

S1D13748 Mobile Graphics Engine

Hardware Functional Specification

Document Number: X80A-A-001-01

Status: Revision 1.5

Creation Date: 2005/11/26 Issue Date: 2012/04/26

© SEIKO EPSON CORPORATION 2005-2012. All Rights Reserved.

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

Table of Contents

1	Introduction	7
	1.1 Scope	7
	1.2 Overview Description	7
	1.3 Abbreviations and Acronyms	3
2	Features)
	2.1 Memory)
	2.2 Registers)
	2.3 Host Interface)
	2.4 Input Format)
	2.5 LCD Interface)
	2.6 Display Functions	L
	2.7 Miscellaneous	ł
3	Typical System Diagrams	2
4	Block Diagram	ł
5	Pins	
•	5.1 Pin Diagrams	
	5.2 Pin Descriptions	
	5.2.1 Host Interface Pins	
	5.2.2 LCD Interface Pins	<u>)</u>
	5.2.3 Clock Input Pin	5
	5.2.4 Miscellaneous Pins	5
	5.2.5 Power and Ground Pins	5
	5.3 Summary of Configuration Options	7
	5.4 Host Interface Pin Mapping	3
	5.5 LCD Interface Pin Mapping)
	5.6 LCD Bypass Mode Pin Mapping)
6	D.C. Characteristics	2
	6.1 Absolute Maximum Ratings	2
	6.2 Recommended Operating Conditions	3
	6.3 Electrical Characteristics	5
7	AC Characteristics	3
	7.1 Clock Timing)
	7.1.1 Input Clock Timing)
	7.1.2 PLL Clock	L
	7.2 Power Supply Sequence	2
	7.2.1 Power-On Sequence	<u>)</u>

	7.2.2 Power-Off Sequence
	7.3 Host Bus Interface Timing
	7.3.1 Indirect 80 Timing
	7.3.2 Indirect 68 Timing
	7.4 LCD Interface Timing
	7.4.1 Generic TFT Panel Timing
	7.4.2 LCD1 ND-TFD, LCD1 8-Bit Serial Interface Timing
	7.4.3 LCD1 ND-TFD, LCD1 9-Bit Serial Interface Timing
	7.4.4 LCD1 uWire Serial Interface Timing
	7.4.5 LCD1 Parallel Interface (80)
	7.4.6 LCD1 Parallel Interface (68)
	7.4.7 LCD Bypass Timing
8	Memory
	8.1 Physical Memory
	8.2 Memory Map Examples
9	Clocks
•	9.1 Clock Diagram
	9.2 Internal Clock Descriptions
	9.2.1 System Clock
	9.2.2 Pixel Clock
	9.2.3 Serial Clock
	9.3 PLL
10	Registers
	10.1 Register Mapping
	10.2 Register Set
	10.3 Register Restrictions
	10.4 Register Descriptions
	10.4.1 System Configuration Registers
	10.4.2 Clock Configuration Registers 73
	10.4.3 LCD Interface Configuration Registers
	10.4.4 LCD1 Configuration Registers
	10.4.5 Extended Panel Configuration Registers
	10.4.6 Host Interface Registers
	10.4.7 Display Configuration Registers
	10.4.8 PIP1 Window Configuration Registers
	10.4.9 PIP2 Window Configuration Register
	10.4.10 GPIO Registers
	10.4.11 LUT Registers
	10.4.12 Interrupt Control Registers

11 Power Sa	ave Modes
11.1 Pow	er-On/Power-Off Sequence
11.2 Open	rational Modes
11.2.1	Power-On
11.2.2	Reset
11.2.3	Standby Mode
11.2.4	Power Save Mode
11.2.5	Normal Mode
11.2.6	Power-Off
12 Data For	mats
12.1 Host	t Interface Input Formats
12.1.1	YUV 4:2:2 Format 1
12.1.2	YUV 4:2:2 Format 2 (Separate Y, UV)
12.1.3	YUV 4:2:0 Format 1
12.1.4	YUV 4:2:0 Format 2 (Separate Y, UV)
12.1.5	RGB 5:6:5
12.2 Fran	ne Buffer Data Format
13 Display F	Functions
13.1 Main	n Layer
13.1.1	Main Layer Restrictions
13.1.2	Main Layer Input Format
13.1.3	Main Layer Pixel Doubling
13.2 PIP	Layers
13.2.1	PIP Window Restrictions
13.2.2	Using The Scalers
13.2.3	Data Conversion to RGB
13.2.4	PIP2 Panorama Scaling
13.3 Alpł	na Blending
13.3.1	Registers
13.3.2	PIP Transparency
13.4 Scro	ll Buffer
13.4.1	Registers
13.4.2	Restrictions
14 Host Inte	rface
14.1 India	rect Interface Overview
14.1.1	Indirect Addressing Register Ports
14.2 Regi	ister Access
14.3 Men	nory Access Using the HWC
14.3.1	Writing for Rotation=0° and Mirror Disabled

	14.3.2 Writing for Rotation=90° and Mirror Disabled \ldots	
	14.3.3 Writing for Rotation= 180° and Mirror Disabled	
	14.3.4 Writing for Rotation= 270° and Mirror Disabled	
	14.3.5 Writing for Rotation= 0° and Mirror Enabled	
	14.3.6 Writing for Rotation=90° and Mirror Enable \ldots .	
	14.3.7 Writing for Rotation= 180° and Mirror Enabled	
	14.3.8 Writing for Rotation= 270° and Mirror Enabled	
	14.3.9 HWC Memory Write Procedure	
	14.4 Direct Memory Access	
	14.4.1 Linear Address Mode	
	14.4.2 Rectangular Address Mode	
	14.5 Host Interface VSYNC Output	
	14.6 LCD Bypass Mode	
15	15 LCD Interface	
	15.1 RGB Interface Data Formats	
	15.2 Parallel Interface Data Formats	
	15.2.1 8-Bit Parallel RGB 3:3:2 Data Format	
	15.2.2 8-Bit Parallel RGB 4:4:4 Data Format	
	15.2.3 8-Bit Parallel RGB 5:6:5 Data Format	
	15.2.4 8-Bit Parallel RGB 8:8:8 Data Format	
	15.2.5 16-Bit Parallel RGB 4:4:4 Data Format	
	15.2.6 16-Bit Parallel RGB 5:6:5 Data Format	
	15.2.7 16-Bit Parallel RGB 8:8:8 Data Format	
	15.2.8 18-Bit Parallel RGB 6:6:6 Data Format	
	15.2.9 24-Bit Parallel RGB 8:8:8 Data Format	
	15.3 Parallel Interface Command/Parameter Format	
	15.4 LCD Bypass Mode	
16	16 Use Cases	
	16.1 Display using Main and PIP1 Window	
	16.2 Display using Main and PIP2 Window	
	16.3 Display using Main, PIP1 and PIP2 Window	
	17 Mechanical Data	
18	18 References	
19	19 Sales and Technical Support	
	19.1 Ordering Information	

1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13748 Mobile Graphics Engine. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This document is updated as appropriate. Please check the Epson Research and Development Website at **www.erd.epson.com** for the latest revision of this document before beginning any development.

We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

1.2 Overview Description

The S1D13748 is a low cost, low power Mobile Graphics Engine providing multiple LCD support for embedded and mobile products requiring up to WVGA resolution. Supporting up to three display layers, the S1D13748 provides the Host processor with flexibility in handling multiple image sources. It's ability to receive high speed Host writes, combined with it's support for a wide variety of LCD panels, makes the S1D13748 an excellent choice for a multitude of LCD applications.

The S1D13748 includes a pixel doubling feature which allows easy migration to larger panel sizes using existing image data. The feature set includes independent resizing of PIP window image data, scrolling control for each layer, and LCD output manipulation such as gamma control and optional dithering. This allows the Host processor to provide image data, but off-loads the image processing requirement from the Host. The S1D13748 also incorporates LCD Bypass Mode which allows the Host to exercise direct control over parallel or serial RAM-based panels.

The S1D13748 contains 1024K bytes of embedded SRAM which is used to store image data for up to three layers for LCD1. This feature set provides a low cost, low power single chip solution to meet the demands of embedded markets requiring up to WVGA resolution, such as Mobile Communications devices.

1.3 Abbreviations and Acronyms

The following abbreviations and acronyms are used in this document:

All numbers are in decimal unless marked otherwise (b for binary, h for hexadecimal) $K = 2^{10} = 1024$ when used with regards to memory b = bit B = Byte bpp = bits-per-pixel msb = Most Significant bit lsb = Least Significant bit IO = Input/Output LUT = Look-Up Table NC = No Connection YRC = YUV to RGB Converter VDP = Vertical Display Period VNDP = Vertical Non-display PeriodPOUT = PLL Output

2 Features

2.1 Memory

- Embedded 1024k bytes of SRAM can be used for:
 - Main Window frame buffer
 - PIP1 Window frame buffer
 - PIP2 Window frame buffer

2.2 Registers

- Registers are memory mapped
- Asynchronous/synchronous registers (asynchronous registers are accessible during power save mode)

2.3 Host Interface

- 16-bit Indirect Host interface
 - Allows high speed writes (1 write cycle = 3 internal system clocks)
 - Integrated Host interface Write Controller (HWC) supports:
 - Rectangular Write Mode
 - Rotation Write Mode
 - Mirror Write Mode
 - LCD Bypass Mode (direct control of LCD input by the Host CPU)
 - Available for both LCD1 and LCD2
 - Supports serial and parallel interface LCD panels

2.4 Input Format

- Host can input image data as:
 - YUV 4:2:2
 - YUV 4:2:0
 - RGB 5:6:5

S1D13748

X80A-A-001-01

2.5 LCD Interface

- LCD interface supports the following panel types:
 - 16/18/24-bit RGB interface panels
 - Generic TFT interface
 - TFT with u-Wire interface
 - ND-TFD interface
 - 8/16/18/24-bit parallel interface panels with integrated RAM
 - 8/16-bit serial interface panels with integrated RAM (LCD Bypass Mode only)
- LCD1 can be configured as:
 - RGB interface panel
 - Parallel interface panel with integrated RAM
- LCD2 is supported through LCD Bypass Mode
 - Parallel interface panel with integrated RAM
 - Serial interface panel with integrated RAM

2.6 Display Functions

- Three layers which support Transparency and Alpha Blending functions:
 - Main Layer:
 - Image data can be stored as RGB 5:6:5
 - Pixel Doubling which doubles the size of the display image (independent horizontal/vertical)
 - PIP1 Layer:
 - Image data can be stored as RGB 5:6:5 or YUV 4:2:2
 - Includes Bi-Cubic Scaler
 - Supports Edge Enhancement
 - PIP2 Layer:
 - Image data can be stored as RGB 5:6:5 or YUV 4:2:2
 - Includes Bi-Cubic Scaler with Panorama function
 - Supports Edge Enhancement
 - Includes LUT (Look-Up Table) for independent gamma control of PIP2 window
- Independent Display Scrolling for each Layer (Main, PIP1, PIP2)
- LUT (Look-Up Table) for gamma control of the LCD output
- Dithering options for the LCD output

2.7 Miscellaneous

- Internal PLL or digital clock input (CLKI)
- Software initiated power save mode
- Available general purpose IO pins
- PFBGA 121-pin package
 - 10mm (length) x 10mm (width) x 1.2mm (thickness), Pitch 0.8mm
- QFP20 144-pin package
 - 20mm (length) x 20mm (width) x 1.4mm (thickness), Pitch 0.5mm

3 Typical System Diagrams

Figure 3-1: System Diagram 1

Figure 3-2: System Diagram 2

4 Block Diagram

Figure 4-1: S1D13748 Block Diagram

5 Pins

5.1 Pin Diagrams

Figure 5-1: S1D13748B PFBGA 121-Pin Layout (Top View)

Page 16

A	NC	VOUT	AB3	DB2	DB5	DB7	DB10	DB12	DB15	SCK	NC
В	VSS	CNF1	HIOVDD	AB1	DB3	DB8	DB11	SI	SA0	COREVDD	INT
С	CNF0	GPIO0	COREVDD	VSS	DB0	DB9	DB13	VSS	SCS#	RD#	WR#
D	GPIO1	GPIO2	CNF2	HIOVDD	AB2	DB6	DB14	HIOVDD	CS#	VSS	CLKI
Е	GPIO7	GPIO3	GPIO5	GPIO4	DB1	VSS	COREVDD	PIOVDD	RESET#	PLLVDD	VCP
F	GPIO6	VSS	GPIO8	PIOVDD	COREVDD	DB4	HIOVDD	VSS	SCANEN	PLLVSS	TESTEN
G	GPIO12	GPIO10	GPIO9	VSS	GPIOVDD	GPIO21	FPDRDY	FPVIN1	FPCS1#	FPA0	FPS0
Н	GPIO13	GPIO11	GPIO14	COREVDD	GPIO23	FPDAT3	PIOVDD	FPDAT14	COREVDD	FPLINE	FPSCK
J	GPIO16	GPIO15	GPIO17	PIOVDD	FPDAT0	FPDAT4	FPDAT7	FPDAT10	FPDAT17	FPFRAME	FPSHIFT
к	Reserved	COREVDD	GPIO18	GPIO20	FPDAT2	VSS	FPDAT8	FPDAT9	FPDAT13	FPDAT16	VSS
L	NC	FPCS2#	GPIO19	GPIO22	FPDAT1	FPDAT5	FPDAT6	FPDAT11	FPDAT12	FPDAT15	NC
	1	2	3	4	5	6	7	8	9	10	11

Figure 5-2: S1D13748B PFBGA 121-Pin Mapping (Top View)

Figure 5-3: S1D13748F QFP20 144-Pin Mapping (Top View)

5.2 Pin Descriptions

Key:

Pin Types	
-----------	--

I = Input O = Output IO = Bi-Directional (Input/Output) P = Power pin

RESET# States

L

Ζ

1

0

#

- H = High level output
 - Low level output
 - High Impedance (Hi-Z)
 - Pull-up resistor on input
 - Pull-down resistor on input
 - Active low level

Table 5-1: Cell Descriptions

ltem	Description
IC	CMOS input
ICD	CMOS input with pull-down resistor
ICU	CMOS input with pull-up resistor
IS	Schmitt input
ISD2	Schmitt input with pull-down resistor
ISG	Schmitt input with gated control
OB	Output buffer
BC	CMOS input bi-directional buffer
BCD	CMOS input bi-directional buffer with pull-down resister
ITD	Test mode control input with pull-down resistor
LIN	Low Voltage Transparent Input

5.2.1 Host Interface Pins

Some of the Host interface pins have different functions depending on the setting of CNF1. For a summary of host interface pin mapping, see Table 5-8: "Host Interface Pin Mapping," on page 28.

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description
AB[3:1]	I	A3, D5, B4	139-141	IC	HIOVDD		Host interface address bus. These input pins are used to index the Indirect Interface Register Ports (see Section 14.1.1, "Indirect Addressing Register Ports" on page 196).
DB[15:0]	Ю	A9, D7, C7, A8, B7, A7, C6, B6, A6, D6, A5, F6, B5, A4, E5, C5	116, 118-124, 127, 128, 130-133, 136, 137	BC	HIOVDD	Hi-Z	Host interface data bus pins 15-0.
CS#	I	D9	100	IC	HIOVDD		This input pin inputs the chip select signal.
RD#	I	C10	104	IC	HIOVDD	_	 This input pin is the read enable signal. For Indirect 80 (CNF1 = 0), this pin is RD#. For Indirect 68 (CNF1 = 1), this pin is UDS#/LDS#.
WR#	I	C11	101	IC	HIOVDD	_	 This input pin is the write enable signal. For Indirect 80 (CNF1 = 0), this pin is WE#. For Indirect 68 (CNF1 = 1), this pin is R/W#.
INT	0	B11	105	OB	HIOVDD	L	Interrupt output. When an internal interrupt occurs, this output pin is driven high. If the Host CPU clears the internal interrupt, this pin is driven low.
RESET#	I	E9	99	IS	HIOVDD	_	This active low input sets all internal registers to their default state and forces all signals to their inactive states.
VOUT	ο	A2	143	OB	HIOVDD	L	This output pin is the FPFRAME (VSYNC) signal for the host interface. For further information on configuring this pin, see REG[0198h] VOUT Configuration Register on page 104.

Table 5-2: Host Interface Pin Descriptions

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description
							LCD Serial/Parallel bypass mode chip select input for the Host CPU interface.
SCS#	I	C9	110	ICU	HIOVDD	_	• When Bypass Mode is enabled, the Host CPU can directly control the LCD1 (Parallel) or LCD2 (Serial/Parallel) interface LCD.
							This pin has an internal pull-up resistor which can be controller using the Bypass Input Pull- up/Pull-down Control bit, REG[0014h] bit 4. For details, see REG[0014h] Miscellaneous Configuration Register on page 76.
							Serial clock input for the Host CPU serial interface.
		A10	111	ICD			 When Serial Bypass Mode is enabled, the Host CPU can directly control the LCD2 serial interface LCD.
SCK	I				HIOVDD	_	 For Parallel Host Bus Interfaces, the internal pull-down resistor is enabled and this pin can be left unconnected.
							This pin has an internal pull-down resistor which can be controller using the Bypass Input Pull-up/Pull-down Control bit, REG[0014h] bit 4. For details, see REG[0014h] Miscellaneous Configuration Register on page 76.
							Serial/Parallel A0 command input for the Host CPU interface.
							 When LCD Bypass Mode is enabled, the Host CPU can directly control the LCD2 serial/parallel interface LCD.
SA0	I	В9	113	ICD	HIOVDD	_	 For Parallel Host Bus Interfaces, the internal pull-down resistor is enabled and this pin can be left unconnected.
							This pin has an internal pull-down resistor which can be controller using the Bypass Input Pull-up/Pull-down Control bit, REG[0014h] bit 4. For details, see REG[0014h] Miscellaneous Configuration Register on page 76.

Table 5-2: Host Interface Pin Descriptions

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description
							Serial data input for the Host CPU serial interface.
							• When Serial Bypass Mode is enabled, the Host CPU can directly control the LCD2 serial interface LCD.
SI	I	B8	114	ICD	HIOVDD	_	 For Parallel Host Bus Interfaces, the internal pull-down resistor is enabled and this pin can be left unconnected.
						This pin has an internal pull-down resistor which can be controller using the Bypass Input Pull-up/Pull-down Control bit, REG[0014h] bit 4. For details, see REG[0014h] Miscellaneous Configuration Register on page 76.	

5.2.2 LCD Interface Pins

Many of the LCD interface pins have different functions depending on the configured panel interface mode. For details on the pin mapping for each mode, see Table 5-9: "LCD Interface Pin Mapping," on page 29.

The available panel interface modes are as follows.

- Mode 1 is LCD1: RGB, LCD2: determined by REG[0014h] bits 11-8
- Mode 2 is LCD1: Parallel, LCD2: determined by REG[0014h] bits 11-8

For further information on the panel interface modes, see the bit description for REG[0032h] bits 1-0.

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description
GPIO[23:18]	Ю	H5, L4, G6, K4, L3, K3	48, 45, 44, 43, 42, 41	BCD	PIOVDD	0	 These input/output pins have multiple functions. For Mode 1 24-bit RGB interfaces, these pins are the LCD1 RGB data outputs (FPDAT[23:18]). For Mode 2 24-bit Parallel interfaces, these pins are the LCD1 parallel interface data outputs (FPDAT[23:18]). For LCD interfaces less than 24-bit, these pins are general purpose IO pins.
FPDAT[17:0]	ю	J9, K10, L10, H8, K9, L9, L8, J8, K8, K7, J7, L7, L6, J6, H6, K5, L5, J5	72, 71, 70, 69, 68, 64, 63, 62, 61, 60, 59, 58, 54, 53, 52, 51, 50, 49	BCD	PIOVDD	L	 These input/output pins are the LCD interface data pins and have multiple functions. For Mode 1 RGB interfaces, these pins are the LCD1 RGB data outputs. For Mode 2 Parallel interfaces, these pins are the LCD1 parallel interface data outputs. For Parallel Bypass Modes, these pins input/output the Host CPU data (see Table 5-10: "LCD Bypass Mode Pin Mapping," on page 30).
FPFRAME	0	J10	76	ОВ	PIOVDD	L	 This output pin has multiple functions. For Mode 1 RGB interfaces, this pin is the LCD1 frame pulse output (VSYNC). For Mode 2 Parallel interfaces, this pin is the LCD1 write command output (WR#). For Parallel Bypass Modes, this pin outputs the Host CPU WR# signal.

Table 5-3: LCD Interface Pin Descriptions

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description
FPLINE	0	H10	77	OB	PIOVDD	L	 This output pin has multiple functions. For Mode 1 RGB interfaces, this pin is the LCD1 line pulse output (HSYNC). For Mode 2 parallel interfaces, this pin is the LCD1 command output (A0). For Parallel Bypass Modes, this pin output the Host CPU command signal (A0).
FPSHIFT	0	J11	75	ОВ	PIOVDD	L	 This output pin has multiple functions. For Mode 1, this pin is the LCD1 pixel clock output (DCK/CLK). For Mode 2, this pin is not used. For Parallel Bypass Modes, this pin is not used.
FPDRDY	0	G7	78	ОВ	PIOVDD	L	 This output pin has multiple functions. For Mode 1, this pin is the LCD1 DRDY output (ENAB). For Mode 2, this pin is not used. For Parallel Bypass Modes, this pin outputs the RD# signal.
FPVIN1	Ю	G8	79	BCD	PIOVDD	_	 This input/output pin has multiple functions. For Mode 1, this pin is not used. For Mode 2, this pin is the LCD1 parallel interface vertical sync input/output from the LCD panel (VIN1/VOUT1).
FPCS1#	0	G9	80	ОВ	PIOVDD	н	 This output pin has multiple functions. For Mode 1, this pin is the LCD1 serial interface chip select output. For Mode 2, this pin is the LCD1 parallel interface chip select output. For Parallel Bypass Modes, this pin outputs the Host CPU CS# signal.
GPIO[17:10]	Ю	J3, J1, J2, H3, H1, G1, H2, G2	34, 33, 30, 29, 28, 25, 24, 23	BCD	PIOVDD	0	 These input/output pins have multiple functions. For Parallel Bypass Mode I (REG[0014h] bits 11-8 = 1000b), these pins are the LCD2 interface data pins (P2DAT[7:0]). For all other cases, these pins are general purpose IO pins.
GPIO9	Ю	G3	22	BCD	PIOVDD	0	 This input/output pin has multiple functions. For Parallel Bypass Mode I (REG[0014h] bits 11-8 = 1000b), this pin is the LCD2 interface pin P2WR#. For all other cases, this pin is a general purpose IO pin.

Table 5-3: Lo	CD Interface	Pin Descriptions

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description
GPIO8	ю	F3	21	BCD	PIOVDD	0	 This input/output pin has multiple functions. For Parallel Bypass Mode I (REG[0014h] bits 11-8 = 1000b), this pin is the LCD2 interface pin P2A0. For all other cases, this pin is a general
Reserved	_	_	37				This pin is Reserved and must be left unconnected.
FPCS2#	0	L2	38	ОВ	PIOVDD	Н	For Serial or Parallel Bypass Modes, this pin outputs the Host CPU CS# signal.
FPSCK	0	H11	84	OB	PIOVDD	Н	 This output pin has multiple functions. For Mode 1, this pin is the LCD1 and LCD2 serial interface clock output. For Mode 2, this pin is the LCD2 serial interface clock output. When Serial Bypass Mode is enabled, this pin outputs the Host CPU SCK signal.
FPA0	0	G10	85	ОВ	PIOVDD	L	 This output pin has multiple functions. For Mode 1, this pin is the LCD1 and LCD2 serial interface A0 output. For Mode 2, this pin is the LCD2 serial interface A0 output. When Serial Bypass Mode is enabled, this pin outputs the Host CPU A0 signal.
FPSO	0	G11	86	ОВ	PIOVDD	L	 This output pin has multiple functions. For Mode 1, this pin is the LCD1 and LCD2 serial interface data output. For Mode 2, this pin is the LCD2 serial interface data output. When Serial Bypass Mode is enabled, this pin outputs the Host CPU SI signal.

Table 5-3: LCD Interface Pin Descriptions

5.2.3 Clock Input Pin

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description
CLKI	I	D11	98	ISG	HIOVDD	_	 This input clock has multiple functions. When the internal PLL is used, this pin is the input reference clock for the internal PLL. When the PLL is bypassed, this pin is the digital clock input for the system clock (SYSCLK). Note: When REG[0012h] bit 8 = 1b, the CLKI input can be left high impedance.

Table 5-4: Clock Input Pin Description

5.2.4 Miscellaneous Pins

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Cell	Power	RESET# State	Description	
GPIO[7:0]	ю	E1, F1, E3, E4, E2, D2, D1, C2	17, 16, 15, 14, 12, 11, 10, 9	BCD	GIOVDD	0	These input/output pins are general purpose IO pins.	
CNF[2:1]	I	D3, B2	3, 4	IC	HIOVDD	_	These input pins are used for configuring the S1D13748 and must be connected to either HIOVDD or VSS. The states of these pins are latched at RESET#. For more information, see Table 5-7: "Summary of Power-On Configurations," on page 27.	
CNF0	I	C1	5	IC	HIOVDD	_	This configuration pin is Reserved and must be connected to VSS.	
VCP	ο	E11	94	LIN	PLLVDD	_	Production test pin. For normal operations, this pin must be left unconnected.	
TESTEN	I	F11	90	ITD	COREVDD	_	Production test pin. For normal operations, this pin should be connected to VSS.	
SCANEN	I	F9	89	ISD2	COREVDD	_	Production test pin. For normal operations, this pin should be connected to VSS.	
NC	—	_	135		—	_	This pin must be left unconnected.	

Table 5-5: Miscellaneous Pin Descriptions

5.2.5 Power and Ground Pins

Pin Name	Туре	PFBGA Pin#	QFP Pin#	Power	RESET# State	Description
HIOVDD	Р	B3, D4, D8, F7	1,7,96,103, 106,109,117, 126	Р	_	IO power supply for the host interface.
PIOVDD	Р	E8, F4, H7, J4	19,26,35,40, 46,55,67,73, 83,87	Р	_	IO power supply for the panel interface.
GIOVDD	Р	G5	8,18	Р		IO power supply for the general purpose IO interface.
COREVDD	Ρ	B10, C3, E7, F5, H4, H9, K2	2,27,32,57, 65,81,88,92, 107,112,125, 134,142	Р	_	Core power supply
VSS	Р	B1, C4, C8, D10, E6, F2, F8, G4, K6, K11	6,13,20,31, 36,39,47,56, 66,74,82,91, 97,102,108, 115,129,138, 144	Ρ	_	GND for HIOVDD, PIOVDD, GIOVDD and COREVDD
PLLVDD	Р	E10	95	Р	—	PLL power supply
PLLVSS	Р	F10	93	Р		GND for PLLVDD

Table 5-6: Power and Ground Pin Descriptions

5.3 Summary of Configuration Options

These pins are used for configuration of the chip and must be connected directly to HIOVDD or VSS. The state of CNF[2:0] are latched on the rising edge of RESET#. Changed state at any other time has no effect.

