Chip 0V supply			
VDD	POWER	Positive supply, 5V +/-5%. Bypass with 0.1uF ceramic capacitor.			
RXD	OUTPUT	Receive Data Output.			
CANL	BUS I/O	CAN Bus Line Low.			
CANH	BUS I/O	CAN Bus Line High.			
STB	INPUT	100kOhm internal pull-up. Standby Mode selection input. Drive STB low or connect to GND			
		for Normal operation. Drive STB high to select low-current Standby Mode.			
SPLIT	INPUT	Supplies a VDD/2 output to provide recessive bus level stabilization when a split termination			
(HI-3000)		is used to terminate the bus.			
VIO	INPUT	Connect to a 3.3V supply to allow compatibility of all digital I/O (RXD, TXD, STB) with a			
(HI-3001)		3.3V controller input.			

BLOCK DIAGRAM

Figure 1. HI-3000 Functional Block Diagram

FUNCTIONAL DESCRIPTION

OPERATING MODES

The HI-3000 provides two modes of operation which are selectable via the STB pin. Table 1 summarizes the modes.

Table 1 - Operating Modes

MODE	STB pin
Normal	LOW
Standby	HIGH

Normal Mode

Normal mode is selected by setting the STB pin to a LOW logic level (GND). In this mode, the transceiver transmits and receives data in the usual way from the CANH and CANL bus lines. The differential receiver converts the analog bus data to digital data which is output on the RXD pin (Note: the RXD output on HI-3001 is compatible with 3.3V controllers if the VIO pin is connected to a 3.3V supply).

Standby Mode

Standby Mode is selected by setting the STB pin to a HIGH logic level. In this mode, the transmitter is switched off and a low power differential receiver monitors the bus lines for activity. A dominant signal of more than 3μ s will be reflected on the RXD pin as a logic LOW, where it may be detected by the host as a wake-up request. The device will not leave standby mode until the host forces the STB pin to a logic low.

SPLIT Circuit

The SPLIT pin provides a stable VDD/2 DC voltage. This pin can be used to stabilize the recessive common mode voltage by connecting the SPLIT pin to the center tap of the split termination (see figure 7). In the case of a recessive bus voltage dropping below the ideal value of VDD/2 (e.g.

due to an unpowered node with high leakage from the bus lines to ground), the split circuit will force the recessive voltage to VDD/2.

INTERNAL PROTECTION FEATURES

Short-circuit protection

Short-circuit protection is provided on the CANH, CANL and SPLIT pins. These pins are protected from ESD to over 6KV (HBM) and from shorts between -58V and +58V continuous, as specified in ISO 11898-5. The short circuit current is limited to less than 200mA typical.

TXD permanent dominant time-out

A timer circuit prevents the bus lines being driven into a permanent dominant state, which would result in a situation blocking all bus traffic. This could happen in the case of the TXD pin becoming permanently low due to a hardware or application failure. The timer is triggered by a negative edge on the TXD pin (start of dominant state). If the TXD pin is not set high (recessive state) after a typical time of 2ms, the transmitter outputs will be disabled, driving the bus lines into the recessive state. The timer is reset by a positive edge on the TXD pin. Note that the minimum TXD dominant time-out time, tdom = 300μ s, defines the minimum possible bit rate of 40kbit/s (the CAN protocol specifies a maximum of 11 successive dominant bits – 5 successive dominant bits immediately followed by an error frame).

Fail-safe features

Pin TXD has a pull up in order to force a recessive level if pin TXD is left open.

Pins TXD and STB will become floating if power is lost. This will prevent reverse currents via these pins.

TIMING DIAGRAMS

Timing Delays

ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND = 0V)

Supply Voltage, VDD, VIO :	Operating Temperature Range: (Industrial)40°C to +85°C
Current at Input pins100mA to +100mA	(Hi-Temp)
DC Voltages at TXD, RXD and STB0.5V to VDD +0.5V	
DC Voltages at CANH, CANL and SPLIT:58V to +58V Internal Power Dissipation:900mW	Maximum Junction Temperature ² 175°C
Electrostatic Discharge (ESD) ¹ , All pins+/- 6kV	Storage Temperature Range:65°C to +150°C
	Reflow Soldering Temperature:

NOTES:

1. Human Body Model (HBM).

2. Junction Temperature T_J is defined as $T_J = T_{AMB} + P \times R_{th}$, where TAMB is the ambient or operating temperature, P is the power dissipation and Rth is a fixed thermal resistance value which depends on the package and circuit board mounting conditions.

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

VDD = 5V±5%, Operating temperature range (unless otherwise noted). Positive currents flow into the IC.