Table 5-7: Summary of Power-On Configurations

CNF[2:0] Input	Power-On/Reset State						
	1 (connected to HIOVDD)	0 (connected to VSS)					
CNF2	Big Endian	Little Endian					
CNF1	Indirect 68	Indirect 80					
CNF0	Reserved. Must be connected to VSS.						

5.4 Host Interface Pin Mapping

The Host interface is selected using the CNF1 pin. When CNF1=0, the Indirect 80 interface is selected. When CNF1=1, the indirect 68 interface is selected. For details on the pins, refer to Section 5.2.1, "Host Interface Pins" on page 19.

Pin Name	Indirect 80	Indirect 68
AB[3:1]	AB[3:1]	AB[3:1]
DB[15:0]	DB[15:0]	DB[15:0]
CS#	CS#	CS#
RD#	RD#	UDS#/LDS#
WR#	WE#	R/W#
INT	Interrup	ot Signal
RESET#	RES	SET#
SCS#	—	—
SCK	—	—
SA0	—	—
SI	—	—

Table 5-8: Host Interface Pin Mapping

5.5 LCD Interface Pin Mapping

The LCD panel interface mode is selected using the Panel Interface bits, REG[0032h] bit 1-0. For details on the specific data formats used for each panel type and panel width, refer to Section 15, "LCD Interface" on page 214.

		М		Мс	ode 2	
Pin Name		LCD1		LCD2	LCD1	LCD2
	Generic TFT	ND-TFD	TFT with uWire		Parallel I/F	
FPFRAME	VSYNC	VSYNC	VSYNC		WR#	
FPLINE	HSYNC	HSYNC	HSYNC		A0	
FPSHIFT	DCK	DCK	CLK		_	
FPDRDY	ENAB	ENAB	ENAB		_	
FPDAT0	R7	R7	R7		D0	
FPDAT1	R6	R6	R6		D1	
FPDAT2	R5	R5	R5		D2	
FPDAT3	G7	G7	G7		D3	
FPDAT4	G6	G6	G6		D4	
FPDAT5	G5	G5	G5		D5	
FPDAT6	B7	B7	B7		D6	
FPDAT7	B6	B6	B6		D7	
FPDAT8	B5	B5	B5		D8	
FPDAT9	R4	R4	R4		D9	
FPDAT10	R3	R3	R3		D10	
FPDAT11	R2	R2	R2		D11	
FPDAT12	G4	G4	G4		D12	
FPDAT13	G3	G3	G3	Accessible using	D13	Accessible using
FPDAT14	G2	G2	G2	LCD Bypass	D14	LCD Bypass
FPDAT15	B4	B4	B4	Mode, see Section 5.6, "LCD Bypass	D15	Mode, see Section 5.6, "LCD Bypass
FPDAT16	B3	B3	B3	Mode Pin	D16	Mode Pin
FPDAT17	B2	B2	B2	Mapping" on page	D17	Mapping" on page
FPCS1#	—	CS#	LCDCS	30	NCS1	30
FPCS2#	—	—	—		_	
FPSCK	—	SCK	SCK		_	
FPA0	—	A0	—		_	
FPSO	—	SI	SDO		_	
FPVIN1	—	—	—		VIN1/ VOUT1	
GPIO18 (FPDAT18)	R1	R1	R1		D18	
GPIO19 (FPDAT19)	R0	R0	R0		D19	
GPIO20 (FPDAT20)	G1	G1	G1		D20	
GPIO21 (FPDAT21)	G0	G0	G0		D21	
GPIO22 (FPDAT22)	B1	B1	B1		D22	
GPIO23 (FPDAT23)	B0	B0	B0		D23	-

5.6 LCD Bypass Mode Pin Mapping

	LCD2		LC	D1		LCD2				
Pin Name	Serial I	nterface	Pa	arallel Interfa	се		Parallel Interface			
Pin Name	Mode A (Note 1)	Mode B (Note 1)	Mode C	Mode D	Mode E	Mode F	Mode G	Mode H	Mode I (Note 1)	
FPFRAME	_	_	WR# / RD# (Note 2)	WR# / RD# (Note 2)	WR / RD# (Note 2)	WR# / RD# (Note 2)	WR# / RD# (Note 2)	WR# / RD# (Note 2)		
FPLINE			SA0	SA0	SA0	SA0	SA0	SA0		
FPSHIFT		—	-	-	-	-	-	-		
FPDRDY	—		RD# / R/W# (Note 3)	_						
FPDAT0	—	_	DB0	Low/High (Note 4)	Low	DB0	Low/High (Note 4)	Low	_	
FPDAT1			DB1	DB0	DB0	DB1	DB0	DB0		
FPDAT2			DB2	DB1	DB1	DB2	DB1	DB1		
FPDAT3			DB3	DB2	DB2	DB3	DB2	DB2		
FPDAT4			DB4	DB3	DB3	DB4	DB3	DB3	_	
FPDAT5			DB5	DB4	DB4	DB5	DB4	DB4	_	
FPDAT6			DB6	DB5	DB5	DB6	DB5	DB5		
FPDAT7			DB7	DB6	DB6	DB7	DB6	DB6		
FPDAT8			DB8	DB7	DB7	DB8	DB7	DB7		
FPDAT9			DB9	DB8	Low	DB9	DB8	Low	_	
FPDAT10			DB10	DB9	DB8	DB10	DB9	DB8	_	
FPDAT11		—	DB11	DB10	DB9	DB11	DB10	DB9	_	
FPDAT12	_	_	DB12	Low/High (Note 5)	DB10	DB12	Low/High (Note 5)	DB10	_	
FPDAT13			DB13	DB11	DB11	DB13	DB11	DB11		
FPDAT14			DB14	DB12	DB12	DB14	DB12	DB12	_	
FPDAT15			DB15	DB13	DB13	DB15	DB13	DB13	_	
FPDAT16			Low	DB14	DB14	Low	DB14	DB14		
FPDAT17			Low	DB15	DB15	Low	DB15	DB15		
FPCS1#	High	SCS#	SCS#/CS# (Note 6)	SCS#/CS# (Note 6)	SCS#/CS# (Note 6)	High	High	High	high	
FPCS2#	SCS#	High	High	High	High	SCS#/CS# (Note 6)	SCS#/CS# (Note 6)	SCS#/CS# (Note 6)	SCS#/CS# (Note 6)	
FPSCK	SCK	SCK								
FPA0	SA0	SA0	—	—	—		—	—	_	
FPSO	SI	SI	—	—	—		—	—	_	
FPVIN1				—	—		—			
GPIO8(P2A0)			—	—	—	—	—		SA0	
GPIO9(P2WR#)	—	_	_	_	—	_	_	—	WR# (Note 1)	
GPIO10(P2DAT0)	_	—	—	—	—	—	—	—	DB0	
GPIO11(P2DAT1)		—	—	—	—	—	—	—	DB1	
GPIO12(P2DAT2)		—		—	—		—		DB2	
GPIO13(P2DAT3)	_	—	—	—	—		—		DB3	
GPIO14(P2DAT4)	_	—	—	—	—		—		DB4	
GPIO15(P2DAT5)		—	—	—	—	—	—	—	DB5	
GPIO16(P2DAT6)		—	—	—	—	—	—	—	DB6	
GPIO17(P2DAT7)			—		_	_	_	—	DB7	

Table 5-10: LCD Bypass Mode Pin Mapping

Note

- 1. Serial Bypass Mode (Mode A and Mode B) and Parallel Bypass Mode I does not support reads from the panel. Setting the Parallel Bypass Direction Control bit for inputs (REG[0014h] bit 13 = 1b) is not supported.
- 2. When Indirect 80 Host CPU is selected (CNF1 = 0), the WR# signal from the Host is "bypassed" to the LCD.
 When Indirect 68 Host CPU is selected (CNF1 = 1), the RD# signal from the Host is "bypassed" to the LCD.
- When Indirect 80 Host CPU is selected (CNF1 = 0), the RD# signal from the Host is "bypassed" to the LCD.
 When Indirect 68 Host CPU is selected (CNF1 = 1), the R/W# signal from the Host is "bypassed" to the LCD.
- 4. The output is driven according to the logical AND of DB[4:0].
- 5. The output is driven according to the logical AND of DB[15:11].
- 6. The parallel bypass chip select mode is controlled by REG[0014h] bit 3.

6 D.C. Characteristics

6.1 Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
HIOVDD ¹		VSS - 0.3 ~ 4.0	V
PIOVDD ²		VSS - 0.3 ~ 4.0	V
GIOVDD ³	Supply Voltage	VSS - 0.3 ~ 4.0	V
COREVDD		VSS - 0.3 ~ 2.0	V
PLLVDD		VSS - 0.3 ~ 2.0	V
		VSS - 0.3 ~ HIOVDD + 0.5	V
HVI		VSS - 0.3 ~ PIOVDD + 0.5	V
	Input Voltage	V	
LVI		VSS - 0.3 ~ COREVDD + 0.5	V
		VSS - 0.3 ~ PLLVDD + 0.5	V
		VSS - 0.3 ~ HIOVDD + 0.5	V
HVO		VSS - 0.3 ~ PIOVDD + 0.5	V
	Output Voltage	VSS - 0.3 ~ GIOVDD + 0.5	V
LVO		VSS - 0.3 ~ COREVDD + 0.5	V
LVO		VSS - 0.3 ~ PLLVDD + 0.5	V
IOUT	Output Current	± 10	mA
Tstg	Storage Temperature	-65 ~ 150	°C

Table 6-1: Absolute Maximum Ratings (VSS = 0V)

Note

- 1. HIOVDD \geq COREVDD / PLLVDD
- 2. $PIOVDD \ge COREVDD / PLLVDD$
- 3. GIOVDD \geq COREVDD / PLLVDD

Symbol	Parameter	Condition	Min	Тур	Max	Units
HIOVDD	Host IO Supply Voltage	$V_{SS} = 0 V$	3.00	3.30	3.60	V
PIOVDD	Panel IO Supply Voltage	$V_{SS} = 0 V$	3.00	3.30	3.60	V
GIOVDD	GPIO Supply Voltage	$V_{SS} = 0 V$	3.00	3.30	3.60	V
COREVDD	Core Supply Voltage	$V_{SS} = 0 V$	1.35	1.50	1.65	V
PLLVDD	PLL Supply Voltage	$V_{SS} = 0 V$	1.35	1.50	1.65	V
HVI	Input Voltage		-0.3	—	HIOVDD + 0.3	V
		—	-0.3	—	PIOVDD + 0.3	V
			-0.3	—	GIOVDD + 0.3	V
LVI			-0.3	—	COREVDD + 0.3	V
			-0.3	_	PLLVDD + 0.3	V
Та	Operating Temperature		-40	25	85	°C
tr	CMOS Input Rise Time ¹	_	—	—	50	ns
tf	CMOS Input Fall Time ¹	—	—	—	50	ns
tr	Schmitt Input Rise Time ¹	—	—	—	5	ms
tf	Schmitt Input Fall Time ¹	_	—	—	5	ms

Table 6-2: Recommended Operating Conditions 1

Note

1. This time is the change time from 10% to 90% of VDD.

Symbol	Parameter	Condition	Min	Тур	Max	Units
HIOVDD	Host IO Supply Voltage	$V_{SS} = 0 V$	2.66	2.80	2.94	V
PIOVDD	Panel IO Supply Voltage	$V_{SS} = 0 V$	2.66	2.80	2.94	V
GIOVDD	GPIO Supply Voltage	$V_{SS} = 0 V$	2.66	2.80	2.94	V
COREVDD	Core Supply Voltage	$V_{SS} = 0 V$	1.35	1.50	1.65	V
PLLVDD	PLL Supply Voltage	$V_{SS} = 0 V$	1.35	1.50	1.65	V
HVI	Input Voltage	_	-0.3	—	HIOVDD + 0.3	V
			-0.3	—	PIOVDD + 0.3	V
			-0.3	—	GIOVDD + 0.3	V
LVI		_	-0.3	—	COREVDD + 0.3	V
			-0.3	—	PLLVDD + 0.3	V
Та	Operating Temperature	_	-40	25	85	°C
tr	CMOS Input Rise Time ¹	_	_	—	50	ns
tf	CMOS Input Fall Time ¹	_	—	—	50	ns
tr	Schmitt Input Rise Time ¹	_	—	—	5	ms
tf	Schmitt Input Fall Time ¹	_	—	—	5	ms

Table $6-3$ ·	Recommended	Onerating	Conditions 2
<i>Tuble</i> 0-5.	Recommentati	Operanng	Contantons 2

Note

1. This time is the change time from 10% to 90% of VDD.

Symbol	Parameter	Condition	Min	Тур	Max	Units
HIOVDD	Host IO Supply Voltage	$V_{SS} = 0 V$	1.62	1.80	1.98	V
PIOVDD	Panel IO Supply Voltage	$V_{SS} = 0 V$	1.62	1.80	1.98	V
GIOVDD	GPIO Supply Voltage	$V_{SS} = 0 V$	1.62	1.80	1.98	V
COREVDD	Core Supply Voltage	$V_{SS} = 0 V$	1.35	1.50	1.65	V
PLLVDD	PLL Supply Voltage	$V_{SS} = 0 V$	1.35	1.50	1.65	V
HVI	Input Voltage	_	-0.3	—	HIOVDD + 0.3	V
			-0.3	—	PIOVDD + 0.3	V
			-0.3	—	GIOVDD + 0.3	V
LVI		_	-0.3	—	COREVDD + 0.3	V
			-0.3	—	PLLVDD + 0.3	V
Та	Operating Temperature	—	-40	25	85	°C
tr	CMOS Input Rise Time ¹	—	—	—	50	ns
tf	CMOS Input Fall Time ¹	—	—	—	50	ns
tr	Schmitt Input Rise Time ¹	—	—	—	5	ms
tf	Schmitt Input Fall Time ¹	—	_	_	5	ms

Table 6-4: Recommended Operating Conditions 3

Note

1. This time is the change time from 10% to 90% of VDD.

6.3 Electrical Characteristics

The following characteristics are for: HIOVDD = PIOVDD = GIOVDD, VSS = 0V, Ta = $-40 - 85^{\circ}C$, CNF1 = 0.

The following table applies for HIOVDD = PIOVDD = GIOVDD = 3.30V.

Table 6-5: Electrical Characteristics 1

Symbol	Parameter	Condition	Min	Тур	Max	Units
IL	Input Leakage Current	_	-5	_	5	μΑ
IOZ	Output Leakage Current	_	-5	_	5	μA
IQcore	Quiescent Current on COREVDD	_	—	200	—	μA
IQpll	Quiescent Current on PLLVDD	_	—	7	_	μA
IQio	Quiescent Current on HIOVDD, PIOVDD, GIOVDD	_	—	34	_	μΑ
VIH1H	CMOS High Level Input Voltage	HIOVDD, PIOVDD = Max	2.20	_	HIOVDD, PIOVDD + 0.3	V
VIL1H	CMOS Low Level Input Voltage	HIOVDD, PIOVDD = Min	-0.3	_	0.75	V
VT1+	Schmitt Positive Trigger Voltage	HIOVDD, PIOVDD = Max	1.20	_	2.52	V
VT1-	Schmitt Negative Trigger Voltage	HIOVDD, PIOVDD = Min	0.75	_	1.98	V
$\Delta V1$	Schmitt Hysteresis Voltage	HIOVDD, PIOVDD = Min	0.30	_	—	V
VT2+	Schmitt Positive Trigger Voltage	COREVDD = Max	0.54	_	1.15	V
VT2-	Schmitt Negative Trigger Voltage	COREVDD = Min	0.41	_	0.99	V
$\Delta V2$	Schmitt Hysteresis Voltage	COREVDD = Min	0.14	_	—	V
RPLU1H	Pull-Up Resistance	VI = VSS	20	50	120	kΩ
RPLD1H	Pull-Down Resistance	VI = HIOVDD, PIOVDD	20	50	120	kΩ
RPLD1L	Pull-Down Resistance	VI = COREVDD	27	75	183	kΩ
VOH2H	High Level Output Voltage	HIOVDD, PIOVDD = min IOH = -1.8mA	HIOVDD, PIOVDD - 0.4	—	—	V
VOL2H	Low Level Output Voltage	HIOVDD, PIOVDD = min IOH = 1.8mA	—	_	VSS + 0.4	V
VOH4H	High Level Output Voltage	HIOVDD, PIOVDD = min IOH = -5.4mA	HIOVDD, PIOVDD - 0.4	_	—	V
VOL4H	Low Level Output Voltage	HIOVDD, PIOVDD = min IOH = 5.4mA	—	_	VSS + 0.4	V

The following to	able applies for	HIOVDD - PIO	VDD = GIOVDD = 2.80V.
The following ta	able applies for	$\Pi U V D D - F I U$	VDD = OIO VDD = 2.00 V.

Symbol	Parameter	Condition	Min	Тур	Max	Units
IL	Input Leakage Current	—	-5	_	5	μΑ
IOZ	Output Leakage Current	—	-5	_	5	μΑ
IQcore	Quiescent Current on COREVDD	—	—	200	—	μA
IQpll	Quiescent Current on PLLVDD	_	—	7	_	μA
IQio	Quiescent Current on HIOVDD, PIOVDD, CIOVDD	_	—	9.2	—	μA
VIH1H	CMOS High Level Input Voltage	HIOVDD, PIOVDD = Max	1.85	_	HIOVDD, PIOVDD + 0.3	V
VIL1H	CMOS Low Level Input Voltage	HIOVDD, PIOVDD = Min	-0.3	_	0.75	V
VT1+	Schmitt Positive Trigger Voltage	HIOVDD, PIOVDD = Max	0.94		1.91	V
VT1-	Schmitt Negative Trigger Voltage	HIOVDD, PIOVDD = Min	0.67		1.61	V
$\Delta V1$	Schmitt Hysteresis Voltage	HIOVDD, PIOVDD = Min	0.27	_	—	V
VT2+	Schmitt Positive Trigger Voltage	COREVDD = Max	0.54		1.15	V
VT2-	Schmitt Negative Trigger Voltage	COREVDD = Min	0.41		0.99	V
$\Delta V2$	Schmitt Hysteresis Voltage	COREVDD = Min	0.14		—	V
RPLU1H	Pull-Up Resistance	VI = VSS	22	55	132	kΩ
RPLD1H	Pull-Down Resistance	VI = HIOVDD, PIOVDD	22	55	132	kΩ
RPLD1L	Pull-Down Resistance	VI = COREVDD	27	75	183	kΩ
VOH2H	High Level Output Voltage	HIOVDD, PIOVDD = min IOH = -1.8mA	HIOVDD, PIOVDD - 0.4	_	—	V
VOL2H	Low Level Output Voltage	HIOVDD, PIOVDD = min IOH = 1.8mA	—	_	VSS + 0.4	V
VOH4H	High Level Output Voltage	HIOVDD, PIOVDD = min IOH = -5.4mA	HIOVDD, PIOVDD - 0.4	_	—	V
VOL4H	Low Level Output Voltage	HIOVDD, PIOVDD = min IOH = 5.4mA	—	_	VSS + 0.4	V

Table 6-6: Electrical Characteristics 2
The following table applies for HIOVDD = PIOVDD = GIOVDD = 1.80V.

Symbol	Parameter	Condition	Min	Тур	Max	Units
IL	Input Leakage Current	_	-5	_	5	μA
IOZ	Output Leakage Current	_	-5	_	5	μA
IQcore	Quiescent Current on COREVDD	_	—	200	—	μA
IQpll	Quiescent Current on PLLVDD	_	—	7	_	μA
IQio	Quiescent Current on HIOVDD, PIOVDD, CIOVDD	_	—	6.44	—	μA
VIH1H	CMOS High Level Input Voltage	HIOVDD, PIOVDD = Max	1.29	_	HIOVDD, PIOVDD + 0.3	V
VIL1H	CMOS Low Level Input Voltage	HIOVDD, PIOVDD = Min	-0.3		0.56	V
VT1+	Schmitt Positive Trigger Voltage	HIOVDD, PIOVDD = Max	0.65	_	1.38	V
VT1-	Schmitt Negative Trigger Voltage	HIOVDD, PIOVDD = Min	0.49	_	1.18	V
ΔV1	Schmitt Hysteresis Voltage	HIOVDD, PIOVDD = Min	0.17	_	—	V
VT2+	Schmitt Positive Trigger Voltage	COREVDD = Max	0.54	_	1.15	V
VT2-	Schmitt Negative Trigger Voltage	COREVDD = Min	0.41	_	0.99	V
ΔV2	Schmitt Hysteresis Voltage	COREVDD = Min	0.14	_	—	V
RPLU1H	Pull-Up Resistance	VI = VSS	36	100	244	kΩ
RPLD1H	Pull-Down Resistance	VI = HIOVDD, PIOVDD	36	100	244	kΩ
RPLD1L	Pull-Down Resistance	VI = COREVDD	27	75	183	kΩ
VOH2H	High Level Output Voltage	HIOVDD, PIOVDD = min IOH = -1.8mA	HIOVDD, PIOVDD - 0.4	_	—	V
VOL2H	Low Level Output Voltage	HIOVDD, PIOVDD = min IOH = 1.8mA	—	_	VSS + 0.4	V
VOH4H	High Level Output Voltage	HIOVDD, PIOVDD = min IOH = -5.4mA	HIOVDD, PIOVDD - 0.4	_	—	V
VOL4H	Low Level Output Voltage	HIOVDD, PIOVDD = min IOH = 5.4mA	—	—	VSS + 0.4	V

Table 6-7: Electrical Characteristics 3

7 AC Characteristics

Conditions for HIOVDD = PIOVDD = $GIOVDD = 1.62 \sim 1.98V$

- $T_A = -40^\circ \text{ C}$ to 85° C
- Output Driver = 5.4mA (REG[0004h] bits 15-13 = 111b)
- T_{rise} and T_{fall} for all inputs except CLKI must be < 50 ns (10% ~ 90%)
- $C_L = 30 pF$ (Host Interface)
- $C_L^- = 30 pF$ (LCD Interface)
- $C_L = 30 pF$ (GPIO Interface)

Conditions for HIOVDD = $PIOVDD = GIOVDD = 2.66 \sim 2.94V$

- $T_A = -40^\circ \text{ C}$ to 85° C
- Output Driver = 3.6mA (REG[0004h] bits 15-13 =000b)
- T_{rise} and T_{fall} for all inputs except CLKI must be < 50 ns (10% ~ 90%)
- $C_L = 30 pF$ (Host Interface)
- $C_L = 30 pF$ (LCD Interface)
- $C_L = 30 pF$ (GPIO Interface)

Conditions for HIOVDD = PIOVDD = $GIOVDD = 3.00 \sim 3.60V$

- $T_A = -40^\circ \text{ C}$ to 85° C
- Output Driver = 4.0mA (REG[0004h] bits 15-13 =000b)
- T_{rise} and T_{fall} for all inputs except CLKI must be < 50 ns (10% ~ 90%)
- $C_L = 30 pF$ (Host Interface)
- $C_L = 30 pF$ (LCD Interface)
- $C_L^- = 30 pF$ (GPIO Interface)

7.1 Clock Timing

7.1.1 Input Clock Timing

The following timing information specifies the input requirements when CLKI will be used as the PLL reference clock (REG[0012h] bit 0 = 0b). For details on configuring the PLL, refer to Section 10.4.2, "Clock Configuration Registers" on page 73. For more information on the clock structure of the S1D13748, refer to Section 9.1, "Clock Diagram" on page 65.

Figure 7-1: Clock Input Requirements (CLKI when PLL Used)

Table $7-1$:	Clock Inpu	t Requirement	s (CLKI when	PLL Used)
1 4010 / 1.	Clock Inpla	a neguirentent	S CLIII WHEN	I LL Obcu)

Symbol	Parameter	Min	Тур	Max	Units
f _{osci}	Input Clock Frequency (CLKI)	1	_	33	MHz
T _{OSC}	Input Clock period (CLKI)	1/f _{OSC}	_		ns
t1	Input Clock Pulse Width High (CLKI)	0.4t _{OSC}	_	0.6t _{OSC}	us
t2	Input Clock Pulse Width Low (CLKI)	0.4t _{OSC}	_	0.6t _{OSC}	us
t3	Input clock rising time (10% - 90%)	—	_	10	ns
t4	Input clock falling time (10% - 90%)	—	_	10	ns

The following timing information specifies the input requirements when CLKI will be used as the source for the system clock (SYSCLK), bypassing the PLL (REG[0012h] bit 0 = 1b). For details on the clock structure of the S1D13748, refer to Section 9.1, "Clock Diagram" on page 65.

Figure 7-2: Clock Input Requirements (CLKI when PLL Bypassed)

Symbol	Parameter	Min	Тур	Max	Units
f _{osci}	Input Clock Frequency (CLKI)		_	58	MHz
T _{OSC}	Input Clock period (CLKI)	1/f _{OSC}	_	_	ns
t1	Input Clock Pulse Width High (CLKI)	0.4t _{OSC}	_	0.6t _{OSC}	us
t2	Input Clock Pulse Width Low (CLKI)	0.4t _{OSC}	_	0.6t _{OSC}	us
t3	Input clock rising time (10% - 90%)	—	_	10	ns
t4	Input clock falling time (10% - 90%)			10	ns

7.1.2 PLL Clock

The PLL circuit is an analog circuit and is very sensitive to noise on the input clock waveform or the power supply. Noise on the clock or the supplied power may cause the operation of the PLL circuit to become unstable or increase the jitter.

Due to these noise constraints, it is highly recommended that the power supply traces or the power plane for the PLL be isolated from those of other power supplies. Filtering should also be used to keep the power as clean as possible. The jitter of the input clock waveform should be as small as possible.

Figure 7-3: PLL Start-Up Time

Page 41

7.2 Power Supply Sequence

7.2.1 Power-On Sequence

Figure 7-4: Power-On Sequence

Table	7-3:	Power-0	On Se	equence	Timing
-------	------	---------	-------	---------	--------

Symbol	Parameter	Min	Max	Units
t1	High VDD on delay from low VDD on	0	10	ms
t2	RESET# hold time	2	_	Tck (Note 1)
t3	RESET# active width	2		Tck

1. Tck = CLKI Clock Period

7.2.2 Power-Off Sequence

<i>Table 7-4:</i>	Power-Off	Sequence	Timing
10000 / //	10000000	Sequence	1 111111

Symbol	Parameter	Min	Max	Units
t1	High V_{DD} off delay from Low V_{DD} off	0	10	ms

7.3 Host Bus Interface Timing

7.3.1 Indirect 80 Timing

Figure 7-6: Indirect 80 Write Cycle Single Access Timing

Figure 7-7: Indirect 80 Write Cycle Burst Access Timing

Note

The Indirect 80 interface write cycle timing included in this specification is preliminary and subject to change.

Symbol	Parameter	HIOVD	HIOVDD = 1.8V		HIOVDD = 2.8V or 3.3V	
Symbol		Min	Max	Min	Max	Units
t1	CS# setup time	5		5	—	ns
t2	AB[3:1] setup time	5	—	5	—	ns
t3	DB[15:0] setup time to WE# rising edge	5	—	5	—	ns
t4	CS# hold time from WE# rising edge	5	—	5	—	ns
t5	AB[3:1] hold time from WE# rising edge	5	—	5	—	ns
t6	DB[15:0] hold time from WE# rising edge	5		5	_	ns
t7	WE# pulse active time	2	—	2	—	Ts (Note 1)
t8	WE# pulse inactive time	1	—	1		Ts

Table 7-5: Indirect 80 Write Cycle Timing

1. Ts = System Clock Period

Figure 7-8: Indirect 80 Read Cycle Single Access Timing

Figure 7-9: Indirect 80 Read Cycle Burst Access Timing

Note

The Indirect 80 interface read cycle timing included in this specification is preliminary and subject to change.

Symbol	Parameter	HIOVD	HIOVDD = 1.8V		HIOVDD = 2.8V or 3.3V	
Symbol		Min	Max	Min	Max	Units
t11	CS# setup time	5	_	5	_	ns
t12	AB[3:1] setup time	5	_	5	_	ns
t13	RD# falling edge to DB[15:0] driven	4	_	3	_	ns
t14	CS# hold time from RD# falling edge	1	_	1	_	Ts (Note 1)
t15	AB[3:1] hold time from RD# falling edge	1	_	1	_	Ts
t16	DB[15:0] hold time from RD# rising edge	2	11	2	10	ns
t17	RD# falling edge to valid data		27	—	22	ns
t18	RD# pulse inactive time	1	_	1	—	Ts
t19	RD# pulse active time	2	_	2	—	Ts

1. Ts = System Clock Period

7.3.2 Indirect 68 Timing

Figure 7-10: Indirect 68 Write Cycle Single Access Timing

Figure 7-11: Indirect 68 Write Cycle Burst Access Timing

Note

The Indirect 68 interface write cycle timing included in this specification is preliminary and subject to change.

Page 48

Symbol	Parameter	HIOVDD = 1.8V		HIOVDD = 2.8V or 3.3V		Units
Symbol		Min	Max	Min	Max	Units
t1	CS# setup time	5	—	5	—	ns
t2	AB[3:1], R/W# setup time	5	—	5	—	ns
t3	DB[15:0] setup time to UDS#, LDS# rising edge	5	—	5	—	ns
t4	CS# hold time from UDS#, LDS# rising edge	5	—	5	—	ns
t5	AB[3:1], R/W# hold time from UDS#, LDS# rising edge	5	—	5	—	ns
t6	DB[15:0] hold time from UDS#, LDS# rising edge	5	—	5	—	ns
t7	UDS#, LDS# pulse active time	2	—	2	—	Ts (Note 1)
t8	UDS#, LDS# pulse inactive time	1		1	—	Ts

1. Ts = System Clock Period

Figure 7-12: Indirect 68 Read Cycle Single Access Timing

Figure 7-13: Indirect 68 Read Cycle Burst Access Timing

Note

The Indirect 68 interface read cycle timing included in this specification is preliminary and subject to change.

Symbol	Parameter	HIOVDD = 1.8V		HIOVDD = 2.8V or 3.3V		Units
Symbol		Min	Max	Min	Max	Units
t11	CS# setup time	5	—	5	—	ns
t12	AB[3:1], R/W# setup time	5	—	5	—	ns
t13	UDS#, LDS# falling edge to DB[15:0] driven		—	3	—	ns
t14	CS# hold time from UDS#, LDS# falling edge	1	—	1	—	Ts (Note 1)
t15	AB[3:1], R/W# hold time from UDS#, LDS# falling edge	1		1	—	Ts
t16	DB[15:0] hold time from UDS#, LDS# rising edge	2	11	2	10	ns
t17	UDS#, LDS# falling edge to valid data	—	27	—	22	ns
t18	UDS#, LDS# pulse inactive time	1	—	1	—	Ts
t19	UDS#, LDS# pulse active time	2	—	2	—	Ts

1. Ts = System Clock Period

7.4 LCD Interface Timing

7.4.1 Generic TFT Panel Timing

Figure 7-14: Generic TFT Panel Timing

Symbol	Description	Derived From	Units
HT	Horizontal Total (FPLINE period)	((REG[0040h] bits 6-0) + 1) x 8	
HDP	Horizontal Display Period	((REG[0042h] bits 8-0) + 1) x 2	
HDPS	Horizontal Display Period Start Position	((REG[0044h] bits 9-0) + 9	PCLK
HPW	Horizontal Pulse (FPLINE) Width	(REG[0046h] bits 6-0) + 1	
HPP	Horizontal Pulse (FPLINE) Start Position	(REG[0048h] bits 9-0) + 1	
VT	Vertical Total (FPFRAME period)	(REG[004Ah] bits 9-0) + 1	
VDP	Vertical Display Period	(REG[004Ch] bits 9-0) + 1	
VDPS	Vertical Display Period Start Position	REG[004Eh] bits 9-0	Lines
VPW	Vertical Pulse (FPFRAME) Width	(REG[0050h] bits 2-0) + 1	1
VPP	Vertical Pulse (FPFRAME) Start Position	REG[0052h] bits 9-0	1

1. The following formulas must be valid for all panel timings:

HDPS + HDP < HT VDPS + VDP < VT

Figure 7-15: Generic TFT Vertical Timing

Figure 7-16: Generic TFT Horizontal Timing

7.4.2 LCD1 ND-TFD, LCD1 8-Bit Serial Interface Timing

Figure 7-17: LCD1 ND-TFD, LCD1 8-bit Serial Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time		1.5	—	Ts (Note 1)
t2	Data setup time		0.5	—	Ts
t3	Data hold time		0.5	—	Ts
t4	Serial clock pulse width low (high)		0.5	—	Ts
t5	Serial clock pulse width high (low)		0.5	—	Ts
t6	Serial clock period		1.0	—	Ts
t7	Chip select hold time for command/parameter transfer		1.5		Ts
t8	Chip select de-assert to reassert		Note 2		Ts

Table 7-10: LCD1	ND TED I	CD18 hit	Sorial Intor	face Timina
Tuble 7-10. LCDI	ND- $II'D, L$	CDI 0-DII	seriui mier	jace riming

1. Ts = Serial clock period

2. This setting depends on software.

7.4.3 LCD1 ND-TFD, LCD1 9-Bit Serial Interface Timing

Figure 7-18: LCD1 ND-TFD, LCD1 9-Bit Serial Interface Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select setup time	—	1.5	_	Ts (Note 1)
t2	Data setup time	—	0.5		Ts
t3	Data hold time	—	0.5		Ts
t4	Serial clock pulse width low (high)	—	0.5		Ts
t5	Serial clock pulse width high (low)	—	0.5		Ts
t6	Serial clock period	—	1		Ts
t7	Chip select hold time		1.5		Ts
t8	Chip select de-assert to reassert		Note 2		Ts

Table 7-11: LCD1	$ND_{-}THD_{-}LCD_{-}$	1 9-Rit Serial	Intertace Timino
Iubic / II. LCDI	nD nD, LCD	Dii Schui	

1. Ts = Serial clock period

2. This setting depends on software.

7.4.4 LCD1 uWire Serial Interface Timing

Figure 7-19: LCD1 uWIRE Serial Interface Timing

Table 7-12.	LCD1	uWIRE Serial	Interface	Timino
<i>1ubic 7-12</i> .	LUDI	u wind beriui	merjace	1 unung

Symbol	Parameter	Min	Тур	Max	Units	
t1	Chip select setup time	—	1	_	Ts (Note 1)	
t2	Serial clock period	—	1		Ts	
t3	Serial clock pulse width low	—	0.5	_	Ts	
t4	Serial clock pulse width high	—	0.5	_	Ts	
t5	Data setup time	_	0.5	_	Ts	
t6	Data hold time	_	0.5	_	Ts	
t7	Chip select hold time	—	1.5	_	Ts	
t8	Chip select de-assert to reassert	—	Note 2		Ts	

1. Ts = Serial clock period

2. This setting depends on software

Note

When a uWire panel is selected (REG[0054h] bits 7-5 = 10x), FPCS1# idles high until the first uWire transfer is started. After the first transfer, FPCS1# idles low.

7.4.5 LCD1 Parallel Interface (80)

Figure 7-20: LCD1 Parallel Interface Timing (80)

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select falling edge to FPFRAME falling edge		1		Tp (Note 1)
t2	FPFRAME low period		1		Тр
t3	Data setup time		2		Тр
t4	Data hold time		1		Тр
t5	Write signal rising edge to chip select rising edge		1		Тр
t6	Chip select de-assert to reassert		0		Тр
t7	Write signal high period in burst cycle		1	—	Тр
t8	FPVIN (input) falling edge to chip select falling edge		51		Тр
t9	FPVIN (output) low period		Note 2		Тр
t10	Data setup time in burst cycle		1	—	Тр
t11	Data hold time in burst cycle		1		Тр
t12	FPVIN (output) falling edge to FPCS# falling edge		Note 3		Тр

 1.
 Tp
 = Pixel clock period

 2.
 t9typ
 = REG[0068h] bits 15-8 x 2 for LCD1

 3.
 t12typ
 = REG[0068h] bits 7-0 x 2 for LCD1

7.4.6 LCD1 Parallel Interface (68)

Figure 7-21: LCD1 Parallel Interface Timing (68)

Symbol	Parameter	Min	Тур	Max	Units
t1	Chip select falling edge to FPFRAME rising edge	—	1		Тр
t2	FPFRAME high period		1	_	Тр
t3	Data setup time		2		Тр
t4	Data hold time	—	1		Тр
t5	FPFRAME falling edge to Chip select rising edge		1	_	Тр
t6	Chip select deassert to reassert	—	0		Тр
t7	Enable signal low period in burst cycle	—	1		Тр
t8	FPVIN (input) falling edge to chip select falling edge	—	51		Тр
t9	FPVIN (output) low period	—	Note 2		Тр
t10	Data setup time in burst cycle		1		Тр
t11	Data hold time in burst cycle		1		Тр
t12	FPVIN (output) falling edge to FPCS# falling edge		Note 3		Тр

 1.
 Tp
 = Pixel clock period

 2.
 t9typ
 = REG[0068h] bits 15-8 x 2 for LCD1

 3.
 t12typ
 = REG[0068h] bits 7-0 x 2 for LCD1

Figure 7-22: LCD Bypass Timing

Symbol	Parameter	Min	Тур	Max	Units
t1	LCD serial bypass delay time	3	_	18	ns
t2	LCD serial bypass stable time		_	7	ns
t3	LCD parallel output bypass delay time	3	_	19	ns
t4	LCD parallel output bypass stable time		_	7	ns
t5	LCD parallel input bypass delay time	3	_	18	ns
t6	LCD parallel input bypass stable time		_	7	ns

8 Memory

8.1 Physical Memory

The S1D13748 includes 1024K bytes of embedded SRAM. The SRAM consists of eight banks composed of 128K bytes. Each bank is mapped at consecutive addresses.

The memory is used for the display buffer which can contain image data for the following.

- Main1 window image data for LCD1
- Main2 window image data for LCD1
- PIP1 window image data for LCD1
- PIP2 window image data for LCD1

The following figure shows how the S1D13748 physical memory is mapped.

Figure 8-1: Physical Memory

8.2 Memory Map Examples

Figure 8-2: Memory Map for WVGA Display

Figure 8-3: Memory Map for Triple-buffered WQVGA Display

9 Clocks

9.1 Clock Diagram

The following figure shows the clock tree of the S1D13748. All required internal clocks are derived from the system clock (SYSCLK).

Figure 9-1: Clock Tree Diagram

9.2 Internal Clock Descriptions

9.2.1 System Clock

The system clock (SYSCLK) is used for the S1D13748 internal main clock. The system clock source can be selected, using REG[0012h] bit 0, from either the internal PLL, or an external clock input (CLKI). The system clock source can be divided down using the System Clock Divide Select bits (REG[0018h] bits 1-0). The divided down system clock is the source clock for both the Pixel Clock and the Serial Clock.

9.2.2 Pixel Clock

The pixel clock (PCLK) is used as the LCD1 shift clock for RGB type panels and for LCD1 parallel interface timing. The pixel clock source is always the system clock and can be divided down using the Pixel Clock Divide Select bits (REG[0030h] bits 4-0).

9.2.3 Serial Clock

The serial clock (SCLK) is used for the LCD1 serial interfaces. The serial clock source is always the system clock and can be divided down using the Serial Clock Divide Select bits (REG[0030h] bits 10-8).

9.3 PLL

Figure 9-2: PLL Block Diagram

REFCLK input frequency	1MHz to 33MHz
PFD frequency	1MHz to 2MHz
POUT output frequency	33MHz to 58MHz
Period Jitter	$\pm 2\%$
Lock in time	1ms
M-Divider divide ratio (REG[000Ch] bits 5-0)	1 to 1/33
PLL up convert ratio (REG[000Ch] bits 14-8)	17 to 33
V-Divider Divide ratio (REG[000Eh] bits 5-4)	1 or 1/2

10 Registers

This section discusses how and where to access the S1D13748 registers. It also provides detailed information about the layout and usage of each register.

10.1 Register Mapping

The S1D13748 registers are memory mapped. Asynchronous registers are accessible at all times. Synchronous registers are only available when power save mode is disabled, REG[0014h] bit 0 = 0b.

Address	Туре	Function
0000h to 0006h	Asynchronous	System Configuration Registers
000Ch to 0018h	Asynchronous	Clock Configuration Registers
0030h to 003Ch	Synchronous	LCD Interface Configuration Registers
0040h to 0064h	Synchronous	LCD1 Configuration Registers
0068h to 00FEh	Synchronous	Extended Panel Configuration Registers
0180h to 019Ah	Synchronous	Host Interface Registers
0200h to 0252h	Synchronous	Display Configuration Registers
0260h to 0292h	Synchronous	PIP1 Window Configuration Registers
02A0h to 02E2h	Synchronous	PIP2 Window Configuration Register
0300h to 031Ah	Asynchronous	GPIO Registers
0400h to 0502h	Synchronous	LUT Registers
0A00h to 0A04h	Synchronous	Interrupt Control Registers

Table 10-1: S1D13748 Register Mapping

S1D13748

X80A-A-001-01

10.2 Register Set

The S1D13748 registers are listed in the following table.

Table 10-2: S1D13748 Register Set

System Co	onfigu	iration Registers	
REG[0000h] Product Information Register 0	71	REG[0002h] Product Information Register 1	71
REG[0004h] Configuration Pin Status Register	71	REG[0006h] is Reserved	72
Clock Co	nfigu	ration Registers	
REG[000Ch] PLL Setting Register 0	73	REG[000Eh] PLL Setting Register 1	74
REG[0010h] PLL Setting Register 2	74	REG[0012h] PLL Setting Register 3	75
REG[0014h] Miscellaneous Configuration Register	76	REG[0016h] Software Reset Register	78
REG[0018h] System Clock Setting Register	79		
LCD Interface	e Con	figuration Registers	
REG[0030h] LCD Interface Clock Setting Register	80	REG[0032h] LCD Interface Configuration Register	82
REG[0034h] LCD Interface Command Register	84	REG[0036h] LCD Interface Parameter Register	84
REG[0038h] LCD Interface Status Register	85	REG[003Ah] LCD Interface Frame Transfer Register	85
REG[003Ch] LCD Interface Transfer Setting Register	86		
LCD1 Co	nfigu	ation Registers	
REG[0040h] LCD1 Horizontal Total Register	87	REG[0042h] LCD1 Horizontal Display Period Register	87
REG[0044h] LCD1 Horizontal Display Period Start Position Re	gister 88	REG[0046h] LCD1 Horizontal Pulse Register	88
REG[0048h] LCD1 Horizontal Pulse Start Position Register	88	REG[004Ah] LCD1 Vertical Total Register	89
REG[004Ch] LCD1 Vertical Display Period Register	89	REG[004Eh] LCD1 Vertical Display Period Start Position Regis	ter89
REG[0050h] LCD1 Vertical Pulse Register	90	REG[0052h] LCD1 Vertical Pulse Start Position Register	90
REG[0054h] LCD1 Serial Interface Setting Register	91	REG[0056h] LCD1 Parallel Interface Setting Register	92
Extended Pan	el Cor	figuration Registers	
REG[0068h] LCD1 Vsync Output Register	95	REG[006Ah] is Reserved	
REG[0070h] through REG[0074h] are Reserved		REG[00FEh] is Reserved	
Host I	nterfa	ce Registers	
REG[0180h] Host Interface Configuration Register	96	REG[0182h] Memory Start Address Register 0	98
REG[0184h] Memory Start Address Register 1	98	REG[0186h] HWC Memory Rectangular Write Address Offset Register	99
REG[0188h] HWC Memory Rectangular Write Horizontal Size Register	99	REG[018Ah] HWC Memory Rectangular Write Vertical Size Re	gister 99
REG[018Ch] Memory Access Port Register	100	REG[018Eh] HWC Raw Status Register	100
REG[0190h] HWC Interrupt Control Register	101	REG[0192h] HWC Status Register	102
REG[0194h] Memory Rectangular Write Address Offset Regist	er103	REG[0196h] Memory Rectangular Write Address Width Register	er103
REG[0198h] VOUT Configuration Register	104	REG[019Ah] is Reserved	
Display Co	onfigu	iration Registers	
REG[0200h] Display Mode Setting Register 0	105	REG[0202h] Display Mode Setting Register 1	106
REG[0204h] Transparency and Alpha Blend Control Register	109	REG[0206h] Background Color Setting Register	110
REG[0208h] Alpha Blend Ratio Setting Register	111	REG[020Ch] PIP1 Window Transparency Key Color Register	112
REG[020Eh] PIP2 Window Transparency Key Color Register	113	REG[0210h] Alpha Blend 1 Key Color Register	113
REG[0212h] Alpha Blend 2 Key Color Register	114	REG[0214h] Alpha Blend 3 Key Color Register	114
REG[0216h] Alpha Blend 4 Key Color Register	115	REG[0218h] Main1 Window X Start Position Register	115
REG[021Ah] Main1 Window Y Start Position Register	115	REG[0220h] Main2 Window X Start Position Register	116
REG[0222h] Main2 Window Y Start Position Register	116	REG[0228h] PIP1 Window X Start Position Register	116
REG[022Ah] PIP1 Window Y Start Position Register	116	REG[022Ch] PIP1 Window X End Position Register	117
REG[022Eh] PIP1 Window Y End Position Register	117	REG[0230h] PIP2 Window X Start Position Register	117
REG[0232h] PIP2 Window Y Start Position Register	118	REG[0234h] PIP2 Window X End Position Register	118
REG[0236h] PIP2 Window Y End Position Register	118	REG[0238h] Main1 Window Scroll Start Address Register 0	119

Table 10-2.	SIDI	5746 Register Set	
REG[023Ah] Main1 Window Scroll Start Address Register 1	119	REG[023Ch] Main1 Window Scroll End Address Register 0	120
REG[023Eh] Main1 Window Scroll End Address Register 1	120	REG[0240h] Main1 Window Display Start Address Register 0	121
REG[0242h] Main1 Window Display Start Address Register 1	121	REG[0244h] Main1 Window Line Address Offset Register	121
REG[0246h] Main1 Window Image Horizontal Size Register	122	REG[0248h] Main1 Window Image Vertical Size Register	122
REG[024Ah] Main2 Window Display Start Address Register 0	123	REG[024Ch] Main2 Window Display Start Address Register 1	123
REG[024Eh] Main2 Window Line Address Offset Register	123	REG[0250h] Main2 Window Image Horizontal Size Register	124
REG[0252h] Main2 Window Image Vertical Size Register	124		
PIP1 Window	Conf	iguration Registers	
REG[0260h] PIP1 Scaling Mode Register	125	REG[0262h] PIP1 Scaler Horizontal Scale Register	127
REG[0264h] PIP1 Scaler Vertical Scale Register	128	REG[0266h] PIP1 Scaler Port Address Counter Register	130
REG[0268h] PIP1 Scaler Coefficient Table Access Port Registe	r131	REG[026Ah] through REG[026Ch] are Reserved	
REG[026Eh] PIP1 Scaler Control Register	132	REG[0270h] PIP1 Window Scroll Start Address Register 0	133
REG[0272h] PIP1 Window Scroll Start Address Register 1	133	REG[0274h] PIP1 Window Scroll End Address Register 0	134
REG[0276h] PIP1 Window Scroll End Address Register 1	134	REG[0278h] PIP1 Window Display Start Address Register 0	135
REG[027Ah] PIP1 Window Display Start Address Register 1	135	REG[027Ch] PIP1 Window Line Address Offset Register	135
REG[027Eh] PIP1 Source Image Horizontal Size Register	136	REG[0280h] PIP1 Source Image Vertical Size Register	136
REG[0282h] Pseudo Setting Register	137	REG[0290h] through REG[0292h] are Reserved	
PIP2 Window	Con	figuration Register	
REG[02A0h] PIP2 Scaling Mode Register	138	REG[02A2h] PIP2 Scaler Horizontal Scale Register	140
REG[02A4h] PIP2 Scaler Vertical Scale Register	141	REG[02A6h] PIP2 Scaler Port Address Counter Control Regist	er143
REG[02A8h] PIP2 Scaler Coefficient Table Access Port Registe	r144	REG[02AAh] through REG[02ACh] are Reserved	
REG[02AEh] PIP2 Scaler Control Register	145	REG[02B0h] PIP2 Window Scroll Start Address Register 0	146
REG[02B2h] PIP2 Window Scroll Start Address Register 1	146	REG[02B4h] PIP2 Window Scroll End Address Register 0	147
REG[02B6h] PIP2 Window Scroll End Address Register 1	147	REG[02B8h] PIP2 Window Display Start Address Register 0	148
REG[02BAh] PIP2 Window Display Start Address Register 1	148	REG[02BCh] PIP2 Window Line Address Offset Register	148
REG[02BEh] PIP2 Source Image Horizontal Size Register	149	REG[02C0h] PIP2 Source Image Vertical Size Register	149
REG[02C2h] PIP2 Panorama Area A Vertical Scale Register	149	REG[02C4h] PIP2 Panorama Area B Vertical Scale Register	150
REG[02C6h] PIP2 Panorama Area 1 Vertical Start Line Register	r150	REG[02C8h] PIP2 Panorama Area 2 Vertical Start Line Registe	er150
REG[02CAh] PIP2 Panorama Area 3 Vertical Start Line Registe	r151	REG[02CCh] PIP2 Panorama Area 4 Vertical Start Line Regist	er151
REG[02CEh] PIP2 Linear Panorama Area Vertical Delta Registe	er151	REG[02E0h] through REG[02E2h] are Reserved	
GF	PIO R	egisters	
REG[0300h] GPIO Configuration Register 0	153	REG[0302h] GPIO Configuration Register 1	153
REG[0304h] GPIO Input Enable Register 0	153	REG[0306h] GPIO Input Enable Register 1	153
REG[0308h] GPIO Pull-down Control Register 0	154	REG[030Ah] GPIO Pull-down Control Register 1	154
	154	REG[030Eh] GPIO Status Register 1	154
REG[0310h] GPIO Positive Edge Interrupt Trigger Register 0	155	REG[0312h] GPIO Positive Edge Interrupt Trigger Register 1	155
REG[0314h] GPIO Negative Edge Interrupt Trigger Register 0	155	REG[0316h] GPIO Negative Edge Interrupt Trigger Register 1	155
REG[0318h] GPIO Interrupt Status Register 0	156	REG[031Ah] GPIO Interrupt Status Register 1	156
LL	JT Re	egisters	
REG[0400h] PIP2-LUT Address Counter Register	157	REG[0402h] PIP2-LUT Data Port Register	157
REG[0500h] LCD-LUT Address Counter Register	158	REG[0502h] LCD-LUT Data Port Register	158
Interrup	t Con	trol Registers	
REG[0A00h] Interrupt Status Register	159	REG[0A02h] Interrupt Control Register 0	159
REG[0A04h] Interrupt Control Register 1	160		
		1	

Table 10-2: S1D13748 Register Set

10.3 Register Restrictions

All reserved bits must be set to the default value. Writing a non-default value to a reserved bit may produce undefined results. Bits marked as n/a have no hardware effect. Unless specified otherwise, all register bits are set to 0b during power-on reset.

Reserved registers must not be written.

For all register accesses, the Host must issue an index cycle except for the Memory Access Data Port (REG[018Ch]) which supports multiple data cycle burst accesses.

Some registers are only accessible when certain conditions exist. Any attempts to read/write in-accessible registers are invalid.

The following registers are asynchronous and always accessible.

- System Configuration Registers (REG[0000h] ~ REG[0004h])
- Clock Configuration Registers (REG[000Ch] ~ REG[0018h])
- GPIO Registers (REG[0300h] ~ REG[031Ah])

The following registers are synchronous and cannot be accessed when Power Save Mode is enabled (REG[0014h] bit 0 = 1b).

• All registers from REG[0030h] ~ REG[0A04h] except REG[0300h] ~ REG[031Ah]

For further information on performing read/write accesses to the S1D13748 registers, see Section 14.2, "Register Access" on page 197.

Note

The register index must be set for each read cycle.

10.4 Register Descriptions

10.4.1 System Configuration Registers

Default = 0000h							
			Revision Co	ode bits 7-0			
15	14	13	12	11	10	9	8
	•		Rese	erved			
7	6	5	4	3	2	1	0
bits 15-8	The	vision Code bit ese bits indicate e revision code	e the revision c	ode.			
oits 7-0		served the S1D13748	these bits alw	ays return 000	00_0000b (00h)		

REG[0002h] Product Information Register 1 Default = 0040h							Read Only
Product Code bits 15-8							
15	14	13	12	11	10	9	8
Product Code bits 7-0							
7	6	5	4	3	2	1	0

bits 15-0

Product Code bits [15:0] (Read Only)

These bits indicate the product code.

The product code for the S1D13748 is 0040h.

REG[0004h] Configuration Pin Status Register Default = 0000h Read/Write							
HIOVDD Interface Drive Level	PIOVDD Interface Drive Level	GIOVDD Interface Drive Level	n/a				
15	14	13	12	11	10	9	8
n/a					CNF[2:0] Status		
7	6	5	4	3	2	1	0

bit 15

HIOVDD Interface Drive Level

This bit specifies the input/output buffer voltage level for the Host interface (HIOVDD) pins.