					5	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLIES						
VDD Supply Current	ססן	Recessive: VTxD = VDD Dominant: VTxD = 0 V		6 50 15	10 70	mA mA
Vio Supply Current	lio	Standby Mode: VTXD = VDD		15	30 100	μA μA
Vio Supply Voltage (see Note 1)	Vio		2.7		5.5	V
DIGITAL INPUTS (Pins TXD, STB)						
HIGH-level input voltage (see Note 1) LOW-level input voltage	Vih Vil		80%Vdd - 0.5		Vdd + 0.5 20%Vdd	V V
HIGH-level input current LOW-level input current	Iн I∟	Vtxd = Vdd or VIO Vtxd = 0 V	- 5	0 - 50	+ 5 - 150	μΑ μΑ
DIGITAL OUTPUTS						
HIGH-level output voltage (RXD Pin) (see Note 1) LOW-level output voltage (RXD Pin)	Vон Vol	Iон = 1mA IoL = 1mA	90%Vdd 0	0.1	10%Vdd	V V
Output voltage (SPLIT Pin) Standby leakage current (SPLIT Pin)	VSPLIT ISTB	– 100 μΑ < Isplit < 100 μΑ	0.45Vdd -5	0.5Vdd	0.55Vdd +5	V µA
DRIVER						
CANH dominant output voltage CANL dominant output voltage	Vo(canh) Vo(canl)	VTXD = 0 V VTXD = 0 V (See Fig. 2)	3 0.5	3.6 1.4	4.25 1.75	V V
Recessive output voltage	Vcanh(r), Vcanl(r)	VTXD = VDD, RL = 0 (See Fig. 2)	2	0.5Vdd	3	V
Bus output voltage in standby	Vsтв	VTXD = VDD, RL = 0 (See Fig. 2)	-0.1		0.1	V
Dominant differential output voltage Recessive differential output voltage	VDIFF(d)(o) VDIFF(r)(o)	VTXD = 0 V, 45 Ω < RL < 65 Ω VTXD = VDD, no load (See Fig. 2)	1.5 - 50	1.8 0	3 50	V mV

NOTE:

1. When VIO is connected (HI-3001 or HI-3002), power supply limits are referenced wrt VIO rather than VDD. If VIO < 3.3V, VIH must be at least 2.5V.

DC ELECTRICAL CHARACTERISTICS (cont.)

VDD = 5V \pm 5%, Operating temperature range. Positive currents flow into the IC.

PARAMETER		SYMBOL CONDITIONS		ТҮР	MAX	UNIT
Matching of dominant output voltage, VDD – VO(CANH) – VO(CANL)	Vом	(See Fig. 4)	- 100	-40	150	mV
Steady state common mode output voltage	VOC(ss)	VSTB = 0V, RL = 60 Ω (See Fig. 5)	2	0.5Vdd	3	V
Short-circuit steady-state output current	IOS(ss)	VCANH = +58V, VCANL open VCANH = -58V, VCANL openV VCANL = +58V, VCANH open VCANL = -58V, VCANH open (See Fig. 6)	-20 -200 100 -20		20 100 200 20	mA mA mA mA
RECEIVER						
Differential receiver threshold voltage Differential hysteresis voltage Differential hysteresis voltage in Standby mode	VTh(Rx)(diff) VHys(Rx)(diff) VHys(Stb)(diff)	– 12 V < Vcanh, Vcanl < + 12 V – 12 V < Vcanh, Vcanl < + 12 V – 12 V < Vcanh, Vcanl < + 12 V	500 50 500	700 120	900 200 1150	mV mV mV
Input leakage current, unpowered node	Icanh, Icanl	Vdd = Vio 0 V Vcanh = Vcanl = 5V	- 200		+ 200	μA
Differential input resistance	RIN(DIFF)	Vtxd = Vdd - 12 V < Vcanh, Vcanl < + 12 V	25	50	75	kΩ
Common mode input resistance	RIN(CM)	Vtxd = Vdd - 12 V < Vcanh, Vcanl < + 12 V	15	30	45	kΩ
Deviation between common mode input resistance between CANH and CANL	RIN(CM)(m)	VCANH = VCANL	- 3		+ 3	%

AC ELECTRICAL CHARACTERISTICS

VDD = 5V \pm 5%, Operating temperature range. Positive currents flow into the IC.