When this bit = 0b, HIOVDD is configured for 4.0mA/-4.0mA at 3.3V or 3.6mA/-3.6mA at 2.8V or 1.8mA/-1.8mA at 1.8V. (default)

When this bit = 1b, HIOVDD is configured for 12.0mA/-12.0mA at 3.3V or 10.8mA/-10.8mA at 2.8V or 5.4mA/-5-4mA at 1.8V.

bit 14	PIOVDD Interface Drive Level This bit specifies the input/output buffer voltage level for the Panel interface (PIOVDD) pins. When this bit = 0b, PIOVDD is configured for 4.0mA/-4.0mA at 3.3V or 3.6mA/-3.6mA at 2.8V or 1.8mA/-1.8mA at 1.8V. (default) When this bit = 1b, PIOVDD is configured for 12.0mA/-12.0mA at 3.3V or 10.8mA/- 10.8mA at 2.8V or 5.4mA/-5-4mA at 1.8V.
bit 13	GIOVDD Interface Drive Level This bit specifies the input/output buffer voltage level for the GPIO interface (GIOVDD) pins. When this bit = 0b, GIOVDD is configured for 4.0mA/-4.0mA at 3.3V or 3.6mA/-3.6mA at 2.8V or 1.8mA/-1.8mA at 1.8V. (default) When this bit = 1b, GIOVDD is configured for 12.0mA/-12.0mA at 3.3V or 10.8mA/- 10.8mA at 2.8V or 5.4mA/-5-4mA at 1.8V.
bits 2-0	CNF[2:0] Status (Read Only) These bits indicate the status of the corresponding S1D13748 configuration pins CNF[2:0] which are latched at the rising edge of RESET#. For functional description of each config- uration pin, refer to Section 5.3, "Summary of Configuration Options" on page 27.

REG[0006h] is Reserved

This register is Reserved and should not be written.
10.4.2 Clock Configuration Registers

REG[000Ch] Default = 0000		U					Read/Write
n/a			L	-Counter bits 6-0			
15	14	13	12	11	10	9	8
n/	′a			M-Divider b	its 5-0		
7	6	5	4	3	2	1	0
its 14-8	The	Counter bits [6: ese bits are use owing formula PLL Ou	d to configure the	nter + 1) x PLI		d must be set	according to th
	Not T	PLLCL e he L-Counter :	ter is the value o K is the internal must be program	input clock to	the PLL (ir		valid.
		10h ≤ L-Co	unter $\leq 41h$				
bits 5-0	The The	ese bits must b	:0] ine the divide rat e set according to PLLCLK) betwee	the frequency	of CLKI t		
			Table 10-3: M-1	Divide Ratio			
		REG	[000Ch] bits 5-0	M-Divide Ra	tio		
			00h	1:1			
			01h	2:1			
			02h	3:1			
			03h	4:1			

20h

21h to 3Fh

•

33:1

Reserved

Default = 000	00h						Read/Write
	n/a				HCP bits 4-0		
15	14	13	12	11	10	9	8
r	n/a	V bit	s 1-0		VC bit	is 3-0	
7	6	5	4	3	2	1	0
bits 5-4	33-5 V b The	58MHz, these its [1:0] se bits specify	bits should be the V value us	set to 0_0000b sed for configu	iguring the PLI o. uring the PLL. I		
bits 3-0	The	33-58MHz, these bits should be set to 00b.VC bits [3:0]These bits specify the VC value used for configuring the PLL. For a PLL output betw 33-58MHz, these bits should be set to 0010b.					

REG[0010h] Default = 000	PLL Setting R Oh	legister 2					Read/Write
HLOCK	X2	HG	OSCS		RS bi	ts 3-0	
15	14	13	12	11	10	9	8
	n/a				CP bits 4-0		
7	6	5	4	3	2	1	0
bit 15 bit 14	This bety X2 This	veen 33-58MF s bit specifies	Hz, this bit sho the X2 value u	alue used for co uld be set to 0t used for configu).		
bit 13	HG This	33-58MHz, this bit should be set to 0b.HGThis bit specifies the HG value used for configuring the PLL. For a PLL output between 33-58MHz, this bit should be set to 0b.					
bit 12	This	OSCS This bit specifies the OSCS value used for configuring the PLL. For a PLL output between 33-58MHz, this bit should be set to 0b.					
bits 11-8	The	RS bits [3:0] These bits specify the RS value used for configuring the PLL. For a PLL output between 33-58MHz, these bits should be set to 1000b.					
bits 4-0	The	CP bits [4:0] These bits specify the CP value used for configuring the PLL. For a PLL output between 33-58MHz, these bits should be set to 1_0000b.					

Default = 000			(Read/Write
	1	1	n/a	I	1	1	CLKI Input Contro
15	14	13	12	11	10	9	8 Ountern Olasik
			n/a				System Clock Source Select
7	6	5	4	3	2	1	0
pit 8	CL Wh stop anc Wh	efore setting the KI Input Contrest of the PLL is opped for power e.	disabled (REG save consider o, the CLKI inp	[0012h] bit 0 = ations. In this o put is enabled y	= 1b), this bit a condition CLk when the PLL	llows the CLH I may be left is disabled.	XI input to be
bit 0	Sys Thi (SY usir	tem Clock Sou s bit controls the SCLK). A PL ng the PLL Set	b, the CLKI inp urce Select he internal PLI L reference clo ting Registers clock structure	and determin ock must be su (REG[000Ch]	nes the source a pplied and the ~ REG[0010h	for the System PLL must be]) before enab	configured
	cloo divi Wh	ck. When this o ider. en this bit = 1t	b, the PLL is encorption is select b, the PLL is dine source for th	ed, the PLL ou sabled (default	tput is the sou	irce for the sys	stem clock
	Not 1 2 3	 A CLKI sou change this If the PLL r observed after 	urce (external C bit. eference clock ter disabling th be up to a 1ms	(CLKI input) e PLL, REG[0	is to be stoppe 0012h] bit 0 =	ed, a 100us del 1b.	ay must be

Default = 04D		-	I	1			Read/Write
Reserved	Parallel Bypass Pull-down Control	Parallel Bypass Direction Control	LCD Bypass Enable		LCD Bypass Mo	ode Select bits 3-0	
15	14	13	12	11	10	9	8
VNDP Status (RO)	Memory Power Save Status (RO)	n/a	Bypass Input Pull- up/down Control	Parallel Bypass Chip Select Mode	r	n/a	Power Save Mode Enable
7	6	5	4	3	2	1	0
bit 15		erved default value	for this bit is 0	ıb.			
bit 14	This inpu whic ping puts Who Who Note	s bit controls t its during Para ch are availabl g" on page 29) s, this bit has n en this bit = 01 en this bit = 11	allel Bypass mo le on the GPIO are not affecte o effect and th o, the pull-dow o, the pull-dow	esistance for F ode (see REG[0 [23:18] pins (s ed by this bit. V e pull-down re rn resistance is rn resistance is	0014h] bit 13) ee Section 5.: Vhen FPDAT sistance is dis disabled. (def enabled.	b. Note that FI 5, "LCD Inter [17:0] are con abled. ault)	PDAT[23:18] face Pin Map- figured as out-
pit 13	m Para Who FPL Inte Who	ust not be left allel Bypass D en Parallel By DAT[17:0] as e rface Pin Map en this bit = 0	floating or Hi- irection Contro pass mode is en- ither inputs or ping" on page p, FPDAT[17:0	ol nabled (see RE outputs. For pi	G[0014h] bita n mapping de ed as outputs.	s 11-8), this b etails, see Sect	it configures
	th	arallel Bypass	g the Parallel	[0014h] bits 11 Bypass Directio		· ·	
bit 12	This befo Who	ore enabling L en this bit = 0	CD Bypass M CD Bypass Mo o, LCD Bypass	lode. All LCD ode. s mode is disab s mode is enabl	led. (default)	gs should be c	onfigured
	Note TI		ot be enabled if	the LCD inter	face is busy, l	REG[0038h] I	bit $0 = 1b$.

bits 11-8 LCD Bypass Mode Select bits [3:0] These bits select the LCD Bypass Mode as follows. For a summary of the pins used for LCD Bypass Mode, refer to Section 5.6, "LCD Bypass Mode Pin Mapping" on page 30.

Note

LCD Bypass is not supported for 24-bit parallel panels.

REG[0014h] bits 11-8	Bypass Mode	LCD Panel	Interface	Pins Used	
0000b	F	LCD2	Parallel	FPDAT[15:0]	
0001b	G	LCD2	Parallel	FPDAT[17:13][11:1]	
0010b	С	LCD1	Parallel	FPDAT[15:0]	
0011b	D	LCD1	Parallel	FPDAT[17:13][11:1]	
0100b (default)	А	LCD2	Serial	FPSO	
0101b	Reserved				
0110b	В	LCD1	Serial	FPSO	
0111b		Re	eserved		
1000b	I	LCD2	Parallel	GPIO[17:10] (P2DAT[7:0])	
1001b	Н	LCD2	Parallel	FPDAT[17:10][8:1]	
1010b	Reserved				
1011b	E	LCD1	Parallel	FPDAT[17:10][8:1]	
1100b - 1111b		Re	eserved		

Table 10-4: LCD Bypass Mode Selection

bit 7

Vertical Non-Display Period Status (Read Only)
If an RGB interface panel is selected for LCD1 (Mode 1, see REG[0032h] bits 1-0), this status bit indicates whether the panel is in a Vertical Non-Display Period. This bit has no effect when Mode 2 is selected.
When this bit = 0b, the LCD panel output is in a Vertical Display Period.

When this bit = 1b, the LCD panel output is in a Vertical Non-Display Period.

bit 6Memory Power Save Status (Read Only)
This bit indicates the status of the memory controller and must be checked before enabling
Power Save Mode (REG[0014h] bit 0) or disabling the PLL (REG[0012h] bit 0).
When this bit = 0b, the memory controller is powered up.
When this bit = 1b, the memory controller is idling and the system clock source can be
disabled.

bit 4Bypass Input Pull-up/down Control
This bit controls the active pull-up/pull-down resistors on the host serial/parallel input
pins (SCS#, SCK, SA0, SI). When the serial/parallel input port is un-used (Hi-Z), set this
bit to 1b.
When this bit = 0b, the pull-up/pull-down resistors are inactive.
When this bit = 1b, the pull-up/pull-down resistors are active and the pins are affected as

When this bit = 1b, the pull-up/pull-down resistors are active and the pins are affected as follows (default).

Table 10-5: Serial/Parallel	Pull-up/Pull-down Registers
-----------------------------	-----------------------------

Pin	Туре
SCS#	Pull-up
SCK	Pull-down
SA0	Pull-down
SI	Pull-down

bit 3

Parallel Bypass Chip Select Mode

This bit controls the chip select mode used when Parallel Bypass mode is enabled (see REG[0014h] bits 11-8).

Table 10-6: Parallel Bypass Chip Select Mode

REG[0014h] bit 3	Chip Select Mode	SCS#	CS#
Ob	SCS# Mode	Bypassed to LCD I/F	Memory/Register
1b	CS# Mode	1 input	Memory/Register
10		0 input	Bypassed to LCD I/F

bit 0

Power Save Mode Enable

This bit controls the state of the software initiated power save mode. When power save mode is disabled, the S1D13748 is operating normally. When power save mode is enabled, the S1D13748 is in a power efficient state.

When this bit = 0b, power save mode is disabled.

When this bit = 1b, power save mode is enabled (default).

Note

Before enabling power save mode, the Display Output Port must be turned off (REG[0202h] bits 12-10 = 000b) and the Memory Controller Idle Status bit (REG[0014h] bit 6) must return a 1b.

REG[0016h] Software Reset Register Default = not applicable Write Only								
			Software Re	eset bits 15-8				
15	14	13	12	11	10	9	8	
			Software Re	eset bits 7-0				
7	6	5	4	3	2	1	0	

bits 15-0

Software Reset bits [15:0] (Write Only)

When any value is written to these bits, all registers except REG[0000h] ~ REG[0018h] and REG[0300h] ~ REG[031Ah] are reset to their default values. A software reset using these bits does not clear the display buffer.

	REG[0018h] System Clock Setting Register Default = 0000h Read/Write									
	n/a									
15	14	13	12	11	10	9	8			
			System Clock Div	ide Select bits 1-0						
7	6	5	4	3	2	1	0			

bits 1-0

System Clock Divide Select bits [1:0]

These bits determine the divide ratio for the system clock. For details on the clock structure, refer to Section 9, "Clocks" on page 65.

Table 10-7: System Clock Divide Ratio Selection

REG[0018h] bits 1-0	System Clock Divide Ratio
00b	1:1
01b	2:1
10b	3:1
11b	4:1

Note

When the System Clock divide ratio is not 1:1 (REG[0018h] bits $1-0 \neq 00b$), odd integer Pixel Clock divide ratios are not supported (see REG[0030h] bits 4-0). For example, if a 2:1 System Clock divide ratio is selected, a Pixel Clock divide ratio of 3:1 is not supported.

Issue Date: 2012/04/26

10.4.3 LCD Interface Configuration Registers

REG[0030h] Default = 000		Clock Setting	g Register				Read/Write	
n/a			Serial Clock Divide Select bits 2-0				oits 2-0	
15	14	13	12	11	10	9	8	
	n/a			Pixel 0	10 9 8 xel Clock Divide Select bits 4-0 8			
7	6	5	4	3	2	1	0	

bits 10-8

Serial Clock Divide Select bits [2:0]

These bits specify the divide ratio for the serial clock. The clock source for the serial clock is the system clock. If LCD1 is not a serial interface type LCD panel (REG[0032h] bits 1-0) or if Serial Port Bypass is enabled (REG[0032h] bit 8 = 1b), these bits are ignored. For details on the clock structure, refer to Section 9, "Clocks" on page 65.

Table 10-8: Serial	Clock Divide	Ratio Selection
--------------------	--------------	-----------------

REG[0030h] bits 10-8	Serial Clock Divide Ratio	REG[0030h] bits 10-8	Serial Clock Divide Ratio
000b	2:1	100b	10:1
001b	4:1	101b	12:1
010b	6:1	110b	14:1
011b	8:1	111b	16:1

bits 4-0

Pixel Clock Divide Select bits [4:0]

These bits specify the divide ratio for the pixel clock. The clock source for the pixel clock is the system clock. When LCD1 is an RGB type panel (REG[0032h] bits 1-0 = 00b), the pixel clock is the same as the shift clock. When LCD1 is a parallel interface type panel (REG[0032h] bits 1-0 = 10b), the pixel clock is used for the parallel data output timing clock. For details on the clock structure, refer to Section 9, "Clocks" on page 65.

REG[0030h] bits 4-0	Pixel Clock Divide Ratio	REG[0030h] bits 4-0	Pixel Clock Divide Ratio
00000b	2:1	10000b	18:1
00001b	3:1	10001b	19:1
00010b	4:1	10010b	20:1
00011b	5:1	10011b	21:1
00100b	6:1	10100b	22:1
00101b	7:1	10101b	23:1
00110b	8:1	10110b	24:1
00111b	9:1	10111b	25:1
01000b	10:1	11000b	26:1
01001b	11:1	11001b	27:1
01010b	12:1	11010b	28:1
01011b	13:1	11011b	29:1
01100b	14:1	11100b	30:1
01101b	15:1	11101b	31:1
01110b	16:1	11110b	32:1
01111b	17:1	11111b	33:1

Table 10-9: Pixel Clock Divide Ratio Selection

Note

When the System Clock divide ratio is not 1:1 (REG[0018h] bits $1-0 \neq 00b$), odd integer Pixel Clock divide ratios are not supported. For example, if a 2:1 System Clock divide ratio is selected, a Pixel Clock divide ratio of 3:1 is not supported.

REG[0032h] L Default = 0000		e Configuratio	n Register				Read/Write
	FPDRDY Polarity Select	FPCS1# Polarity Select					
15	14	13	12	11	10	9	8
FPSHIFT Polarity Select	RGB Interfa	ce Panel Data Bus V	Vidth bits 2-0	n	/a	Panel Inter	ace bits 1-0
7	6	5	4	3	2	1	0
bits 15-10 bit 9	The	erved default value ORDY Polarity		s 00_0000b.			
	Thi Wh	•	olarity of the d	Y signal is not		for RGB type	panels.
bit 8	Thi type Wh	CS1# Polarity S s bit sets the pole panels. en this bit = 01 en this bit = 11	olarity of the L	signal is not re		PCS1#) for para	allel and serial
bit 7	Thi Wh	en this bit $= 0$ t	plarity of the side, all panel inte	erface signals c	RGB type pane change at the ri change at the fa	sing edge of F	PSHIFT.

bits 6-4RGB Interface Panel Data Bus Width bits [2:0]These bits only have an effect when a RGB interface panel is selected (REG[0032h]bits 1-0 = 00b). These bits determine the RGB Interface Panel Data Bus size. Un-usedpins are forced low. For LCD interface pin mapping, see Section 5.5, "LCD Interface PinMapping" on page 29 and Section 15.1, "RGB Interface Data Formats" on page 215.

Table 10-10: RGB Interface Panel Data Bus Width Selection

REG[0032h] bits 6-4	RGB Interface Panel Data Bus Width (LCD1)
000b	9-bit
001b	12-bit
010b	16-bit
011b	18-bit
100b	24-bit
101b ~ 111b	Reserved

bits 1-0

Panel Interface bits [1:0]

These bits determine the LCD1 interface type. For LCD interface pin mapping, see Section 5.5, "LCD Interface Pin Mapping" on page 29.

REG[0032h] bits 1-0	Mode	LCD1 Panel Interface	LCD2 Panel Interface
00b	1	RGB Interface	
01b	—	Reserved	
10b	2	Parallel Interface (RAM integrated)	LCD Bypass Mode Only
11b	—	Reserved	

Table 10-11: Panel Interface Selection

Page 83

REG[0034h] Default = 000		Command R	egister				Read/Write
LCD Interface Command bits 15-8							
15	14	13	12	11	10	9	8
			LCD Interface C	ommand bits 7-0			
7	6	5	4	3	2	1	0

bits 15-0

LCD Interface Command bits [15:0]

These bits are for parallel/serial interfaces on LCD1 and have no effect on the RGB (TFT) interface signals (see REG[0032h] bits 1-0). These bits form the command register for the LCD1 parallel/serial interfaces. For 8-bit parallel or serial interfaces, only the lower byte is used.

When the LCD interface is busy (REG[0038h] bit 0 = 1b), these bits must not be written. When the LCD interface is not busy (REG[0038h] bit 0 = 0b), the command transfer starts when these bits are written. When the command transfer starts, the FPA0 pin is driven low or high depending on the state of the P/C Polarity Invert Enable bit (REG[003Ch] bit 7).

Note

If the LCD1 serial data type is set to uWIRE (REG[0054h] bits 7-5 = 10xb), the upper byte of REG[0034h] is used for A[7:0] and the lower byte is used for D[7:0].

REG[0036h] Default = 000		Parameter R	egister				Read/Write
LCD Interface Parameter bits 15-8							
15	14	13	12	11	10	9	8
	•	•	LCD Interface Pa	arameter bits 7-0			•
7	6	5	4	3	2	1	0

bits 15-0

LCD Interface Parameter bits [15:0]

These bits are for parallel/serial interfaces on LCD1 and have no effect on the RGB (TFT) interface signals (see REG[0032h] bits 1-0). These bits form the parameter register for the LCD1 parallel/serial interfaces. For 8-bit parallel or serial interfaces, only the lower byte is used.

When the LCD interface is busy (REG[0038h] bit 0 = 1b), these bits must not be written. When the LCD interface is not busy (REG[0038h] bit 0 = 0b), data transfer starts when these bits are written. When the data transfer starts, the FPA0 pin is driven high or low depending on the state of the P/C Polarity Invert Enable bit (REG[003Ch] bit 7).

Note

If the LCD1 serial data type is set to uWIRE (REG[0054h] bits 7-5 = 10xb), the upper byte of REG[0036h] is used for A[7:0] and the lower byte is used for D[7:0].

REG[0038h] LCD Interface Status Register Default = 0000h										
n/a										
15	14	13	12	11	10	9	8			
			n/a				LCD Interface Status			
7	6	5	4	3	2	1	0			
bit 0	IC	D Interface Sta	tus (Read Only	v)			•			

bit 0

LCD Interface Status (Read Only)

This bit indicates the status of the LCD1 serial/parallel interface. This bit should be read to confirm that the LCD1 serial/parallel interface is not busy before transmitting data to the panel.

When this bit = 0b, the LCD1 serial/parallel interface is not busy (or ready).

When this bit = 1b, the LCD1 serial/parallel interface is busy.

-	REG[003Ah] LCD Interface Frame Transfer Register Default = 0000h Read/Wri										
			n	/a							
15	14	13	12	11	10	9	8				
			n/a				LCD Interface Frame Transfer Trigger				
7	6	5	4	3	2	1	0				
	I CI					1					

bit 0

LCD Interface Frame Transfer Trigger

This bit is only for parallel interface panels on LCD1 and has no effect for RGB type panels (see REG[0032h] bits 1-0). This bit is the trigger to transfer 1 frame of data to the LCD interface.

When this bit is set to 1b and the LCD interface is busy (REG[0038h] bit 0 = 1b), the frame transfer request is ignored. Once the LCD interface is no longer busy, this bit is cleared without transferring any data.

When this bit is set to 1b and the LCD interface status is not busy (REG[0038h] bit 0 =0b), 1 frame of data is transferred to the LCD interface. When the data transfer is finished, this bit is cleared automatically.

Default = 000		e Transfer Se	tting Register				Read/Write
		r	ı/a			Rese	erved
15	14	13	12	11	10	9	8
P/C Polarity Invert Enable			r	n/a			Reserved
7	6	5	4	3	2	1	0
bits 9-8		erved default value	for these bits i	s 00b.			

Parameter/Command Polarity Invert Enable
These bits are for parallel/serial interfaces on LCD1 and have no effect on the RGB (TFT) interface signals (see REG[0032h] bits 1-0). During an LCD Interface Command (REG[0034h]) or LCD Interface Parameter (REG[0036h]) transfer, FPA0 is driven high or low based on the setting of this bit. When LCD1 is a ND-TFD 9-bit panel (REG[0054h] bits 7-5 = 001b), this bit determines the MSB of the 9 bit data on FPSO.

Table 10-12: Parameter/Command Invert Setting

REG[003Ch] bit 7	FPA0 Signal Output					
	Command	Parameter				
Ob	Low	High				
1b	High	Low				

bit 0

bit 7

Reserved

The default value for this bit is 0b.

REG[0040h] LCD1 Horizontal Total Register Default = 0001h Read/Write										
n/a										
15	14	13	12	11	10	9	8			
n/a			LCD	1 Horizontal Total bit	s 6-0					
7	6	5	4	3	2	1	0			

bits 6-0

LCD1 Horizontal Total bits [6:0]

These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected.

These bits specify the Horizontal Total (FPLINE period) for LCD1, in 8 pixel resolution. The Horizontal Total is the sum of the Horizontal Display Period and the Horizontal Non-Display Period. These bits must not be set to 0.

REG[0040h] bits 6-0 = (Horizontal Total in pixels $\div 8$) - 1

Note

These bits must be programmed such that the following are valid. REG[0040h] bits 6-0 > 0HT \geq HDP + HNDP

	REG[0042h] LCD1 Horizontal Display Period Register Default = 0000h Read/Write									
n/a										
15	14	13	12	11	10	9	8			
			LCD1 Horizontal Dis	splay Period bits 7-0						
7	6	5	4	3	2	1	0			

bits 8-0

LCD1 Horizontal Display Period bits [8:0]

These bits specify the Horizontal Display Period for LCD1, in 2 pixel resolution. The Horizontal Display Period must be less than the Horizontal Total to allow for sufficient Horizontal Non-Display Period.

REG[0042h] bits 8-0 = (Horizontal Display Period in pixels \div 2) - 1

Note

- 1. These bits must be programmed such that the following formula is valid. $HT \ge HDP + HNDP$
- 2. For Parallel interface panels (see REG[0032h] bits 1-0), the following formula must be valid.

HDP x VDP \ge 40 pixels

	REG[0044h] LCD1 Horizontal Display Period Start Position Register Default = 0000h Read/Write											
		LCD1 Horizontal Display Period bits 9-8										
15	14	13	12	11	10	9	8					
			LCD1 Horizontal Dis	splay Period bits 7-0								
7 6 5 4 3 2 1 0												

bits 9-0

LCD1 Horizontal Display Period Start Position bits [9:0]

These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected.

These bits specify the Horizontal Display Period Start Position for LCD1, in pixels. REG[0044h] bits 9-0 = Horizontal Display Period Start Position in pixels - 9

REG[0046h] Default = 000		ntal Pulse Reg	ister				Read/Write				
			n/	a							
15	14	13	12	11	10	9	8				
LCD1 Horizontal Pulse Polarity		LCD1 Horizontal Pulse Width bits 6-0									
7	6	5	4	3	2	1	0				
bits 6-0	no e This Whe Whe LCI The no e The	ese bits are for effect when a p is bit selects the en this bit = 0b en this bit = 1b D1 Horizontal 1 ese bits are for effect when a p se bits specify els. REG[0046h] b	parallel interface polarity of the polarity of the polarity of the polarity of the polarity of the polarity of the parallel interface the pulse width	ace panel is se e horizontal sy l sync signal (l sync signal (ts [6:0] ce panels only ace panel is se h of the horizo	elected. nc signal (FPL FPLINE) is ac FPLINE) is ac (REG[0032h elected. ontal sync signa	- LINE). tive low. (def <i>a</i> tive high. a] bits 1-0 = 0 al (FPLINE) fo	ult) Db) and have				

	REG[0048h] LCD1 Horizontal Pulse Start Position Register												
Default = 00	00h			Read/Write									
			LCD1 Horizontal Pulse Start Position bits 9-8										
15	14	13	12	11	10	9	8						
		L	CD1 Horizontal Pulse	e Start Position bits 7	-0	•	•						
7	6	5	4	3	2	1	0						
hite 0.0	ita 0.0 LCD1 Havingertal Pulse Start Decition hita [0:0]												

bits 9-0

LCD1 Horizontal Pulse Start Position bits [9:0]

These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected.

These bits specify the start position of the horizontal sync pulse (FPLINE) for LCD1, in pixels.

REG[0048h] bits 9-0 = FPFRAME edge to FPLINE edge in pixels - 1

	REG[004Ah] LCD1 Vertical Total Register Default = 0000h Read/Write										
	n/a										
15	14	13	12	11	10	9	8				
			LCD1 Vertica	l Total bits 7-0							
7	6	5	4	3	2	1	0				

bits 9-0

LCD1 Vertical Total bits [9:0]

These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected.

These bits specify the Vertical Total (FPFRAME period) for LCD1, in lines. The Vertical Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. REG[004Ah] bits 9-0 = Vertical Total in lines - 1

	REG[004Ch] LCD1 Vertical Display Period Register Default = 0000h Read/Write										
		LCD1 Vertical Disp	LCD1 Vertical Display Period bits 9-8								
15	14	13	12	11	10	9	8				
			LCD1 Vertical Disp	olay Period bits 7-0							
7	6	5	4	3	2	1	0				

bits 9-0

LCD1 Vertical Display Period bits [9:0]

These bits specify the Vertical Display period for LCD1, in lines. The Vertical Display Period must be less than the Vertical Total to allow for a sufficient Vertical Non-Display period.

REG[004Ch] bits 9-0 = Vertical Display Period in lines - 1

Note

For Parallel interface panels (see REG[0032h] bits 1-0), the following formula must be valid.

HDP x VDP \ge 40 pixels

	REG[004Eh] LCD1 Vertical Display Period Start Position Register Default = 0000h Read/Write										
		LCD1 Vertical Display Period Start Position bits 9-8									
15	14	13	12	11	10	9	8				
		LCD1	Vertical Display Pe	riod Start Position bi	ts 7-0						
7	7 6 5 4 3 2 1 0										

bits 9-0

LCD1 Vertical Display Period Start Position bits [9:0]

These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected.

These bits specify the Vertical Display Period Start Position for LCD1, in lines. REG[004Eh] bits 9-0 = Vertical Display Period Start Position in lines Page 89

	REG[0050h] LCD1 Vertical Pulse Register Default = 0000h Read/Write										
			n	/a							
15	14	13	12	11	10	9	8				
LCD1 Vertical Pulse Polarity		n/a		Reserved	LCD1	Vertical Pulse Width	bits 2-0				
7	6	5	4	3	2	1	0				
bit 7LCD1 Vertical Pulse PolarityThese bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected.This bit selects the polarity of the vertical sync signal (FPFRAME). When this bit = 0b, the vertical sync signal (FPFRAME) is active low. (default) When this bit = 1b, the vertical sync signal (FPFRAME) is active high.											
bit 3		erved default value	for this bit is 0	ıb.							
bits 2-0 LCD1 Vertical Pulse Width bits [2:0] These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected. These bits specify the pulse width of the vertical sync signal (FPFRAME), in lines. REG[0050h] bits 2-0 = Vertical Pulse Width in lines - 1											

REG[0052h] Default = 00		al Pulse Start I	Position Regis	ster			Read/Write	
n/a							LCD1 Vertical Pulse Start Position bits 9-8	
15	14	13	12	11	10	9	8	
	•		CD1 Vertical Pulse	Start Position bits 7-0)		•	
7	6	5	4	3	2	1	0	
$hit_{0} = 0.0$	IC	D1 Vartical Du	laa Start Dagiti	on hits [0.0]		•		

bits 9-0

LCD1 Vertical Pulse Start Position bits [9:0]

These bits are for RGB Interface panels only (REG[0032h] bits 1-0 = 00b) and have no effect when a parallel interface panel is selected.

These bits specify the start position of the vertical sync pulse (FPFRAME), in lines. REG[0052h] bits 9-0 = Vertical Pulse Start Position in lines

	REG[0054h] LCD1 Serial Interface Setting Register Default = 0001h Read/Write										
n/a											
15	14	13	12	11	10	9	8				
LCD	1 Serial Data Type bi	ts 2-0	LCD1 Serial Data Direction	n	la	LCD1 Serial Clock Phase	LCD1 Serial Clock Polarity				
7	6	5	4	3	2	1	0				
1.:4 0	:t 9 December d										

bit 8

Reserved

The default value for this bit is 0b.

bits 7-5 LCD1 Serial Data Type bits [2:0] These bits determine the LCD1 Serial Data Type. For AC timing information, see Section 7.4.2, "LCD1 ND-TFD, LCD1 8-Bit Serial Interface Timing" on page 54, Section 7.4.3, "LCD1 ND-TFD, LCD1 9-Bit Serial Interface Timing" on page 55, and Section 7.4.4, "LCD1 uWire Serial Interface Timing" on page 56.

REG[0054h] bits 7-5	LCD1 Serial Data Type
000b (default)	ND-TFD 4 pins (8-bit Serial)
001b	ND-TFD 3 pins (9-bit Serial)
010b ~ 011b	Reserved
10xb	uWire (16-bit Serial)
110b ~ 111b	Reserved

Note

For Mode 2 configurations (see REG[0032h] bits 1-0), these bits must be set to 000b.

- bit 4 LCD1 Serial Data Direction This bit determines the LCD1 serial data direction. For details on timing, see Section 7.4,
 - "LCD Interface Timing" on page 52 and refer to the appropriate serial interface. When this bit = 0b, the msb (most significant bit) is first. (default) When this bit = 1b, the lsb (least significant bit) is first.
- bit 1 LCD1 Serial Clock Phase This bit specifies the serial clock phase. For a summary of the serial clock phase and polarity settings, see Table 10-14: "LCD1 Serial Clock Polarity and Phase Selection," on page 92. For details on timing, see Section 7.4, "LCD Interface Timing" on page 52 and refer to the appropriate serial interface.

Page 91

bit 0

LCD1 Serial Clock Polarity

This bit determines the LCD1 serial clock polarity. For a summary of the serial clock phase and polarity settings, see Table 10-14: "LCD1 Serial Clock Polarity and Phase Selection," on page 92. For details on timing, see Section 7.4, "LCD Interface Timing" on page 52 and refer to the appropriate serial interface.

Table 10-14: LCD1 Serial Clock Polarity and Phase Selection

REG[0054h] bit 1	REG[0054h] bit 0	Serial Data Output Changes	Idling Status of Clock
0b	0b	Falling edge of Serial Clock	Low
00	1b	Rising edge of Serial Clock	High
1b	0b	Rising edge of Serial Clock	Low
10	1b	Falling edge of Serial Clock	High

REG[0056h] LCD1 Parallel Interface Setting Register							
Default = 040	0h						Read/Write
FPVIN1 Pin Type Select	FPVIN1 Polarity		n/a		FPVIN1 Pull-down Control	Reserved	
15	14	13	12	11	10	9	8
LCD1 VSYNC input Enable	LCD1 Parallel Type Select	LCD1 Parallel Cor Pin bi			LCD1 Parallel Dat	a Format bits 3-0	
7	6	5	4	3	2	1	0
bit 15	bit 15FPVIN1 Pin Type SelectThis bit selects the FPVIN1 pin type. When an output is selected, the vertical synchroniz- ing signal is output from FPVIN1. When this bit = 0b, FPVIN1 is configured as an input. (default) When this bit = 1b, FPVIN1 is configured as an output.						
bit 14	This This Who	FPVIN1 Polarity This bit effects both the input vertical sync and output vertical sync (REG[0056h] bit 15). This bit controls the polarity of FPVIN1. When this bit = 0b, FPVIN1 is active low (default) When this bit = 1b, FPVIN1 is active high					
bit 10	FPVIN1 Pull-down Control When FPVIN1 is configured as an input (REG[0056h] bit 15 = 0b), this bit controls the internal pull-down resistance on FPVIN1. When this bit = 0b, the pull-down resistance is disabled. When this bit = 1b, the pull-down resistance is enabled. (default)						
bits 9-8		Reserved The default value for these bits is 00b.					

bit 7	LCD1 VSYNC Input Enable This bit is not used for RGB t synced to an external VSYNC	ype panels. This bit allows the transfer of the constant of th	of a frame of data			
		data output is independent of an externa data output is synchronous with an externa				
	Note					
	of data. If the FPVIN1	of data. If the FPVIN1 period is shorter than the time it takes to transfer a complete frame to the panel, the current frame transfer is interrupted at the next FPVIN1				
	LCD1 VSYNC Input En	 Once a manual frame transfer has been initiated (REG[003Ah] bit 0 = 1b), the LCD1 VSYNC Input Enable bit must not be disabled before the next VSYNC signal has occurred or the LCD interface will always be busy and subsequent transfers will 				
bit 6	LCD1 Parallel Type Select					
	This bit determines the LCD1					
	When this bit $= 0b$, the parallel					
	When this bit $= 1b$, the parallel	el interface is type 68.				
bits 5-4	LCD1 Parallel Command/Par					
		PDAT[17:0] pins are used for the paralle	el panel com-			
	mand/parameter.					
	Table 10-15: LCD1 Parallel	Command/Parameter Pin Mapping				
	REG[0056h] bits 5-4	Command/Parameter Pin Mapping]			
	00b (default)	FPDAT[15:0]	1			
	01b	FPDAT[17:10],[8:1]]			
	10b	FPDAT[17:13],[11:1]				

11b

Reserved

bits 3-0LCD1 Parallel Data Format bits [3:0]These bits are not used for RGB Type Panels (REG[0032h] bits 1-0 = 00b). These bits
determine the LCD1 parallel data format. For further information on available parallel
data formats, see Section 15.2, "Parallel Interface Data Formats" on page 216.

Table 10-16: LCD1 Parallel Data Format Selection

REG[0056h] bits 3-0	LCD1 Parallel Data Format			
	Data Bus Width	Data Format		
0000b (default)	8-bit	RGB = 3:3:2 (1 cycle / pixel)		
0001b	0 bit	RGB = 4:4:4 (3 cycles / 2 pixels)		
0010b	16-bit	RGB = 8:8:8 (3 cycles / 2 pixels)		
0011b	8-bit	RGB = 8:8:8 (3 cycles / pixel)		
0100b	24-bit	RGB = 8:8:8 (1 cycle / pixel)		
0101b	16-bit	RGB = 4:4:4 (1 cycle / pixel)		
0110b	10-51	RGB = 5:6:5 (1 cycle / pixel)		
0111b	18-bit	RGB = 6:6:6 (1cycle / pixel)		
1xxxb	8-bit	RGB = 5:6:5 (2 cycles / pixel)		

REG[0058h] through REG[0064h] are Reserved

These registers are Reserved and should not be written.

Default = 000	0h						Read/Write
			LCD1 Vsync V	Width bits 15-8			
15	14	13	12	11	10	9	8
			LCD1 Vsync P	osition bits 7-0			•
7	6	5	4	3	2	1	0
		G[0056h] bit 1	•	bits determine	VSYNC) is co the width of VS /idth ÷ 2	U	L .
oits 7-0	The RE	ese bits are use	•	•	VSYNC) is co the position of	U	1

REG[006Ah] is Reserved

This register is Reserved and should not be written.

REG[0070h] through REG[0074h] are Reserved

These registers are Reserved and should not be written.

REG[00FEh] is Reserved

This register is Reserved and should not be written.

10.4.6 Host Interface Registers

REG[0180h] Default = 000	Host Interface 0h	Configuration	on Register				Read/Write
HWC Software Reset (WO)		n/a					
15	14	13	12	11	10	9	8
Host Inter			HWC Data Bus Swap Enable	HWC Mirror Enable	HWC Rotation Mc	ode Select bits 1-0	HWC Module Enable
7	6	5	4	3	2	1	0
	Writ Note If	ting a 1b to thi	s bit initiates a et of the HWC	ardware effect. a software rese c is performed			ule is disabled
bits 7-5	Host Interface Data Type Select bits [2:0]These bits only have an effect when the HWC module is enabled, REG[0180h] bit 0 =1b. These bits select the data format that will be input from the Host though the Host interface Write Controller (HWC). For details on each data format, see Section 12.1, "Host Interface Input Formats" on page 165.Table 10-17: Host Interface Data Type SelectionREG[0180h] bits 7-5Data Type						
	00	00b (default)		YU۱	4:2:2 Format 1		1

REGIOTOON DILS 7-5	Data Type
000b (default)	YUV 4:2:2 Format 1
001b	YUV 4:2:2 Format 2 (Separate Y, UV)
010b	YUV 4:2:0 Format 1
011b	YUV 4:2:0 Format 2 (Separate Y, UV)
100b	RGB 5:6:5
101b - 111b	Reserved

Page	97

bit 4	This bit controls how the Host Host. When this bit = 0b, data from t When this bit = 1b, data from t going into the HWC.	then the HWC module is enabled interface Write Controller (HWC the Host goes straight into the HV the Host has the upper and lower Data Bus Swap Selection	C) receives data from the WC.
	REG[0180h] bit 4	Data into the HWC	7
	Ob	DB[15:0]	-
	1b	DB[7:0], DB[15:8]	
bit 3	This bit determines whether a ory writes by the Host interfac tion 14.3, "Memory Access Us When this bit = 0b, Host interf	ten the HWC module is enabled horizontal "mirror" effect is appl e Write Controller (HWC). For fu- sing the HWC" on page 201. face memory writes are not mirro face memory writes are mirrored.	ied to Host interface mem- urther information see Sec- ored.
bits 2-1	1b. These bits select the clocky	t when the HWC module is ena wise rotation applied to Host inter r (HWC). For further information	face memory writes by the

REG[0180h] bits 2-1	Rotation Mode
00b (default)	0° (Normal)
01b	90°
10b	180°
11b	270°

Table 10-19: Rotation Mode Selection

bit 0

HWC Module Enable

This bit controls the Host interface Write Controller (HWC) module. The HWC allows writing a rectangular memory area and supports optional rotation (see REG[0180h] bits 2-1) and mirror (see REG[0180h] bit 3) functions. To allow the Host interface to directly access the memory, this bit must set to 0b.

When this bit = 0b, the HWC module is disabled and memory is accessed directly. When this bit = 1b, the HWC module is enabled and used by the Host for memory writes.

Note

If a software reset of the HWC is performed using REG[0180h] bit 15, the HWC Module is disabled (REG[0180h] bit 0 = 0b).

Default = 000	00h							Read/Write
				Memory Start A	ddress bits 15-8			
15	14		13	12	11	10	9	8
			Me	emory Start Address bi	ts 7-1			Read/Write Cycle
7	6		5	4	3	2	1	0
REG[0184h] Default = 000	-	Start	Address Re	egister 1				Read/Write
Direct Memory Access Mode					n/a			
15	14	1	13	12	11	10	9	8
		n/	'a			Memory Start A	ddress bits 19-16	
7	6		5	4	3	2	1	0
		2.	(REG[018 Section 14	ording to the sel- 0h] bits 2-1) set 3, "Memory A h] must be set b	tings. Example ccess Using th	es for each con e HWC" on pa	nbination are s	
REG[0182h]	bit 0	This Whe	en this bit $=$	e nes whether a m Db, a write opera 1b, a read opera	ation takes pla	ce. (default)	n takes place.	
REG[0184h]	bit 15	If th This Whe Whe	the HWC More bit selects the this bit $= 0$	Access Mode dule is enabled he address mode Db, linear memo 1b, rectangular n	e for direct me ry address mo	mory accesses de is selected.		
		la	ne Memory I	Rectangular Wri ress Width (REC ss mode.				

	REG[0186h] HWC Memory Rectangular Write Address Offset Register Default = 0000h Read/Write						
n/a HWC Memory Rectangular Write Address Offset bits 11-						bits 11-8	
15	14	13	12	11	10	9	8
		HWC Memory Re	ctangular Write Addr	ess Offset bits 7-1			n/a
7	6	5	4	3	2	1	0

bits 11-1

HWC Memory Rectangular Write Address Offset bits [11:1]

These bits only have an effect when the HWC module is enabled, REG[0180h] bit 0 = 1b. These bits determine the memory address offset used by the Host interface Write Controller (HWC) module.

REG[0188h] HWC Memory Rectangular Write Horizontal Size Register Default = 0000h Read/Write								
n/a HWC Memory Rectangu Horizontal Size bits								
15	14	13	12	11	10	9	8	
	HWC Memory Rectangular Write Horizontal Size bits 7-1							
7	6	5	4	3	2	1 0		

bits 9-1

HWC Memory Rectangular Write Horizontal Size bits [9:1]

These bits only have an effect when the HWC module is enabled, REG[0180h] bit 0 = 1b. These bits determine the horizontal size used by the Host interface Write Controller (HWC) module, in pixels.

REG[0188h] bits 9-1 = HWC Memory Rectangular Write Horizontal Size in pixels - 2

	REG[018Ah] HWC Memory Rectangular Write Vertical Size Register Default = 0000h Read/Write								
		HWC Memory Rectangular Write Vertical Size bits 9-8							
15	14	13	12	11	10	9	8		
	HWC Memory Rectangular Write Vertical Size bits 7-0								
7	6	5	4	3	2	1	0		

bits 9-0

HWC Memory Rectangular Write Vertical Size bits [9:0] **These bits only have an effect when the HWC module is enabled, REG[0180h] bit 0 = 1b.** These bits determine the vertical size used by the Host interface Write Controller (HWC) module is enabled (REG[0180h] bit 0 = 1b).

REG[018Ah] bits 9-0 = HWC Memory Rectangular Write Vertical Size in pixels - 1

Note

When the HWC is configured for 90° or 270° write mode (REG[0180h] bits 2-1 = 01b or 11b), these bits must be programmed to an even value.

	pplicable)						Read/Write
				Memory Acces	s Port bits 15-8			
15	14		13	12	11	10	9	8
				Memory Acces	ss Port bits 7-0			
7	6		5	4	3	2	1	0
ts 15-0			•	Port bits [15:0] memory read/	write port for t	he Indirect Ho	st Interface.	
EG[018Eh] H Default = 0000		w Sta	tus Register					Read Only
				1	/a	1	I	1
15	14		13	12	11	10	9	8
	n/a			Memory Access Write Error Raw Status	Memory Access Read Error Raw Status	HWC Overwrite Error Raw Status	HWC Access Timeout Raw Status	HWC Access Complete Ray Status
7	6	1	5	4	3	2	1	0
t 3		Men This mask Whe Whe	nory Access F bit indicates and by the Me n this bit = 01 n this bit = 11	vrite a 1b to RH Read Error Raw the raw status of emory Access I b, the Memory b, the Memory o, the Memory vrite a 1b to RH	v Status (Read of the Memory Read Error Into Access Read I Access Read I	Only) Access Read I errupt Enable I Error interrupt Error interrupt	oit, REG[0190 has not occurr	h] bit 3.
t 2		This mask Whe Whe	bit indicates and by the HV n this bit = 01 n this bit = 11	Error Raw State the raw status of WC Overwrite T o, the HWC Ov o, the HWC Ov	of the HWC O Error Interrupt rerwrite Error rerwrite Error	overwrite Error t Enable bit, Rl interrupt has n interrupt has o	EG[0190h] bit ot occurred.	
t 1		HW0 This	C Access Tim bit indicates	write a 1b to RH neout Raw State the raw status WC Access Tin	us (Read Only of the HWC A) .ccess Timeout		

bit 0HWC Access Complete Raw Status (Read Only)This bit indicates the raw status of the HWC Access Complete interrupt. This bit is not
masked by the HWC Access Complete Interrupt Enable bit, REG[0190h] bit 0.
When this bit = 0b, the HWC Access Complete interrupt has not occurred.
When this bit = 1b, the HWC Access Complete interrupt has occurred.

To clear this bit, write a 1b to REG[0192h] bit 0.

			n	/a				
15	14	13	12	11	10	9	8	
	n/a		Memory Access Write Error Interrupt Enable	Memory Access Read Error Interrupt Enable	HWC Overwrite Error Interrupt Enable	HWC Access Timeout Interrupt Enable	HWC Access Complete Interrupt Enable	
7	6	5	4	3	2	1	0	
bit 4	This indi Whe	Memory Access Write Error Interrupt Enable This bit controls the Memory Access Write Error interrupt. The status of this interrupt is indicated by the Memory Access Write Error Status bit, REG[0192h] bit 4. When this bit = 0b, the Memory Access Write Error interrupt is disabled. When this bit = 1b, the Memory Access Write Error interrupt is enabled.						
bit 3	This indi Wh	Memory Access Read Error Interrupt Enable This bit controls the Memory Access Read Error interrupt. The status of this interrupt is indicated by the Memory Access Read Error Status bit, REG[0192h] bit 3. When this bit = 0b, the Memory Access Read Error interrupt is disabled. When this bit = 1b, the Memory Access Read Error interrupt is enabled.						
bit 2	This cate Whe	HWC Overwrite Error Interrupt Enable This bit controls the HWC Overwrite Error interrupt. The status of this interrupt is indi- cated by the HWC Overwrite Error Status bit, REG[0192h] bit 2. When this bit = 0b, the HWC Overwrite Error interrupt is disabled. When this bit = 1b, the HWC Overwrite Error interrupt is enabled.						
pit 1	This cate Whe	HWC Access Timeout Interrupt Enable This bit controls the HWC Access Timeout interrupt. The status of this interrupt is indi- cated by the HWC Access Timeout Status bit, REG[0192h] bit 1. When this bit = 0b, the HWC Access Timeout interrupt is disabled. When this bit = 1b, the HWC Access Timeout interrupt is enabled.						
oit 0	This cate Whe	C Access Consistent Construction C Access Consistent C by the HWC en this bit = 0 ben this bit = 1 b	HWC Access Access Comp , the HWC Ac	ss Complete in dete Status bit, ccess Complete	REG[0192h] interrupt is di	bit 0. sabled.	errupt is indi-	

	0h						Read/Write
			n	/a			
15	14	13	12	11	10	9	8
	n/a		Memory Access Write Error Status	Memory Access Read Error Status	HWC Overwrite Error Status	HWC Access Timeout Status	HWC Access Complete Statu
7	6	5	4	3	2	1	0
it 4	Th ma wh Wl Wl	emory Access V is bit indicates usked by the Me en REG[0190h hen this bit = 0 hen this bit = 1 clear this bit, v	the status of th emory Access V a] bit $4 = 1b$. b, the Memory b, the Memory	e Memory Acc Write Error Int Access Write I Access Write I	errupt Enable	bit and is only has not occur	available red.
it 3	Th by RE WI	emory Access F is bit indicates the Memory A G[0190h] bit 4 nen this bit = 0 nen this bit = 1 clear this bit x	the status of the ccess Read Err $k = 1b$. b, the Memory b, the Memory	e Memory Acco for Interrupt Er Access Read H Access Read H	hable bit and is Error interrupt	only available	e when
it 2	HV Th the 4 = WI WI	To clear this bit, write a 1b to this bit. HWC Overwrite Error Status This bit indicates the status of the HWC Overwrite Error interrupt. This bit is masked the HWC Overwrite Error Interrupt Enable bit and is only available when REG[0190h 4 = 1b. When this bit = 0b, the HWC Overwrite Error interrupt has not occurred. When this bit = 1b, the HWC Overwrite Error interrupt has occurred.					
	To clear this bit, write a 1b to this bit. HWC Access Timeout Status This bit indicates the status of the HWC Access Timeout interrupt. This bit is mass the HWC Access Timeout Interrupt Enable bit and is only available when REG[019 4 = 1b. When this bit = 0b, the HWC Access Timeout interrupt has not occurred. When this bit = 1b, the HWC Access Timeout interrupt has occurred.						

bit 0HWC Access Complete Status
This bit indicates the status of the HWC Access Complete interrupt. This bit is masked by
the HWC Access Complete Interrupt Enable bit and is only available when REG[0190h]
bit 4 = 1b.
When this bit = 0b, the HWC Access Complete interrupt has not occurred.
When this bit = 1b, the HWC Access Complete interrupt has occurred.

To clear this bit, write a 1b to this bit.

REG[0194h] Default = 000	-	angular Write	Address Offs	et Register			Read/Write
	n	/a	Memory Rectangular Write Address Offset bits 11-8				
15	14	13	12	11	10	9	8
	Memory Rectangular Write Address Offset bits 7-1						n/a
7	6	5	4	3	2	1	0

bits 11-1

Memory Rectangular Write Address Offset bits [11:1]

These bits specify the memory address offset, in bytes, used for rectangular memory writes when the HWC module is disabled (REG[0180h] bit 0 = 0b and REG[0184h] bit 15 = 1b).

REG[0194h] bits 11-0 = memory rectangular write address offset in bytes - 2

	REG[0196h] Memory Rectangular Write Address Width Register Default = 0000h Read/Write						
n/a Memory Rectangular Write Address Width bits 11-8						s 11-8	
15	14	13	12	11	10	9	8
	Memory Rectangular Write Address Width bits 7-1						
7	6	5 4 3 2 1					0

bits 11-1

Memory Rectangular Write Address Width bits [11:1]

These bits specify the memory address width, in bytes, used for rectangular memory writes when the HWC module is disabled (REG[0180h] bit 0 = 0b and REG[0184h] bit 15 = 1b).

REG[0196h] bits 11-1 = memory rectangular write address width in bytes - 2

Note

The horizontal size of the source image for PIP1 Window and PIP2 Window must be an even number (REG[0196h] bit 1 = 0b).

	REG[0198h] VOUT Configuration Register Default = 0000h Read/Write								
	VOUT Output	t Rate bits 3-0		n/a		VOUT Delay Control bits 9-8			
15	14	13	12	11	10	9	8		
	VOUT Delay Control bits 7-0								
7	7 6 5 4 3 2 1 0						0		

bits 15-12

bits 9-0

VOUT Output Rate bits [3:0]

These bits are only valid when a RGB interface panel is selected for LCD1 (REG[0032h] bits 1-0 = 00b). If a RAM integrated panel is selected, VOUT has no output.

These bits control the frequency of VOUT which outputs the state of the LCD VSYNC signal (on the FPFRAME LCD interface pin) to the Host interface. For further information on VOUT, refer to Section 14.5, "Host Interface VSYNC Output" on page 213.

REG[0198h] bits 15-12	VOUT Output Rate					
0000b (default)	No Output					
0001b	Every VSYNC is output					
0010b	1 VSYNC is output for every 2 LCD-VSYNC					
0011b	1 VSYNC is output for every 3 LCD-VSYNC					
0100b	1 VSYNC is output for every 4 LCD-VSYNC					
•	•					
•	•					
•	•					
1111b	1 VSYNC is output for every 15 LCD-VSYNC					

Note

The VOUT polarity is the same as the FPFRAME polarity (see REG[0050h] bit 7).

VOUT Delay Control bits [9:0]

These bits specify the number of lines delayed from VSYNC for LCD interface.

REG[0198h] bits 9-0	VOUT Delay
000h (default)	No Delay
001h	1 Line
002h	2 Lines
003h	3 Lines
•	•
•	•
•	•
3FFh	1023 Lines

Table 10-21: VOUT Delay Selection

REG[019Ah] is Reserved

This register is Reserved and should not be written.

10.4.7 Display Configuration Registers

Default = 0000	Dh						Read/Write
			n,	/a			
15	14	13	12	11	10	9	8
LCD Software Reset (WO)	n/a	LCD-LUT Bypass Enable	PIP2-LUT Bypass Enable	s n/a Reserved		Reserved	
7	6	5	4	3	2	1	0
bit 7	Thi Wri Wri	C	a software rese s bit has no ha s bit performs	et of the LCD rdware effect		module.	
bit 5	Thi out Wh		whether the LC	T is used.	ed for gamma c l.	control of the L	CD display.
			•		he LCD-LUT	is bypassed or	the display is
bit 4	Thi: Wh	2-LUT Bypass s bit controls w en this bit = 0t en this bit = 1t	whether the PIP o, the PIP2-LU	T is used.	ed for gamma c	ontrol of the P	IP2 window.
bit 1		Reserved The default value for this bit is 0b.					
bit 0		Reserved The default value for this bit is 0b.					