SYMBOL CONDITIONS		MIN	ТҮР	MAX	UNIT	
tBit fBit		1 40		25 1000	µs kHz	
CIN(CM) CDIFF(CM)	VTXD = VDD, 1Mbit/s data rate VTXD = VDD, 1Mbit/s data rate		20 10		pF pF	
tdr(TXD) tdf(TXD) tdf(RXD) tdr(RXD)	See Timing Diagrans		40 40 30 70	90 90 70 150	ns ns ns ns	
tProp1 tProp2			70 110	160 240	ns ns	
tdom tRdom	V _{TXD} = 0 V Rising edge on TXD while in permanent dominant state	0.3	2	6 1	ms µs	
t _{wake}		0.5	3	5	μs	
	fBit CIN(CM) CDIFF(CM) tdr(TXD) tdf(RXD) tdr(RXD) tdr(RXD) tdr(RXD) tdr(RXD) tdr(RXD)	tBit fBit VTXD = VDD, 1Mbit/s data rate VTXD = VDD, 1Mbit/s data rate CIN(CM) CDIFF(CM) VTXD = VDD, 1Mbit/s data rate tdr(TXD) tdf(TXD) tdf(RXD) tdf(RXD) See Timing Diagrans tdr(RXD) tdf(RXD) VTXD = 0 V tProp1 tProp2 VTXD = 0 V tRdom Rising edge on TXD while in permanent dominant state	tBit fBit 1 40 CIN(CM) CDIFF(CM) VTXD = VDD, 1Mbit/s data rate VTXD = VDD, 1Mbit/s data rate tdr(TXD) tdf(TXD) tdf(RXD) tdf(RXD) See Timing Diagrans tdr(RXD) tdf(RXD) VTXD = 0 V tProp1 tProp2 VTXD = 0 V tdom tRdom VTXD = 0 V 0.3	SYMBOLCONDITIONSMINTYPtBit fBit1 401 401 40CIN(CM) CDIFF(CM)VTXD = VDD, 1Mbit/s data rate VTXD = VDD, 1Mbit/s data rate20 10tdr(TXD) tdr(TXD) tdr(RXD) tdr(RXD)See Timing Diagrans 40 30 7040 40 30 70tProp1 tProp2VTXD = 0 V Rising edge on TXD while in permanent dominant state0.32	tBit fBitTYPMAXtBit fBit1 4025 1000CIN(CM) CDIFF(CM)VTXD = VDD, 1Mbit/s data rate VTXD = VDD, 1Mbit/s data rate20 10tdr(TXD) tdr(RXD) tdr(RXD)See Timing Diagrans40 40 90 30 70tProp1 tProp2VTXD = 0 V Rising edge on TXD while in permanent dominant state0.3 10	

NOTES:

1. All currents into the device pins are positive; all currents out of the device pins are negative.

2. All typicals are given for VDD = 5V, $TA = 25^{\circ}C$.

3. Guaranteed by design but not tested.

Application and Test Information

Figure 2. CAN Bus Driver Circuit

Figure 3. CAN Bus Driver (Dominant) Test Circuit

Figure 4. Driver Output Symmetry Test.

HOLT INTEGRATED CIRCUITS 7

Application and Test Information

Figure 5. Common Mode Output Voltage Test.

Figure 6. CAN Bus Driver Short-Circuit Test. (Note: V1 is a pulse from 0V to VDD with duty cycle of 99% such that permanent dominant time-out is avoided).

Figure 7. Typical Application Connections

ORDERING INFORMATION

PART NUMBER	LEAD FINISH				
Blank	Tin / Lead (Sn / Pb)	Tin / Lead (Sn / Pb) Solder			
F	100% Matte Tin (Pb-	free, RoH	IS compliant)		
PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN		
I	-40°C TO +85°C	I	NO		
Т	-55°C TO +125°C	Т	NO		
М	-55°C TO +125°C	М	YES		
PART NUMBER	PACKAGE DESCRIPTION				
PS	8 PIN PLASTIC NAR	3 PIN PLASTIC NARROW BODY SOIC (8HN) (HI-3000 or HI-3001 only)			
PC	16 PIN PLASTIC 4 x 4	1 mm QFI	N (16PCS) (H	II-3002 only)	
CR	8 PIN CERDIP (8D)	not availa	ble Pb-free (HI-3000 or HI-3001 only)	
PART	DESCRIPTION				
NUMBER				_	
3000	SPLIT pin option			_	
3001	VIO pin option				

Both SPLIT and VIO pins available

3002

REVISION HISTORY

P/N	Rev	Date	Description of Change
DS3000	NEW	02/15/11	Initial Release
	А	04/29/11	Corrected heat-sink note on QFN package drawing.
	В	09/09/11	Update pad and heat-sink dimensions for 16-lead QFN package (16PCS)
	С	12/18/12	Change high-level digital input voltage (VIH) to 80%VDD (or VIO) and low-level digital
			input voltage (VIL) to 20%VDD (or VIO). Update SOIC-8 and SOIC-16 package drawings.
	D	10/30/14	Added "Compatible with CAN 2.0A & CAN 2.0B Specification controllers" to features. Updated 8HN and 16PCS package drawings. Clarified Reflow Soldering Temperature in Absolute Maximum Ratings.
	Е	6/19/15	Corrected package pin numbers 3 and 5 in Figure 7 HI-3001 Typical Application Connections
	F	10/14/15	Add parameter specification for VIO to DC Characteristics Table.

HOLT Z

PACKAGE DIMENSIONS