REG[0202h] Default = 000		Setting Regi	ster 1				Read/Write
Active L	CD Port Status bits 2	2-0 (RO)	LCD	Output Port Select bi	ts 2-0	Software Video Invert	Display Blank
15	14	13	12	11	10	9	8
n/a	Layer Mode S	Select bits 1-0	Main Display Mode Select	n/a	PIP2 Window Display Enable	PIP1 Window Display Enable	Main Window Display Enable
7	6	5	4	3	2	1	0

bits 15-13

Active LCD Port Status bits [2:0] (Read Only)

These bits indicate which display output port is active. Confirm that the desired port is active before sending any commands, parameters, or image data to the port.

Note

These bits are read only and are only changed using the LCD Output Port Select bits (REG[0202h] bits 12-10).

Table 10-22: Active LCD Port	Status
------------------------------	--------

REG[0202h] bits 15-13	Active LCD Port
000b (default)	All Off
001b	LCD1
010b ~ 111b	Reserved

bits 12-10

LCD Output Port Select bits [2:0]

These bits specify the valid display output port. Changes to these bits take effect after the end of the current frame.

Table 10-23: LCD Output Port Selection

REG[0202h] bits 12-10	LCD Output Port
000b (default)	All Off
001b	LCD1
010b ~ 111b	Reserved

bit 9

Software Video Invert

This bit determines whether the RGB type panel data outputs (GPIO[23:18], FPDAT[17:0]) are inverted or left unchanged (normal). This bit has an effect both when the display is active and when the display is blanked (see REG[0202h] bit 8). For a summary, see Table 10-24: "LCD Interface Data Output Selection," on page 107. When this bit = 0b, the panel data output is left unchanged (normal). When this bit = 1b, the panel data output is inverted. bit 8

Display Blank

This bit blanks the display of RGB type panels by disabling the display pipe and forcing all data outputs (GPIO[23:18], FPDAT[17:0]) low (or high).

When this bit = 0b, the display is active.

When this bit = 1b, display is blanked and all data outputs are forced low or high based on the setting of the Software Video Invert bit (REG[0202h] bit 9).

REG[0202h] bit 8	REG[0202h] bit 9	LCD Interface Data Output
Ob	0b	Normal
	1b	Inverted
1b	0b	Force low
10	1b	Force high

Note

For details on which pins are affected, see Table 5-9: "LCD Interface Pin Mapping," on page 29.

bits 6-5 Layer Mode Select bits [1:0] These bits select the order that the layers are shown on the display area. Any part of the display area that does not have a Main or PIP window covering it, is automatically filled with the Background Color (see REG[0206h]). The possible layer combinations are as follows.

REG[0202h] bits 6-5	00b	01b	10b	11b	
Window Layering	Background	Background	Background	Background	
	PIP2	Main	PIP1	Main	
	PIP1	PIP2	PIP2	PIP1	
	Main	PIP1	Main	PIP2	

Note

The Main Layer has an optional second window that is available when the Main Layer Display Mode Select bit is set to 1b (REG[0202h] bit 4 = 1b). However, the Main windows may not overlap and have certain restrictions that must be observed. For details, refer to Figure 13-3: "Main Layer Restrictions," on page 173.

bit 4	Main Layer Display Mode Select The Main Layer can consist of two windows, Main1 and Main2 (see Section 13.1, "Main Layer" on page 172). This bit selects the number of windows that are displayed on the Main Layer. When two main windows are selected, the Main windows may not overlap and have certain restrictions that must be observed. For details, refer to Figure 13-3: "Main Layer Restrictions," on page 173. When this bit = 0b, the Main layer includes the Main1 window only. When this bit = 1b, the Main layer includes Main1 window and Main2 window.
bit 2	PIP2 Window Display Enable This bit controls whether the PIP2 window is displayed. When this bit = 0b, the PIP2 window is disabled. When this bit = 1b, the PIP2 window is enabled.
	 When the parallel panel interface is selected, at least one window (Main, PIP1, or PIP2) must be enabled or the frame transfer cannot be completed. The PIP2-LUT can be programmed only when the PIP2 window is disabled (REG[0202h] bit 2 = 0b) or when the LCD Output Port is set to "All Off" (REG[0202h] bits 12-10 = 000b).
bit 1	PIP1 Window Display EnableThis bit controls whether the PIP1 window is displayed.When this bit = 0b, the PIP1 window is disabled.When this bit = 1b, the PIP1 window is enabled.
	Note When the parallel panel interface is selected, at least one window (Main, PIP1, or PIP2) must be enabled or the frame transfer cannot be completed.
bit 0	Main Window Display Enable This bit controls whether the Main window is displayed. When this bit = 0b, the Main window is disabled. When this bit = 1b, the Main window is enabled.
	Note When the parallel panel interface is selected, at least one window (Main, PIP1, or PIP2)

must be enabled or the frame transfer cannot be completed.
	n	/a		Alpha Blend 4 Key	Alpha Blend 3 Key	Alpha Blend 2 Key	Alpha Blend 1 Key
15	14	13	12	Color Enable 11	Color Enable 10	Color Enable 9	Color Enable 8
Alpha Blend Mode Select		n/	a	1	PIP2 Transparency Enable	PIP1 Transparency Enable	n/a
7	6	5	4	3	2	1	0
bit 11	Thi Mai Wh	ha Blend 4 Key s bit controls th in Layer is on t en this bit = 0b en this bit = 1b	ne Alpha Blen op of the PIP , the Alpha Bl	d 4 key color. Layers, REG[(lend 4 key colo	0202h] bits 6-5 or is disabled.		
bit 10	Thi Mai Wh	ha Blend 3 Key s bit controls th in Layer is on t en this bit = 0b en this bit = 1b	ne Alpha Blen op of the PIP , the Alpha Bl	d 3 key color. Layers, REG[(lend 3 key colo	0202h] bits 6-5 or is disabled.	•	
bit 9	Thi Mai Wh	ha Blend 2 Key s bit controls th in Layer is on t en this bit = 0b en this bit = 1b	he Alpha Blen op of the PIP , the Alpha Bl	d 2 key color. Layers, REG[(lend 2 key colo	0202h] bits 6-5 or is disabled.	•	
bit 8	Thi Mai Wh	ha Blend 1 Key s bit controls th in Layer is on t en this bit = 0b en this bit = 1b	ne Alpha Blen op of the PIP , the Alpha Bl	d 1 key color. Layers, REG[(lend 1 key colo	0202h] bits 6-5 or is disabled.	•	
bit 7	Thi Wh Wh PIP dow bler do r alph	ha Blend Mode s bit selects wh en this bit = 0b en this bit = 1b 1 and PIP2 wir 7 containing the not overlap but na blend color, nd key color sir	ich windows a , alpha blendi , alpha blendi ndows overlap e selected alph specified alph are overlappe the PIP1 or PI	ng is performe ng is performe each other and a blend key co a blend setting d by the active P2 window wi	d on the Main d on the PIP1 d are overlappe olor, the PIP1 a g. However, if t e Main window ill "show throu	and PIP2 wind ed by the active and PIP2 winde he PIP1 and PI v containing the	ows. If the e Main win- ows are alpha IP2 windows e selected

bit 2	PIP2 Transparency Enable This bit controls the PIP2 Transparency. When this bit = 0b, the PIP2 Transparency is disabled. When this bit = 1b, the PIP2 Transparency is enabled.
	 When the PIP2 Transparency is enabled, the vertical and horizontal scaling filters should be disabled (REG[02A0h] bit 5 = 0b and bit 1 = 0b). PIP2 Transparency affects only the window layers underneath the PIP2 window and has no effect on the background color. For example, if the PIP2 window has transparency enabled, with a key color selected but nothing underneath, the background color will not show through and the key color will be visible.
bit 1	PIP1 Transparency EnableThis bit controls the PIP1 Transparency.When this bit = 0b, the PIP1 Transparency is disabled.When this bit = 1b, the PIP1 Transparency is enabled.
	 When the PIP1 Transparency is enabled, the vertical and horizontal scaling filters should be disabled (REG[0260h] bit 5 = 0b and bit 1 = 0b). PIP1 Transparency affects only the window layers underneath the PIP1 window and has no effect on the background color. For example, if the PIP1 window has transparency enabled, with a key color selected but nothing underneath, the background color will not show through and the key color will be visible.
bit 0	Reserved The default value for this bit is 0b

REG[0206h]	Background (Color Setting	Register				
Default = 000	0h						Read/Write
	Back	ground Color Red bi	ts 4-0		Backgr	ound Color Green	bits 5-3
15	14	13	12	11	10	9	8
Backg	round Color Green b	its 2-0		Back	ground Color Blue bits	s 4-0	
7	6	5	4	3	2	1	0
bits 15-11		kground Color se bits specify	-	-	d to define the l	background c	olor.
bits 10-5		kground Color se bits specify	-	-	sed to define th	e background	l color.
bits 4-0		kground Color se bits specify	-	-	ed to define the	background	color.

REG[0208h Default = 88] Alpha Blend I 88h	Ratio Setting	Register				Read/Write
	Alpha Blend 4 Ra	tio Setting bits 3-0			Alpha Blend 3 Ra	tio Setting bits 3-0	
15	14	13	12	11	10	9	8
	Alpha Blend 2 Ra	tio Setting bits 3-0			Alpha Blend 1 Ra	tio Setting bits 3-0	
7	6	5	4	3	2	1	0

bits 15-12

Alpha Blend 4 Ratio Setting bits [3:0]

These bits only have an effect when the Alpha Blend 4 key color is enabled, REG[0204h] bit 11 = 1b. These bits select the Alpha Blend ratio for the Alpha Blend 4 key color.

REG[0208h] bits 15-12	Alpha Blend Ratio
0000b	0%
0001b	12.5%
0010b	25%
0011b	37.5%
0100b	50%
0101b	62.5%
0110b	75%
0111b	87.5%
1000b	100%
1001b ~ 1111b	Reserved

Table 10-26: Alpha Blend 4 Ratio Selection

bits 11-8

Alpha Blend 3 Ratio Setting bits [3:0]

These bits only have an effect when the Alpha Blend 3 Key Color is enabled, **REG[0204h] bit 10 = 1b.** These bits select the Alpha Blend ratio for the Alpha Blend 3 key color.

REG[0208h] bits 11-8	Alpha Blend Ratio
0000b	0%
0001b	12.5%
0010b	25%
0011b	37.5%
0100b	50%
0101b	62.5%
0110b	75%
0111b	87.5%
1000b	100%
1001b ~ 1111b	Reserved

Table 10-27: Alpha Blend 3 Ratio Selection

bits 7-4Alpha Blend 2 Ratio Setting bits [3:0]These bits only have an effect when the Alpha Blend 2 key color is enabled,
REG[0204h] bit 9 = 1b. These bits select the Alpha Blend ratio for Alpha Blend 2 key
color.

REG[0208h] bits 7-4	Alpha Blend Ratio
0000b	0%
0001b	12.5%
0010b	25%
0011b	37.5%
0100b	50%
0101b	62.5%
0110b	75%
0111b	87.5%
1000b	100%
1001b ~ 1111b	Reserved

Table 10-28: Alpha Blend 2 Ratio Selection

bits 3-0

Alpha Blend 1 Ratio Setting bits [3:0]

These bits only have an effect when the Alpha Blend 1 Key Color is enabled, **REG[0204h] bit 8 = 1b.** These bits select the Alpha Blend ratio for Alpha Blend 1 key color.

REG[0208h] bits 3-0	Alpha Blend Ratio
0000b	0%
0001b	12.5%
0010b	25%
0011b	37.5%
0100b	50%
0101b	62.5%
0110b	75%
0111b	87.5%
1000b	100%
1001b ~ 1111b	Reserved

Table 10-29: Alpha Blend 1 Ratio Selection

REG[020Ch] Default = 000	PIP1 Window Oh	Transparenc	y Key Color F	Register			Read/Write
	PIP1 Window T	ransparency Key Co	lor Red bits 4-0		PIP1 Window Tra	ansparency Key Col	or Green bits 5-3
15	14	13	12	11	10	9	8
PIP1 Window Tr	ansparency Key Col	or Green bits 2-0		PIP1 Window T	ransparency Key Co	lor Blue bits 4-0	
7	6	5	4	3	2	1	0
bits 15-11	PIP	1 Window Tra	nsparency Key	Color Red bit	ts [4:0]		

These bits only have an effect when the PIP1 transparency is enabled, REG[0204h] bit 1 = 1b. These bits specify the 5-bit red component used to define the PIP1 window transparency key color.

bits 10-5	 PIP1 Window Transparency Key Color Green bits [5:0] These bits only have an effect when the PIP1 transparency is enabled, REG[0204h] bit 1 = 1b. These bits specify the 6-bit green component used to define the PIP1 window transparency key color.
bits 4-0	PIP1 Window Transparency Key Color Blue bits [4:0] These bits only have an effect when the PIP1 transparency is enabled, REG[0204h] bit 1 = 1b. These bits specify the 5-bit blue component used to define the PIP1 window transparency key color.

Default = 000			/ Key Color F	- 5			Read/Write		
	PIP2 Window T	ransparency Key Col	or Red bits 4-0		PIP2 Window Tra	nsparency Key Colo	or Green bits 5-3		
15	14	13	12	11	10	9	8		
PIP2 Window T	ransparency Key Col	ency Key Color Green bits 2-0 PIP2 Window T				Transparency Key Color Blue bits 4-0			
7	6	5	4	3	2	1	0		
	bit	·	oits specify the		2 transparency ponent used to	,			
bits 10-5	The bit 2	-	ve an effect voits specify the	when the PIP2	bits [5:0] 2 transparency omponent used				
bits 4-0	The	•	we an effect v	when the PIP2	ts [4:0] 2 transparency nponent used to	· · · ·			

Default = 000		lend 1 Key Color Re	ed bits 4-0		Alpha Bler	d 1 Key Color Gree	Read/Write
15	14	13	12	11	10	9	8
Alpha Ble	nd 1 Key Color Gree	en bits 2-0		Alpha Bl	end 1 Key Color Blue	bits 4-0	1
7	6	5	4	3	2	1	0
	The	ese bits only b	nave an effect	its [4:0] when the Alpl	na Blend 1 key	color is enab	oled,
	RE	•	8 = 1b. These	when the Alpl	na Blend 1 key e 5-bit red comp		-

bits 4-0Alpha Blend 1 Key Color Blue bits [4:0]These bits only have an effect when the Alpha Blend 1 key color is enabled,**REG[0204h] bit 8 = 1b.** These bits specify the 5-bit blue component used to define the
Alpha Blend 1 key color.

Default = 0000)h						Read/Write
	Alpha B	llend 2 Key Color Red	bits 4-0		Alpha Bler	nd 2 Key Color Gree	en bits 5-3
15	14	13	12	11	10	9	8
Alpha Bler	nd 2 Key Color Gree	en bits 2-0		Alpha Ble	end 2 Key Color Blue	bits 4-0	
7	6	5	4	3	2	1	0
bits 10-5	Alp	G[0204h] bit 9 bha Blend 2 key bha Blend 2 Key	color.	1	5-bit red comp	oonent used to	define the
	RE	ese bits only ha G[0204h] bit 9 bha Blend 2 key	= 1b. These b	-	v		,

	Alpha Bler	nd 3 Key Color Re	d bits 4-0		Alpha Bler	d 3 Key Color Gree	en bits 5-3
15	14	13	12	11	10	9	8
Alpha Ble	nd 3 Key Color Green	bits 2-0		Alpha Ble	end 3 Key Color Blue	bits 4-0	
7	6	5	4	3	2	1	0
	REG	•	10 = 1b. These	when the Alph bits specify the	•		· ·
oits 10-5	Thes REG	e bits only h	10 = 1b. These	bits [5:0] when the Alph bits specify the	•		-
	•	a Blend 3 Ke	ey Color Blue b	oits [4:0]		color is enab	

Default = 0000	h						Read/Write
	Alpha B	lend 4 Key Color Red	bits 4-0		Alpha Bler	nd 4 Key Color Gree	en bits 5-3
15	14	13	12	11	10	9	8
Alpha Blen	d 4 Key Color Gree	en bits 2-0		Alpha Ble	end 4 Key Color Blue	bits 4-0	
7	6	5	4	3	2	1	0
oits 10-5	Alp The	wha Blend 4 key wha Blend 4 Key ese bits only ha G[0204h] bit 1	y Color Green ave an effect y	when the Alph	e		,
oits 4-0	Alp	ha Blend 4 key ha Blend 4 Key	color.	1	e o-on green et	simponent used	
5115 4-0	The RE	ese bits only has G[0204h] bit 1 bha Blend 4 key	ave an effect v 1 = 1b. These	when the Alph	•		·

	REG[0218h] Main1 Window X Start Position Register Default = 0000h Read/Write										
		Main1 Window X Start Position bits 9-8									
15	14	13	12	11	10	9	8				
	•		Main1 Window X S	tart Position bits 7-0		•					
7	6	5	4	3	2	1	0				

Main1 Window X Start Position bits [9:0]

These bits determine the X start position of the Main1 Window in relation to the origin of the panel, in pixels. For details on configuring the Main Layer, see Section 13.1, "Main Layer" on page 172.

	REG[021Ah] Main1 Window Y Start Position Register Read/Write Default = 0000h Read/Write											
		Main1 Window Y Start Position bits 9-8										
15	14	13	12	11	10	9	8					
			Main1 Window Y St	art Position bits 7-0								
7	6	5	4	3	2	1	0					

bits 9-0

Main1 Window Y Start Position bits [9:0]

These bits determine the Y start position of the Main1 Window in relation to the origin of the panel, in pixels. For details on configuring the Main Layer, see Section 13.1, "Main Layer" on page 172.

REG[0220h] Default = 000	Main2 Windo v 10h	w X Start Posi	ition Register				Read/Write
		n	/a			Main2 Window X S	tart Position bits 9-8
15	14	13	12	11	10	9	8
			Main2 Window X S	tart Position bits 7-0			•
7	6	5	4	3	2	1	0
hits 9-0	Mai	n? Window X	Start Position	hits [9:0]			

Main2 Window X Start Position bits [9:0]

These bits determine the X start position of the Main2 Window in relation to the origin of the panel, in pixels. For details on configuring the Main Layer, see Section 13.1, "Main Layer" on page 172.

	REG[0222h] Main2 Window Y Start Position Register Default = 0000h Read/Write											
n/a Main2 Window Y Start Pos												
15	14	13	12	11	10	9	8					
			Main2 Window Y St	art Position bits 7-0								
7	6	5	4	3	2	1	0					

bits 9-0

Main2 Window Y Start Position bits [9:0]

These bits determine the Y start position of the Main2 Window in relation to the origin of the panel, in pixels. For details on configuring the Main Layer, see Section 13.1, "Main Layer" on page 172.

	REG[0228h] PIP1 Window X Start Position Register Default = 0000h Read/Write											
n/a PIP1 Window X Start Position bits 9-8												
15	14	13	12	11	10	9	8					
			PIP1 Window X Sta	art Position bits 7-0		•	•					
7	6	5	4	3	2	1	0					
1. 0.0												

bits 9-0

PIP1 Window X Start Position bits [9:0] These bits determine the X start position of the PIP1 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

REG[022Ah] PIP1 Window Y Start Position Register Read/Write Default = 0000h Read/Write											
n/a PIP1 Window Y Start Position bit											
15	14	13	12	11	10	9	8				
			PIP1 Window Y Sta	art Position bits 7-0							
7	6	5	4	3	2	1	0				

bits 9-0

PIP1 Window Y Start Position bits [9:0]

These bits determine the Y start position of the PIP1 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

	REG[022Ch] PIP1 Window X End Position Register Default = 0000h Read/Write											
	n/a PIP1 Window X End Position bits 9-8											
15	14	13	12	11	10	9	8					
			PIP1 Window X Er	nd Position bits 7-0		•	•					
7	6	5	4	3	2	1	0					

PIP1 Window X End Position bits [9:0]

These bits determine the X end position of the PIP1 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

Note

This register must be programmed such that the following formula is valid. REG[022Ch] - REG[0228h] ≥ 4

REG[022Eh] Default = 00] PIP1 Window 00h	Y End Posit	ion Register				Read/Write
			n/a			PIP1 Window Y	End Position bits 9-8
15	14	13	12	11	10	9	8
			PIP1 Window Y Er	nd Position bits 7-0		•	•
7	6	5	4	3	2	1	0
bits 9-0	PIP	1 Window Y	End Position bi	ts [9:0]			

These bits determine the Y end position of the PIP1 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

Note

This register must be programmed such that the following formula is valid. REG[022Eh] - REG[022Ah] ≥ 4

	REG[0230h] PIP2 Window X Start Position Register Default = 0000h Read/Write										
		PIP2 Window X Start Position bits 9-8									
15	14	13	12	11	10	9	8				
			PIP2 Window X St	art Position bits 7-0		•					
7	6	5	4	3	2	1	0				

bits 9-0

PIP2 Window X Start Position bits [9:0]

These bits determine the X start position of the PIP2 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

REG[0232h Default = 00] PIP2 Window 00h	Y Start Positi	ion Register				Read/Write
	PIP2 Window Y St	art Position bits 9-8					
15	14	13	12	11	10	9	8
	•	•	PIP2 Window Y Sta	art Position bits 7-0		•	•
7	6	5	4	3	2	1	0
hite 0.0	סוס	Window V S	tout Desition h	4. [0.0]			

PIP2 Window Y Start Position bits [9:0]

These bits determine the Y start position of the PIP2 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

	REG[0234h] PIP2 Window X End Position Register Read/Write Default = 0000h Read/Write											
n/a PIP2 Window X End Po												
15	14	13	12	11	10	9	8					
			PIP2 Window X Er	nd Position bits 7-0								
7	6	5	4	3	2	1	0					

bits 9-0

PIP2 Window X End Position bits [9:0]

These bits determine the X end position of the PIP2 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

Note

This register must be programmed such that the following formula is valid. $REG[0234h] - REG[0230h] \ge 4$

	REG[0236h] PIP2 Window Y End Position Register Read/Write Default = 0000h Read/Write											
		PIP2 Window Y Er	nd Position bits 9-8									
15	14	13	12	11	10	9	8					
	•		PIP2 Window Y Er	nd Position bits 7-0		•						
7	6	5	4	3	2	1	0					

bits 9-0

PIP2 Window Y End Position bits [9:0]

These bits determine the Y end position of the PIP2 Window in relation to the origin of the panel, in pixels. For details on configuring the PIP window(s), see Section 13.2, "PIP Layers" on page 176.

Note

This register must be programmed such that the following formula is valid. $REG[0236h] - REG[0232h] \ge 4$

REG[0238h]	Main1 Windo	w Scroll Start	Address Reg	ister 0						
Default = 000	0h						Read/Write			
Main1 Window Scroll Start Address bits 15-8										
15	14	13	12	11	10	9	8			
Main1 Window Scroll Start Address bits 7-1										
7	6	5	4	3	2	1	0			
REG[023Ah]	Main1 Windo	w Scroll Start	Address Rec	ister 1						
Default = 000							Read/Write			
			n	/a						
15	14	13	12	11	10	9	8			
	r	n/a		М	lain1 Window Scroll S	tart Address bits 19	-16			
7	6	5	4	3	2	1	0			

REG[023Ah] bits 3-0

REG[0238h] bits 15-1 Main1 Window Scroll Start Address bits [19:1]

These bits specify the scroll start address for the Main1 window in the display buffer. To disable scrolling for the Main1 window, set the Main1 Window Scroll Start Address to 0h (REG[0238h] ~ REG[023Ah]) and the Main1 Window Scroll End Address to the maximum value (REG[023Ch] ~ REG[023Eh]). For further information on scrolling, see Section 13.4, "Scroll Buffer" on page 193.

Note

1. The Main1 Window Scroll Start Address must be less than the Main1 Window Scroll End Address.

REG[0238h] ~ REG[023Ah] < REG[023Ch] ~ REG[023Eh]

2. The Main1 Window Display Start Address must be less than the Main1 Window Scroll End Address.

 $REG[0240h] \sim REG[0242h] < REG[023Ch] \sim REG[023Eh]$

efault = FFF	Eh						Read/Write		
			Main1 Window Scrol	End Address bits 1	5-8				
15	14	13	12	11	10	9	8		
Main1 Window Scroll End Address bits 7-1									
7	6	5	4	3	2	1	0		
EG[023Eh]	Main1 Windo	w Scroll End	Address Reg	ister 1					
EG[023Eh] efault = 000		w Scroll End	Address Reg	ister 1			Read/Write		
		w Scroll End		ister 1	·		Read/Writ		
		w Scroll End			10	9	Read/Writ		
efault = 000	Fh 14		-	n/a 11	10 10 1ain1 Window Scroll E	-	8		

REG[023Eh] bits 3-0

REG[023Ch] bits 15-1 Main1 Window Scroll End Address bits [19:1]

These bits specify the scroll end address for the Main1 window in the display buffer. If the Main1 window display address is larger than this address, the Main1 window display address goes to the Main1 window scroll start address. To disable scrolling for the Main1 window, set the Main1 Window Scroll Start Address to 0h (REG[0238h] ~ REG[023Ah]) and the Main1 Window Scroll End Address to the maximum value (REG[023Ch] ~ REG[023Eh]).For further information on scrolling, see Section 13.4, "Scroll Buffer" on page 193.

Note

1. The Main1 Window Scroll Start Address must be less than the Main1 Window Scroll End Address.

 $REG[0238h] \sim REG[023Ah] < REG[023Ch] \sim REG[023Eh]$

2. The Main1 Window Display Start Address must be less than the Main1 Window Scroll End Address.

 $REG[0240h] \sim REG[0242h] < REG[023Ch] \sim REG[023Eh]$

REG[0240h] Default = 000		w Display Stai	rt Address Re	egister 0			Read/Write				
Main1 Window Display Start Address bits 15-8											
15	14	13	12	11	10	9	8				
Main1 Window Display Start Address bits 7-1											
7	6	5	4	3	2	1	0				
REG[0242h] Default = 000		w Display Star	rt Address Re	egister 1			Read/Write				
			n	/a							
15	14	13	12	11	10	9	8				
	n	/a		Mai	in1 Window Display	Start Address bits 19	9-16				
7	6	5	4	3	2	1	0				

REG[0242h] bits 3-0

REG[0240h] bits 15-1 Main1 Window Display Start Address bits [19:1]

These bits specify the start address for the Main1 window image in the display buffer.

Note

The Main1 Window Display Start Address must be less than the Main1 Window Scroll End Address.

 $REG[0240h] \sim REG[0242h] < REG[023Ch] \sim REG[023Eh]$

		ow Line Addres	ss Offset Regi	ister			Deed/Muite			
Default = 000	Un						Read/Write			
n	/a	Main1 Window Vertical Pixel Doubling Enable	Main1 Window Horizontal Pixel Doubling Enable	Main1 Window Line Address Offset bit 11-8						
15	14	13	12	11	10	9	8			
		Main1 Win	dow Line Address O	ffset bit 7-1		•	n/a			
7	6	5	4	3 2 1 0						
1:4 12	4.12 Main 1 Window Vertical Divel Develing Englis									

bit 13

Main1 Window Vertical Pixel Doubling Enable

This bit controls the pixel doubling feature for the vertical dimension, or height, of the Main1 window.

When this bit = 0b, there is no hardware effect.

When this bit = 1b, pixel doubling in the vertical dimension (height) is enabled.

Note

When Main1 Window Vertical Pixel Doubling is enabled (REG[0244h] bit 13 = 1b), the bottom edge of the resulting window must not exceed the bottom edge of the panel (must be less than or equal to the panel VDP). For further information on Main1 window pixel doubling restrictions, see Section 13.1.1, "Main Layer Restrictions" on page 173 and Section 13.1.3, "Main Layer Pixel Doubling" on page 174.

bit 12	Main1 Window Horizontal Pixel Doubling Enable This bit controls the pixel doubling feature for the horizontal dimension, or width, of the Main1 window. When this bit = 0b, there is no hardware effect. When this bit = 1b, pixel doubling in the horizontal dimension (width) is enabled.
	Note When Main1 Window Horizontal Pixel Doubling is enabled (REG[0244h] bit 12 = 1b), the right edge of the resulting window must not exceed the right edge of the panel (must be less than or equal to the panel HDP). For further information on Main1 window pixel doubling restrictions, see Section 13.1.1, "Main Layer Restrictions" on page 173 and Section 13.1.3, "Main Layer Pixel Doubling" on page 174.
bits 11-1	Main1 Window Line Address Offset bits [11:1] These bits specify the offset from the beginning of one display line to the beginning of the next display line in the memory used for the Main1 window. The Line Address Offset can be calculated as follows (valid for both pixel doubling enabled and disabled). REG[0244h] bits 11-0 = Line width in pixels x 16 ÷ 8

	REG[0246h] Main1 Window Image Horizontal Size Register Default = 0000h Read/Write											
			age Horizontal Size 9-8									
15	14	13	12	11	10	9	8					
		Ma	ain1 Window Image	Horizontal Size bits 7	7-0							
7	6	5	4	3	2	1	0					

Main1 Window Image Horizontal Size bits [9:0]

These bits specify the horizontal size of the Main1 window image, in pixels. REG[0246h] bits 9-0 = Main1 Window Image Horizontal Size in pixels - 1

	REG[0248h] Main1 Window Image Vertical Size Register Default = 0000h Read/Write											
		Main1 Window Ima 9	•									
15	14	13	12	11	10	9	8					
		Ν	lain1 Window Image	e Vertical Size bits 7-	0							
7	6	5	4	3	2	1	0					

bits 9-0

Main1 Window Image Vertical Size bits [9:0]

These bits specify the vertical size of the Main1 window image, in pixels.

REG[0248h] bits 9-0 = Main1 Window Image Vertical Size in pixels - 1

REG[024Ah] Default = 000		w Display Sta	rt Address Re	egister 0			Read/Write				
Main2 Window Display Start Address bits 15-8											
15	14	13	12	11	10	9	8				
Main2 Window Display Start Address bits 7-1											
7	6	5	4	3	2	1	0				
REG[024Ch] Default = 000		w Display Sta	rt Address Re	egister 1			Read/Write				
			n,	/a							
15	14	13	12	11	10	9	8				
-		1		Main2 Window Display Start Address bits 19-16							
-	r	n/a		Ivia	inz window Display	Start Address bits T	9-16				

REG[024Ch] bits 3-0

REG[024Ah] bits 15-1 Main2 Window Display Start Address bits [19:1]

These bits specify the start address of the Main2 window image in the display buffer.

REG[024Eh] Default = 000		ow Line Addre	ss Offset Reg	ister			Read/Write
n	/a	Main2 Window Vertical Pixel Doubling Enable	Main2 Window Horizontal Pixel Doubling Enable	Main2 Window Line Address Offset bit 11-8			
15	14	13	12	11	10	9	8
		Main2 Win	dow Line Address O	ffset bit 7-1			n/a
7	6	5	4	3	2	1	0

bit 13

Main2 Window Vertical Pixel Doubling Enable

This bit controls the pixel doubling feature for the vertical dimension, or height, of the Main2 window.

When this bit = 0b, there is no hardware effect.

When this bit = 1b, pixel doubling in the vertical dimension (height) is enabled.

Note

When Main2 Window Vertical Pixel Doubling is enabled (REG[024Eh] bit 13 = 1b), the bottom edge of the resulting window must not exceed the bottom edge of the panel (must be less than or equal to the panel VDP). Additionally, the bottom edge of the Main1 window must not be greater than the top edge of the Main2 window. For further information on Main2 window pixel doubling restrictions, see Section 13.1.1, "Main Layer Restrictions" on page 173 and Section 13.1.3, "Main Layer Pixel Doubling" on page 174.

bit 12	Main2 Window Horizontal Pixel Doubling Enable This bit controls the pixel doubling feature for the horizontal dimension, or width, of the Main2 window. When this bit = 0b, there is no hardware effect. When this bit = 1b, pixel doubling in the horizontal dimension (width) is enabled.
	Note When Main2 Window Horizontal Pixel Doubling is enabled (REG[024Eh] bit 12 = 1b), the right edge of the resulting window must not exceed the right edge of the panel (must be less than or equal to the panel HDP). For further information on Main2 window pixel doubling restrictions, see Section 13.1.1, "Main Layer Restrictions" on page 173 and Section 13.1.3, "Main Layer Pixel Doubling" on page 174.
bits 11-1	Main2 Window Line Address Offset bits [11:1] These bits specify the offset from the beginning of one display line to the beginning of the next display line in the memory used for the main window2. The Line Address Offset can be calculated as follows (valid for both pixel doubling enabled and disabled). REG[0244h] bits 11-0 = Line width in pixels x 16 ÷ 8

	REG[0250h] Main2 Window Image Horizontal Size Register Default = 0000h Read/Write									
		n/	'a				age Horizontal Size 9-8			
15	14	13	12	11	10	9	8			
		Ma	ain2 Window Image	Horizontal Size bits 7	7-0	•				
7	6	5	4	3	2	1	0			

Main2 Window Image Horizontal Size bits [9:0]

These bits specify the horizontal size of the Main2 window image, in pixels. REG[0250h] bits 9-0 = Main2 Window Image Horizontal Size in pixels - 1

REG[0252h] Default = 000		w Image Verti	cal Size Regis	ster			Read/Write
		n,	/a			Main2 Window Ima 9	5
15	14	13	12	11	10	9	8
		N	lain2 Window Image	Vertical Size bits 7-	0	•	
7	6	5	4	3	2	1	0

bits 9-0

Main2 Window Image Vertical Size bits [9:0]

These bits specify the vertical size of the Main2 window image, in pixels.

REG[0252h] bits 9-0 = Main2 Window Image Vertical Size in pixels - 1

REG[0260h] PIP1 Scaling Mode Register Default = 0000h Read/Write									
Default = 000	Uh						Read/Write		
Enhance Enable		n	/a		PIP1 E	dge Enhance Effect	bits 2-0		
15	14	13	12	11	10	9	8		
PIP1 Vertical Scaling Enable	n/a	PIP1 Vertical Filter Mode Select	n/a	PIP1 Horizontal Scaling Enable	n/a	PIP1 Horizontal Filter Mode Select	n/a		
7	6	6 5 4 3 2 1							
bit 15	This Who Who Note W	1 Edge Enhance s bit controls the en this bit $= 0$ en this bit $= 1$ b hen the PIP1 7 ent should be o	he edge enhand o, the edge enh o, the edge enh Fransparency i	ancement effe ancement effe s enabled (RE	ct for the PIP1 ct for the PIP1 G[0204h] bit 1	window is dis window is ena	abled.		
bits 10-8	The 15 = spec	1 Edge Enhand ese bits only has = 1b. These bit cifies the weak ancement. A va	ave an effect v s specify the s est edge enhar	when PIP1 ed trength of the a cement and a	edge enhancen value of 111b	nent effect. A v specifies the st	value of 001b		
bit 7	This scal Whe	1 Vertical Scal s bit controls v ing, see Sectio en this bit = $0b$ en this bit = $1b$	ertical scaling n 13.2.2, "Usi), vertical scali	ng The Scalers ng for PIP1 is	" on page 178 disabled.	Ų	uring vertical		
bit 5	This urin Whe	1 Vertical Filte s bit sets the fil g vertical scali en this bit = 0b en this bit = 1b	ter mode for v ing, see Section o, the vertical s	vertical scaling n 13.2.2, "Usin caling filter is	ng The Scalers disabled.		0		
		T	11 10 20 17	· 15.1 M	1				

REG[0260h] bits 5	Vertical Filter Mode
Ob	Line replication/decimation
1b	SINC interpolation function as an impulse response

Note

When the PIP1 Transparency is enabled (REG[0204h] bit 1 = 1b), the vertical scaling filter should be disabled, REG[0260h] bit 5 = 0b.

bit 3	PIP1 Horizontal Scaling Enable This bit controls horizontal scaling for the PIP1 window. For details on configuring hori- zontal scaling, see Section 13.2.2, "Using The Scalers" on page 178. When this bit = 0b, horizontal scaling for PIP1 is disabled. When this bit = 1b, horizontal scaling for PIP1 is enabled.
bit 1	PIP1 Horizontal Filter Mode Select This bit sets the filter mode for horizontal scaling of the PIP1 window. When this bit = 0b, the horizontal scaling filter is disabled. When this bit = 1b, the horizontal scaling filter is enabled.

Table 10-31:	Horizontal	Filter Mode
10010 10 51.	110112,0111011	I mout mout

REG[0260h] bits 1	Horizontal Filter Mode
Ob	Pixel replication/decimation
1b	SINC interpolation function as an impulse response

Note

When the PIP1 Transparency is enabled (REG[0204h] bit 1 = 1b), the horizontal scaling filter should be disabled, REG[0260h] bit 1 = 0b.

	Reserved			DID	1 Horizontal Scale bits	12-8	
15	14	13	12	l 11	10	9	8
15	17	10		tal Scale bits 7-0	10	5	0
7	6	5	4	3	2	1	0
its 15-13	The		e for these bits				
its 12-0	The gran The RE0	se bits detern nmed based o REG[0262h] fractional po G[0262h] bits	on the followin bits 12-0 = 10 int is to the rig	ntal scaling fac g formula. 24 x (1 ÷ Scali ht of bit 10. If equal zero. If tl	ctor for the PIP ing Ratio) the scaling mode he scaling mode	de is ZOOM	(Scaled up),
	grai	nmed as follo	bits 12-0 = 1 = 1 = 2	3.51 (Zoom ca 024 x (1 ÷ Sca 024 x (1 ÷ 3.5 291 (round dow 23h	1)	h] bits 12-0 s	should be pro-
		he scale-down indow size. T	-	scale rate must	(Dot Clock), siz	-	

For example, selecting a horizontal scale rate of 1/2 and a PCLK Divide of 1/2 is valid. Selecting a horizontal scale rate of 1/3 and a PCLK Divide of 1/2 is not valid.

Default = 0000h Reserved			PIP1 Vertical Scale bits 12-8								
		1				-	1 -				
15	14	13	12	11	10	9	8				
_		1 - 1	PIP1 Vertical	1							
7	6	5	4	3	2	1	0				
its 15-13	Re	eserved									
	Tł	The default value for these bits is 000b.									
its 12-0	PI	P1 Vertical Scale	e bits [12:0]								
		nese bits determi		scaling factor	for the PIP1 so	caler and mu	ust be pro-				
		ammed based on					- I				
	81		•		ng Ratio)						
		$REG[0264h] \text{ bits } 12-0 = 1024 \text{ x } (1 \div \text{Scaling Ratio})$									
	ፐት	The fractional point is to the right of bit 10. If the scaling mode is ZOOM (Scaled up),									
	11	ie maenonai pon									
	DI	•	•		•		· • ·				
		EG[0262h] bits 1	2-10 should e	qual zero. If th	•		· • ·				
		•	2-10 should e	qual zero. If th	•		· • ·				
	RI	EG[0262h] bits 1	2-10 should e 2-10 should b	qual zero. If th e non-zero.	e scaling mode	e is SHRINK	K (Scaled dow				
	RI Ex	EG[0262h] bits 1 EG[0262h] bits 1	2-10 should e 2-10 should b aling ratio of 3	qual zero. If th e non-zero.	e scaling mode	e is SHRINK	K (Scaled dow				
	RI Ex	EG[0262h] bits 1 EG[0262h] bits 1 ample: For a sca	12-10 should end 12-10 should be aling ratio of 3 vs.	qual zero. If th e non-zero. 5.51 (Zoom cas	e scaling mode	e is SHRINK	K (Scaled dow				
	RI Ex	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow	12-10 should ended 12-10 should be aling ratio of 3 vs. bits 12-0 = 10	qual zero. If th e non-zero. 5.51 (Zoom cas)24 x (1 ÷ Scal	e scaling mode se), REG[0262 ing Ratio)	e is SHRINK	K (Scaled dow				
	RI Ex	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow	12-10 should end 12-10 should be along ratio of 3 vs. bits 12-0 = 10 = 10	qual zero. If th e non-zero. 3.51 (Zoom cas)24 x (1 ÷ Scal)24 x (1 ÷ 3.51	e scaling mode e), REG[0262 ing Ratio)	e is SHRINK	K (Scaled dow				
	RI Ex	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow	12-10 should end 12-10 should be along ratio of 3 vs. bits 12-0 = 10 = 10 = 29	qual zero. If th e non-zero. 5.51 (Zoom cas)24 x (1 ÷ Scal)24 x (1 ÷ 3.51)1 (round down	e scaling mode e), REG[0262 ing Ratio)	e is SHRINK	K (Scaled dow				
	RI Ex	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow	12-10 should end 12-10 should be along ratio of 3 vs. bits 12-0 = 10 = 10	qual zero. If th e non-zero. 5.51 (Zoom cas)24 x (1 ÷ Scal)24 x (1 ÷ 3.51)1 (round down	e scaling mode e), REG[0262 ing Ratio)	e is SHRINK	K (Scaled dow				
	RI Ex	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow REG[0262h] b	12-10 should end 12-10 should be along ratio of 3 vs. bits 12-0 = 10 = 10 = 29	qual zero. If th e non-zero. 5.51 (Zoom cas)24 x (1 ÷ Scal)24 x (1 ÷ 3.51)1 (round down	e scaling mode e), REG[0262 ing Ratio)	e is SHRINK	K (Scaled dow				
	RI Ex gr. No	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow REG[0262h] b	12-10 should end 12-10 should be along ratio of 3 vs. bits 12-0 = 10 = 10 = 29 = 12	qual zero. If th e non-zero. 5.51 (Zoom cas)24 x (1 ÷ Scal)24 x (1 ÷ 3.51)1 (round down 23h	e scaling mode se), REG[0262 ing Ratio)) n)	e is SHRINK h] bits 12-0	S (Scaled downshould be pro				
	RI Ex gr. No	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow REG[0262h] b	12-10 should end 12-10 should be along ratio of 3 vs. bits 12-0 = 10 = 10 = 12 rate depends of	qual zero. If the non-zero. 3.51 (Zoom case) $24 \times (1 \div Scale)$ $24 \times (1 \div 3.51)$ $24 \times (1 \div 3.51)$ 23h on the PCLK (1)	e scaling mode e), REG[0262 ing Ratio)) n) Dot Clock), siz	e is SHRINK h] bits 12-0 e of the pan	S (Scaled downshould be pro				
	RI Ex gr.	EG[0262h] bits 1 EG[0262h] bits 1 xample: For a sca ammed as follow REG[0262h] b te te	12-10 should end 12-10 should be aling ratio of 3 vs. bits 12-0 = 10 = 10 = 29 = 12 rate depends of vo different set	qual zero. If the non-zero. 3.51 (Zoom case) $24 \times (1 \div Scale)$ $24 \times (1 \div 3.51)$ $24 \times (1 \div 3.51)$ 23h on the PCLK (1) as of formulas is	e scaling mode se), REG[0262 ing Ratio)) n) Dot Clock), siz must be observ	e is SHRINK h] bits 12-0 e of the pan	S (Scaled downshould be pro				
	RI Ex gr.	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow REG[0262h] b te The scale-down window size. Tw	12-10 should end 12-10 should be aling ratio of 3 vs. bits 12-0 = 10 = 10 = 29 = 12 rate depends of vo different set	qual zero. If the non-zero. 3.51 (Zoom case) $24 \times (1 \div Scale)$ $24 \times (1 \div 3.51)$ $24 \times (1 \div 3.51)$ 23h on the PCLK (1) as of formulas is	e scaling mode se), REG[0262 ing Ratio)) n) Dot Clock), siz must be observ	e is SHRINK h] bits 12-0 e of the pan	S (Scaled downshould be pro				
	RI Ex gr. No	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow REG[0262h] b te The scale-down window size. Tw	12-10 should end 12-10 should be aling ratio of 3 vs. bits 12-0 = 10 = 10 = 29 = 12 rate depends of vo different set izontal Scale I	qual zero. If the non-zero. 5.51 (Zoom case) $24 \times (1 \div \text{Scale})$ $24 \times (1 \div 3.51)$ $24 \times (1 \div 3.51)$ 21 (round down) 23 h on the PCLK (1) is of formulas is Rate and the PO	e scaling mode se), REG[0262 ing Ratio)) n) Dot Clock), siz must be observ CLK Divide.	e is SHRINK h] bits 12-0 ee of the pan red based on	(Scaled down should be pro el, and the PII the relationsh				
	RI Ex gr. No	EG[0262h] bits 1 EG[0262h] bits 1 cample: For a sca ammed as follow REG[0262h] b te The scale-down window size. Tw between the Hor	12-10 should end 12-10 should be aling ratio of 3 vs. bits 12-0 = 10 = 10 = 29 = 12 rate depends of vo different set rizontal Scale I C Divide is less	qual zero. If the non-zero. 3.51 (Zoom cass) $24 \times (1 \div Scals)$ $24 \times (1 \div 3.51)$ $24 \times (1 \div 3.51)$ 21 (round down) 23h on the PCLK (1) is of formulas is Rate and the PO 450 than the Horiz	e scaling mode se), REG[0262 ing Ratio)) n) Dot Clock), siz must be observ CLK Divide. zontal Scale Ra	e is SHRINK h] bits 12-0 ee of the pan red based on ate and the F	S (Scaled down should be pro el, and the PII the relationsh Horizontal Sca				

For a Vertical Scale Rate of:

1 to 1/2: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 1) + 64 < HT x (1+PCLK Divide) 1/2 to 1/3: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 2) + 64 < HT x (1+PCLK Divide) 1/3 to 1/4: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 3) + 64 < HT x (1+PCLK Divide) 1/4 to 1/5: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 4) + 64 < HT x (1+PCLK Divide) 1/5 to 1/6: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 5) + 64 < HT x (1+PCLK Divide) 1/6 to 1/7: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 6) + 64 < HT x (1+PCLK Divide) 1/7 to 1/8: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 7) + 64 < HT x (1+PCLK Divide)

Where:

A = Horizontal size of the PIP1 window B = Horizontal scale rate HT = Horizontal total of the panel

When the PCLK Divide is equal to the Horizontal Scale Rate (PCLK = Horizontal Scale

Rate), the following formulas must be observed.

For a Vertical Scale Rate of:

1 to 1/2: (A x (1+B) x 2 + 64 < HT x (1+PCLK Divide) 1/2 to 1/3: (A x (1+B) x 3 + 64 < HT x (1+PCLK Divide) 1/3 to 1/4: (A x (1+B) x 4 + 64 < HT x (1+PCLK Divide) 1/4 to 1/5: (A x (1+B) x 5 + 64 < HT x (1+PCLK Divide) 1/5 to 1/6: (A x (1+B) x 6 + 64 < HT x (1+PCLK Divide) 1/6 to 1/7: (A x (1+B) x 7 + 64 < HT x (1+PCLK Divide) 1/7 to 1/8: (A x (1+B) x 8 + 64 < HT x (1+PCLK Divide)

Where:

A = Horizontal size of the PIP1 window B = Horizontal scale rate HT = Horizontal total of the panel

Examples:

For a horizontal scale rate of 1/2 and a vertical scale rate of 1/2, with a horizontal PIP window size of 200, horizontal total of 480, and a PCLK divide of 1/2, the following calculation would be used.

200 x $(1 \div (1/2))$ x 2 + 64 < 480 x $(1 \div (1/2))$ 864 < 960 (this case is valid)

For a horizontal scale rate of 1/2 and a vertical scale rate of 1/2, with a horizontal PIP window size of 300, horizontal total of 480, and a PCLK divide of 1/2, the following calculation would be used.

300 x (1 ÷ (1/2)) x 2 + 64 < 480 x (1 ÷ (1/2)) 1264 < 960 (this case is **not** valid)

For a horizontal scale rate of 1 and a vertical scale rate of 1/8, with a horizontal PIP window size of 192, horizontal total of 920, and a PCLK divide of 1/2, the following calculation would be used.

 $(A x (1 \div B) x (1 \div PCLK Divide)) + (A x (1 \div B) x 7) + 64 < HT x (1 \div PCLK Divide)$ (192 x 1 x 2) + (192 x 1 x 7) + 64 < 920 x 2 1792 < 1840 (this case is valid)

For a horizontal scale rate of 1 and a vertical scale rate of 1/8, with a horizontal PIP window size of 200, horizontal total of 920, and a PCLK divide of 1/2, the following calculation would be used.

 $(A x (1 \div B) x (1 \div PCLK Divide)) + (A x (1 \div B) x 7) + 64 < HT x (1 \div PCLK Divide)$ (200 x 1 x 2) + (200 x 1 x 7) + 64 < 920 x 2 1864 < 1840 (this case is **not** valid)

REG[0266h] Default = 000	PIP1 Scaler P	ort Address (Counter Regis	ster			Read/Write
Delault = 000			1				neau/white
	n/a	1			Port Address Counter	. , ,	1
15	14	13	12	11	10	9	8
	n/a		Filter Coefficient Select	n/a		Reserved	Port Address Counter Reset (WO)
7	6	5	4	3	2	1	0
bits 12-8	The The usin Aft 7-0 the	ere are two tabl ng the PIP1 Sca er each write to) is completed, port address co	e the address (d es, one for eac aler Filter Coel o the PIP1 Scal this counter is ounter value re	or index) into the horizon fficient Select er Filter Coeff automatically aches 1Fh, it r	ead Only) the PIP1 Scaler ontal and vertic bit, REG[0266 ficient Table A v incremented u nust be manual Coefficient Ta	al filters, which h] bit 4. ccess Port (RE p to a value of ly reset to 001	ch are selected CG[0268h] bits f 1Fh. When n. This counter
bit 4	Thi acc 7-0 Wh	essed through t en this bit = 0t	hich scaler filte the PIP1 Scale o, the PIP1 scale	er coefficient ta r Filter Coeffic ler horizontal t	able (Horizonta cient Table Acc filter coefficier er coefficient t	cess Port, REC	G[0268h] bits
bit 1		erved e default value	for this bit is 0	ıb.			
bit 0	Thi Wri	iting a 0b to thi	PIP1 Scaler Po s bit has no ha	ort Address Co rdware effect.	ounter, REG[02	-	3.

efault = 0000	Dh														N	/rite C)nly
							n/a	a									
15	14		1	3		12			11		10			9		8	
				PIP1	Scaler	Filter Co	pefficient	Table A	ccess P	ort bits 7	7-0						
7	6			5		4			3		2			1		0	
	t. c	ables or ve	s. The rtical	PIP1 filter	Scale coeffi	er Filte cient	er Coe	fficie is acco	nt Sel essed	ect bit (see F	t is use REG[0	ed to s 266h	select	filter wheth). The	er the	horiz	cont
	b	based	l on th	ie scal	ing ra	tes w		re set				-		he col al filte			
	E	Exam	nple ir	iterpo	lation	ı filter	coeff	icient	s are l	isted	below						
	E	Every	y coef	ficien	t has	8-bit a	accura	cy. Tł	ne msl	o is a	sign b	it, the	lowe	r 6 bit	s defi	ne the	e fra
	t	ional	l part,	and b	oit 6 is	s the i	ntegei	part.									
			T	able 1	0-32:	PIPI	Filte	r Coe	fficien	t Exa	mples						
Port Addr	ess	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	FI
Cubic-1	.0 (00h	FDh	FBh	F8h	F7h	F7h	FAh	00h	08h	13h	1Dh	28h	31h	39h	3Eh	40
Cubic_0	-	00h	EEh	EEh	FOI	ECh	501	EEh	0.01	05h	0Eh	18h	21h	2Eh	37h	ЗDh	10

Port Address	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
Cubic-1.0	00h	FDh	FBh	F8h	F7h	F7h	FAh	00h	08h	13h	1Dh	28h	31h	39h	3Eh	40h
Cubic-0.5	00h	FFh	FEh	FCh	FCh	FCh	FEh	00h	05h	0Eh	18h	24h	2Eh	37h	3Dh	40h
B-spline	00h	00h	01h	02h	03h	05h	08h	0Bh	0Fh	14h	19h	1Eh	23h	27h	29h	2Ah
Linear	00h	08h	10h	18h	20h	28h	30h	38h	40h							
Average	10h	20h														

REG[026Ah] through REG[026Ch] are Reserved

These registers are Reserved and should not be written.

REG[026Eh]	G[026Eh] PIP1 Scaler Control Register							
Default = 000		U					Read/Write	
PIP1 Scaler Software Reset (WO)	r	ı/a	Reserved		n	′a		
15	14	13	12	11	10	9	8	
PIP1 Input Format Select		n/a						
7	6	5	4	3	2	1	0	
	the Wri	PIP1 Scaler Software Reset (Write Only)This bit initiates a software reset of the PIP1 scaler module. Performing a software reset of the PIP1 scaler using this bit has no effect on other LCDC functions.Writing a 0b to this bit has no hardware effect.Writing a 1b to this bit initiates a software reset of the PIP1 scaler module.						
bit 12		erved default value	of this bit is Oł	Э.				
bit 7	Thi Wh	1 Input Forma s bit selects the en this bit = 0t en this bit = 1t	e input data for , the input dat	a format is RG	B 5:6:5.			

Default = 000)0h		_				Read/Write	
		F	PIP1 Window Scroll S	Start Address bits 15	-8			
15	14	13	12	11	10	9	8	
PIP1 Window Scroll Start Address bits 7-2 n/a n/a								
7	6	5	4	3	2	1	0	
REG[0272h] Default = 000	PIP1 Window)0h	Scroll Start A	ddress Regis	ster 1			Read/Write	
n/a								
	14	13	12	11	10	9	8	
15	• •			PIP1 Window Scroll Start Address bits 19-16				
15		i/a		P	PIP1 Window Scroll Sta	art Address bits 19-	10	

REG[0272h] bits 3-0

REG[0270h] bits 15-2 PIP1 Window Scroll Start Address bits [19:2]

These bits specify the scroll start address for the PIP1 window in the display buffer. To disable scrolling for the PIP1 window, set the PIP1 Window Scroll Start Address to 0h (REG[0270h] ~ REG[0272h]) and the PIP1 Window Scroll End Address to the maximum value (REG[0274h] ~ REG[0276h]). For further information on scrolling, see Section 13.4, "Scroll Buffer" on page 193.

Note

1. The PIP1 Window Scroll Start Address must be less than the PIP1 Window Scroll End Address.

REG[0270h] ~ REG[0272h] < REG[0274h] ~ REG[0276h]

2. The PIP1 Window Display Start Address must be less than the PIP1 Window Scroll End Address.

REG[0278h] ~ REG[027Ah] < REG[0274h] ~ REG[0276h]

		Scroll End A	ddress Regis	ter 0			
Default = FFF	-Ch						Read/Write
			PIP1 Window Scroll	End Address bits 15	5-8		
15	14	13	12	11	10	9	8
PIP1 Window Scroll End Address bits 7-2 n/a							
7	6	5	4	3	2	1	0
REG[0276h] Default = 000		Scroll End A	ddress Regis	ter 1			Read/Write
			I	n/a			
15	14	13	12	11	10	9	8
	1	n/a			PIP1 Window Scroll E	nd Address bits 19-	16
-	6	5	4	3	2	1	0

REG[0276h] bits 3-0

REG[0274h] bits 15-2 PIP1 Window Scroll End Address bits [19:2]

These bits specify the scroll end address for the PIP1 window in the display buffer. If the current PIP1 window display memory address is bigger than this address, the PIP1 Window Display address goes to the PIP1 Window Scroll Start Address. To disable scrolling for the PIP1 window, set the PIP1 Window Scroll Start Address to 0h (REG[0270h] ~ REG[0272h]) and the PIP1 Window Scroll End Address to the maximum value (REG[0274h] ~ REG[0276h]). For further information on scrolling, see Section 13.4, "Scroll Buffer" on page 193.

Note

1. The PIP1 Window Scroll Start Address must be less than the PIP1 Window Scroll End Address.

REG[0270h] ~ REG[0272h] < REG[0274h] ~ REG[0276h]

2. The PIP1 Window Display Start Address must be less than the PIP1 Window Scroll End Address.

REG[0278h] ~ REG[027Ah] < REG[0274h] ~ REG[0276h]

Default = 000	10h		t Address Regi				Read/Write
		F	PIP1 Window Display S	tart Address bits 1	5-8		
15	14	13	12	11	10	9	8
	·	PIP1 Wind	ow Display Start Addre	ess bits 7-1			n/a
7	6	5	4	3	2	1	0
EG[027Ah]	PIP1 Window	, Display Star	t Address Reg	ister 1			
$e_{fault} = 000$, Diopiny of a					Read/Write
0.0.0.0			n/a	a			
15	14	13	12	11	10	9	8
		13 n/a	12		10 IP1 Window Display St		-

REG[027Ah] bits 3-0

REG[0278h] bits 15-1 PIP1 Window Display Start Address bits [19:1]

These bits specify the start address of the PIP1 window image in the display buffer.

Note

- 1. The PIP1 Window Display Start Address must be less than the PIP1 Window Scroll End Address.
 - REG[0278h] ~ REG[027Ah] < REG[0274h] ~ REG[0276h]
- 2. These bits must be set to a 32-bit aligned value (REG[0278h] bit 1 = 0b).

REG[027Ch] Default = 000] PIP1 Window D0h	Line Address	s Offset Regis	ster			Read/Write	
	n/a PIP1 window Line Address Offset bit 11-8							
15	14	13	12	11	10	9	8	
		PIP1 wind	low Line Address Of	fset bit 7-1			n/a	
7	6	5	4	3	2	1	0	
1.5. 11 1								

bits 11-1

PIP1 Window Line Address Offset bits [11:1]

These bits specify the offset from the beginning of one display line to the beginning of the next display line in the memory used for the PIP1 window. Calculate the Line Address Offset as follows (valid for both pixel doubling enabled and disabled). REG[027Ch] bits 11-0 = Line width in pixels x $16 \div 8$

Note

These bits must be set to a 32-bit aligned value (REG[027Ch] bit 1 = 0b).

	REG[027Eh] PIP1 Source Image Horizontal Size Register Default = 0000h Read/Write							
	n/a							
15	14	13	12	11	10	9	8	
	PIP1 Source Image Horizontal Size bits 7-1						n/a	
7	6	5	4	3	2	1	0	

bits 8-1

PIP1 Source Image Horizontal Size bits [8:1]

These bits specify the horizontal size (or width) of the PIP1 source image, in pixels. REG[027Eh] bits 8-1 = PIP1 Source Image Horizontal Size in pixels

Note

- 1. These bits must be set to an even number of pixels.

REG[027Eh] bits $8-1 \ge 4$

REG[0280h]	REG[0280h] PIP1 Source Image Vertical Size Register								
Default = 000	Default = 0000h Read/Write								
n/a PIP1 Source Image Vertical									
15	14	13	12	11	10	9	8		
			PIP1 Source Image	Vertical Size bits 7-0)				
7	6	5	4	3	2	1	0		

bits 9-0

PIP1 Source Image Vertical Size bits [9:0]

These bits specify the vertical size (or height) of the PIP1 source image, in pixels. REG[0280h] bits 9-0 = PIP1 Source Image Vertical Size in pixels

Note

These bits must be set such that the following formula is valid. REG[0280h] bits $9-0 \ge 4$

REG[0282h] Default = 002		ng Register					Read/Write
			n	/a			
15	14	13	12	11	10	9	8
n	/a		Pseudo RGB Output Color Format bits 1-0		Pseudo	Color Output Mode	bits 2-0
7	6	5	5 4		2	1	0

bits 5-4

Pseudo RGB Output Color Format bits [1:0]

When a valid Pseudo Color Output Mode is selected (see REG[0282h] bits 2-0), these bits select the RGB format that is output to the LCD panel interface. It is recommended that these bits be set according to the data width of the panel (i.e. 18-bit panel uses RGB 6:6:6).

Table 10-33: Pseudo Output Color Format

REG[0282h] bits 5-4	Pseudo Output Color Format
00b	RGB 4:4:4
01b	RGB 5:6:5
10b (default)	RGB 6:6:6
11b	Reserved

bits 2-0

Pseudo Color Output Mode bits [2:0]

These bits select the method used to convert internal RGB 8:8:8 image data into RGB 4:4:4, RGB 5:6:5, or RGB 6:6:6 data for output to the LCD interface. This function is designed for panels with data widths of less than 24-bit. The output color format is selected using the Pseudo RGB Output Color Format bits, REG[0282h] bits 5-4.

The following methods are available.

Table 10-34: Pseudo Color Output Mode

REG[0282h] bits 2-0	Pseudo Mode
000b (default)	Disable (Pass-through)
001b	2x2 Matrix Dither Enable
010b	FRM Enable
011b	Reserved
100b	Error Diffusion Enable
101b ~ 111b	Reserved

REG[0290h] through REG[0292h] are Reserved

These registers are Reserved and should not be written.

10.4.9 PIP2 Window Configuration Register

	•	Mode Registe	er								
Default = 0000 PIP2 Edge	Jh				[Read/Write				
Enhance Enable		n/	a		PIP2 E	dge Enhance Effect	bits 2-0				
15	14	13	12	11	10	9	8				
PIP2 Vertical Scaling Enable	n/a	PIP2 Vertical Filter Mode Select	n/a	PIP2 Horizontal Scaling Enable	n/a	PIP2 Horizontal Filter Mode Select	n/a				
7	6	5	4	3	2	1	0				
	 This bit controls the edge enhancement effect for PIP2 window. When this bit = 0b, the edge enhancement effect for the PIP2 window is disabled. When this bit = 1b, the edge enhancement effect for the PIP2 window is enabled. Note When the PIP2 Transparency is enabled (REG[0204h] bit 2 = 1b), PIP2 edge enhancement should be disabled, REG[02A0h] bit 15 = 0b. 										
bits 10-8	 PIP2 Edge Enhance Effect bits [2:0] These bits only have an effect when PIP2 edge enhance is enabled, REG[02A0h] bit 15 = 1b. These bits specify the strength of the edge enhancement effect. A value of 001b specifies the weakest edge enhancement and a value of 111b specifies the strongest edge enhancement. A value of 000b disables the edge enhancement effect. 										
bit 7	This scal Whe	 strongest edge enhancement. A value of 000b disables the edge enhancement effect. PIP2 Vertical Scaling Enable This bit controls vertical scaling for the PIP2 window. For details on configuring vertical scaling, see Section 13.2.2, "Using The Scalers" on page 178. When this bit = 0b, vertical scaling for PIP2 is disabled. When this bit = 1b, vertical scaling for PIP2 is enabled. 									
bits 5	This urin Who		ter mode for v ng, see Sectio , the vertical s	ertical scaling n 13.2.2, "Usir caling filter is	ng The Scalers disabled.	indow. For det " on page 178.					
			10.25 5150								

Table 10-35: PIP2 Vertical Filter Mode

REG[02A0h] bits 5	PIP2 Vertical Filter Mode
Ob	Line replication/decimation
1b	SINC interpolation function as an impulse response

Note

When the PIP2 Transparency is enabled (REG[0204h] bit 2 = 1b), the vertical scaling filter should be disabled, REG[02A0h] bit 5 = 0b.

bit 3	PIP2 Horizontal Scaling Enable This bit controls horizontal scaling for the PIP2 window. For details on configuring verti- cal scaling, see Section 13.2.2, "Using The Scalers" on page 178. When this bit = 0b, horizontal scaling for the PIP2 is disabled. When this bit = 1b, horizontal scaling for the PIP2 is enabled.
bit 1	PIP2 Horizontal Filter Mode Select This bit sets the filter mode for horizontal scaling of the PIP2 window. For details on con- figuring vertical scaling, see Section 13.2.2, "Using The Scalers" on page 178. When this bit = 0b, the horizontal scaling filter is disabled. When this bit = 1b, the horizontal scaling filter is enabled.

REG[02A0h] bits 1	PIP2 Horizontal Filter Mode
Ob	Pixel replication/decimation
1b	SINC interpolation function as an impulse response

Note

When the PIP2 Transparency is enabled (REG[0204h] bit 2 = 1b), the horizontal scaling filter should be disabled, REG[02A0h] bit 1 = 0b.

Default = 000	10h						Read/Write					
	Reserved		PIP2 Horizontal Scale bits 12-8									
15	14	13	12	11	10	9	8					
			PIP2 Horizon	al Scale bits 7-0								
7	6	5	4	3	2	1	0					
oits 15-13 oits 12-0	The		for these bits Scale bits [12:0									
	grar The REC	nmed based o REG[02A2h] fractional po G[02A2h] bits	n the followin bits $12-0 = 10$ int is to the rig 12-10 should	g formula. 024 x (1 ÷ Scali ht of bit 10. If	the scaling mod	e is ZOOM (Scaled up),					
	grar	Example: For a scaling ratio of 3.51 (Zoom case), REG[02A2h] bits 12-0 should be pro- grammed as follows. REG[02A2h] bits 12-0 = $1024 \times (1 \div \text{Scaling Ratio})$ = $1024 \times (1 \div 3.51)$ = 291 (round down) = $123h$										
	Note	9	= 1	2311								

The scale-down rate depends on the PCLK (Dot Clock), size of the panel, and the PIP2 window size. The horizontal scale rate must observe the following formula. Horizontal Scale Rate ≥ PCLK Divide

For example, selecting a horizontal scale rate of 1/2 and a PCLK Divide of 1/2 is valid. Selecting a horizontal scale rate of 1/3 and a PCLK Divide of 1/2 is not valid.

Default = 0000	Jn						Read/Write	
	Reserved	l		PI	P2 Vertical Scale bits	12-8		
15	14	13	12	11	10	9	8	
			1	al Scale bits 7-0	1	1	1	
7	6	5	4	3	2	1	0	
its 15-13		erved default value	for these bits	is 000b.				
bits 12-0	The gran	nmed based of	ine the vertican the followir	-	r for the PIP2 so	caler and mu	ist be pro-	
	The fractional point is to the right of bit 10. If the scaling mode is ZOOM (Scaled up), REG[02A2h] bits 12-10 should equal zero. If the scaling mode is SHRINK (Scaled down), REG[0262h] bits 12-10 should be non-zero.							
	gran	nmed as follow	ws. bits $12-0 = 1$ = 1 = 2	1024 x (1 ÷ Sca 1024 x (1 ÷ 3.5 291 (round dow 123h	1)			
	w: be W Ra	he scale-down indow size. Twe tween the How when the PCLK	wo different s rizontal Scale & Divide is les or equal to 1	ets of formulas Rate and the F ss than the Hor	(Dot Clock), siz must be observ PCLK Divide. izontal Scale Ra zontal Scale Ra	red based on ate and the H	the relationsh Iorizontal Sca	
		1 to 1/2: (A x 1/2 to 1/3: (A 1/3 to 1/4: (A 1/4 to 1/5: (A 1/5 to 1/6: (A	x (1÷B) x (1÷F x (1÷B) x (1÷F x (1÷B) x (1÷F x (1÷B) x (1÷F	LK Divide)) + (A CLK Divide)) + CLK Divide)) + CLK Divide)) + CLK Divide)) +	$\begin{array}{l} \mathbf{A} \ \mathbf{x} \ (1 \div \mathbf{B}) \ \mathbf{x} \ 1) + 6 \\ (\mathbf{A} \ \mathbf{x} \ (1 \div \mathbf{B}) \ \mathbf{x} \ 2) + \\ (\mathbf{A} \ \mathbf{x} \ (1 \div \mathbf{B}) \ \mathbf{x} \ 3) + \\ (\mathbf{A} \ \mathbf{x} \ (1 \div \mathbf{B}) \ \mathbf{x} \ 3) + \\ (\mathbf{A} \ \mathbf{x} \ (1 \div \mathbf{B}) \ \mathbf{x} \ 4) + \\ (\mathbf{A} \ \mathbf{x} \ (1 \div \mathbf{B}) \ \mathbf{x} \ 5) + \\ (\mathbf{A} \ \mathbf{x} \ (1 \div \mathbf{B}) \ \mathbf{x} \ 6) + \end{array}$	64 < HT x (1- 64 < HT x (1- 64 < HT x (1- 64 < HT x (1- 64 < HT x (1-	+PCLK Divide) +PCLK Divide) +PCLK Divide) +PCLK Divide)	

1/7 to 1/8: (A x (1+B) x (1+PCLK Divide)) + (A x (1+B) x 7) + 64 < HT x (1+PCLK Divide))

Where:

A = Horizontal size of the PIP1 window

B = Horizontal scale rate

HT = Horizontal total of the panel

When the PCLK Divide is equal to the Horizontal Scale Rate (PCLK = Horizontal Scale

Rate), the following formulas must be observed.

For a Vertical Scale Rate of:

1 to 1/2: (A x (1+B) x 2 + 64 < HT x (1+PCLK Divide) 1/2 to 1/3: (A x (1+B) x 3 + 64 < HT x (1+PCLK Divide) 1/3 to 1/4: (A x (1+B) x 4 + 64 < HT x (1+PCLK Divide) 1/4 to 1/5: (A x (1+B) x 5 + 64 < HT x (1+PCLK Divide) 1/5 to 1/6: (A x (1+B) x 6 + 64 < HT x (1+PCLK Divide) 1/6 to 1/7: (A x (1+B) x 7 + 64 < HT x (1+PCLK Divide) 1/7 to 1/8: (A x (1+B) x 8 + 64 < HT x (1+PCLK Divide)

Where:

A = Horizontal size of the PIP1 window B = Horizontal scale rate

HT = Horizontal total of the panel

Examples:

For a horizontal scale rate of 1/2 and a vertical scale rate of 1/2, with a horizontal PIP window size of 200, horizontal total of 480, and a PCLK divide of 1/2, the following calculation would be used.

200 x (1 ÷ (1/2)) x 2 + 64 < 480 x (1 ÷ (1/2)) 864 < 960 (this case is valid)

For a horizontal scale rate of 1/2 and a vertical scale rate of 1/2, with a horizontal PIP window size of 300, horizontal total of 480, and a PCLK divide of 1/2, the following calculation would be used.

 $300 \ge (1 \div (1/2)) \ge 2 + 64 < 480 \ge (1 \div (1/2))$ 1264 < 960 (this case is **not** valid)

For a horizontal scale rate of 1 and a vertical scale rate of 1/8, with a horizontal PIP window size of 192, horizontal total of 920, and a PCLK divide of 1/2, the following calculation would be used.

 $(A x (1 \div B) x (1 \div PCLK Divide)) + (A x (1 \div B) x 7) + 64 < HT x (1 \div PCLK Divide)$ (192 x 1 x 2) + (192 x 1 x 7) + 64 < 920 x 2 1792 < 1840 (this case is valid)

For a horizontal scale rate of 1 and a vertical scale rate of 1/8, with a horizontal PIP window size of 200, horizontal total of 920, and a PCLK divide of 1/2, the following calculation would be used.

 $(A x (1 \div B) x (1 \div PCLK Divide)) + (A x (1 \div B) x 7) + 64 < HT x (1 \div PCLK Divide)$ (200 x 1 x 2) + (200 x 1 x 7) + 64 < 920 x 2 1864 < 1840 (this case is **not** valid)

Default = 000					Port Address Counter	hite (D (DO)	Read/Write			
15	n/a 14	13	12	bits 4-0 (RO) 9	8					
15	n/a	13	PIP2 Scaler Filter Coefficient Select	11 n	Reserved	PIP2 Scaler Por Address Counte Reset (WO)				
7	6	5	4	3	2	1	0			
bits 12-8	 PIP2 Scaler Port Address Counter bits [4:0] (Read Only) These bits indicate the address (or index) into the PIP2 Scaler Filter Coefficient There are two tables, one for each of the horizontal and vertical filters, which ar using the PIP2 Scaler Filter Coefficient Select bit, REG[02A6h] bit 4. After each write to the PIP2 Scaler Filter Coefficient Table Access Port (REG[027-0) is completed, this counter is automatically incremented up to a value of 1FI the port address counter value reaches 1Fh, it must be manually reset to 00h. Th is not incremented when the PIP2 Scaler Filter Coefficient Table Access Port is 									
bit 4	Thi acco 7-0 Wh	s bit selects wl essed through en this bit = 0	Coefficient Se nich scaler filte the PIP2 Scaler o, the PIP2 scal o, the PIP2 scal	r coefficient ta r Filter Coeffic er horizontal f	cient Table Acc	cess Port, REC	G[02A8h] bits			
pit 1		Reserved The default value for this bit is 0b.								
oit 0	Thi Wri	The default value for this bit is 0b. PIP2 Scaler Port Address Counter Reset (Write Only) This bit resets the PIP2 Scaler Port Address Counter, REG[02A6h] bits 12-8. Writing a 0b to this bit has no hardware effect. Writing a 1b to this bit resets the PIP2 Scaler Port Address Counter.								

REG[02A8h] PIP2 Scaler Coefficient Table Access Port Register Default = 0000h Write Only											
n/a											
15	14	13	12	11	10	9	8				
	PIP2 Scaler Filter Coefficient Table Access Port bits 7-0 (WO)										
7	6	5	4	3	2	1	0				

bits 7-0

PIP2 Scaler Filter Coefficient Table Access Port bits [7:0] (Write Only) These bits are the access port for the PIP2 scaler horizontal/vertical filter coefficient tables. The PIP2 Scaler Filter Coefficient Select bit is used to select whether the horizontal or vertical filter coefficient table is accessed (see REG[0266h] bit 4). The filter coefficients **must** be set before the scaler filter operation starts.

The Scaler horizontal filter and vertical filter coefficients should be set according to the values shown in Table 10-37: "PIP2 Filter Coefficient Examples". The column used varies based on the scaling rates which are set individually for the horizontal filter (REG[02A2h]) and the vertical filter (REG[02A4h]).

Example interpolation filter coefficients are listed below.

Every coefficient has 8-bit accuracy. The MSB is a sign bit, the lower 6 bits define the fractional part, and bit 6 is the integer part.

Port Address	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	Ah	Bh	Ch	Dh	Eh	Fh
Cubic-1.0	00h	FDh	FBh	F8h	F7h	F7h	FAh	00h	08h	13h	1Dh	28h	31h	39h	3Eh	40h
Cubic-0.5	00h	FFh	FEh	FCh	FCh	FCh	FEh	00h	05h	0Eh	18h	24h	2Eh	37h	3Dh	40h
B-spline	00h	00h	01h	02h	03h	05h	08h	0Bh	0Fh	14h	19h	1Eh	23h	27h	29h	2Ah
Linear	00h	08h	10h	18h	20h	28h	30h	38h	40h							
Average	10h	20h														

Table 10-37: PIP2 Filter Coefficient Examples
REG[02AAh] through REG[02ACh] are Reserved

Default = 000		Control Regist		[Read/Write	
PIP2 Scaler Software Reset (WO)	n	/a	Reserved		n/a			
15	14	13	12	11	10	9	8	
PIP2 Input Format Select	n/a	Wide Scaling Mode Select bits 1-0 n/a				/a		
7	6	5	4	3	2	1	0	
bit 15 bit 12	This the Wri Wri Res	2 Scaler Softw s bit initiates a PIP2 scaler usi ting a 0b to thi ting a 1b to thi erved default value	software reset ng this bit has s bit has no ha s bit initiates a	of the PIP2 sca no effect on o rdware effect. a software rese	ther LCDC fur	nctions.	ftware reset of	
bit 7	PIP2 Input Format Select This bit selects the input data format for the PIP2 window. When this bit = 0b, the input data format is RGB 5:6:5. When this bit = 1b, the input data format is YUV 4:2:2.							
bits 5-4	The orai	le Scaling Moc se bits select tl na mode, see S ear Panorama 1	ne scaling mod Section , "Parti	le for the PIP2 al Panorama N	Iode" on page	183. For furth		

These registers are Reserved and should not be written.

REG[02AEh] bits 5-4	Wide Scaling Mode	Vertical Scaling Ratio Registers Used
00b (default)	Normal Scaling	REG[02A4h]
01b	Partial Panorama Scaling	REG[02A4h], REG[02C2h], REG[02C4h]
10b	Linear Panorama Scaling	REG[02A4h], REG[02C2h], REG[02CEh]
11b	Reserved	—

Table 10-38: Wide Scaling Mode Selection

000 efault =	0h						Read/Write
			PIP2 Window Scroll S	Start Address bits 1	5-8		
15	14	13	12	11	10	9	8
		PIP2 Window Scroll	Start Address bits 7-	2	·	n	/a
7	6	5	4	3	2	1	0
EG[02B2h]	PIP2 Windo	w Scroll Start	Address Regi	ster 1	1		
EG[02B2h] Default = 000		w Scroll Start	Address Regi	ster 1			Read/Write
		w Scroll Start	•	ster 1 /a			Read/Write
		w Scroll Start	•		10	9	Read/Write
efault = 000	0h		n	/a 11	10 PIP2 Window Scroll St	-	8

REG[02B2h] bits 3-0

REG[02B0h] bits 15-2 PIP2 Window Scroll Start Address bits [19:2]

These bits specify scroll start address for the PIP2 window in the display buffer. To disable scrolling for the PIP2 window, set the PIP2 Window Scroll Start Address to 0h (REG[02B0h] ~ REG[02B2h]) and the PIP2 Window Scroll End Address to the maximum value (REG[02B4h] ~ REG[02B6h]). For further information on scrolling, see Section 13.4, "Scroll Buffer" on page 193.

Note

1. The PIP2 Window Scroll Start Address must be less than the PIP2 Window Scroll End Address.

REG[02B0h] ~ REG[02B2h] < REG[02B4h] ~ REG[02B6h]

2. The PIP2 Window Display Start Address must be less than the PIP2 Window Scroll End Address.

REG[02B8h] ~ REG[02BAh] < REG[02B4h] ~ REG[02B6h]

REG[02B4h] Default = FFF	PIP2 Window Ch	Scroll End A	ddress Regis	ter 0			Read/Write
		F	PIP2 Window Scroll E	End Address bits 15-	8		
15	14	13	12	11	10	9	8
		PIP2 Window Scroll	End Address bits 7-2				n/a
7	6	5	4	3	2	1	0
REG[02B6h] Default = 000	PIP2 Window Fh	Scroll End A	ddress Regis	ter 1			Read/Write
			n,	/a			
15	14	13	12	11	10	9	8
	n	/a		PIP2 Window Scroll End Address bits 19-16			
7	6	5	4	3	2	1	0

REG[02B6h] bits 3-0

REG[02B4h] bits 15-2 PIP2 Window Scroll End Address bits [19:2]

These bits specify scroll end address for the PIP2 window in the display buffer. If the current PIP2 window display memory address is larger than this address, the PIP2 window display address goes to the PIP2 Window Scroll Start Address. To disable scrolling for the PIP2 window, set the PIP2 Window Scroll Start Address to 0h (REG[02B0h] ~ REG[02B2h]) and the PIP2 Window Scroll End Address to the maximum value (REG[02B4h] ~ REG[02B6h]). For further information on scrolling, see Section 13.4, "Scroll Buffer" on page 193.

Note

1. The PIP2 Window Scroll Start Address must be less than the PIP2 Window Scroll End Address.

REG[02B0h] ~ REG[02B2h] < REG[02B4h] ~ REG[02B6h]

2. The PIP2 Window Display Start Address must be less than the PIP2 Window Scroll End Address.

 $REG[02B8h] \sim REG[02BAh] < REG[02B4h] \sim REG[02B6h]$

efault = 000	un						Read/Write		
		I	PIP2 Window Display	Start Address bits 1	5-8				
15	14	13	12	11	10	9	8		
PIP2 Window Display Start Address bits 7-1									
7	6	5	4	3	2	1	0		
EG[02BAh]	PIP2 Windov	v Display Sta	rt Address Re	gister 1					
EG[02BAh] Default = 000		v Display Sta	rt Address Re	gister 1			Read/Write		
		v Display Sta		gister 1 ⁄a			Read/Write		
		v Display Sta		-	10	9	Read/Write		
efault = 000	0h 14		n	/a 11	10 P2 Window Display S		8		

REG[02BAh] bits 3-0

REG[02B8h] bits 15-1 PIP2 Window Display Start Address bits [19:1]

These bits specify the start address of the PIP2 window image in the display buffer.

Note

1. The PIP2 Window Display Start Address must be less than the PIP2 Window Scroll End Address.

 $REG[02B8h] \sim REG[02BAh] < REG[02B4h] \sim REG[02B6h]$

2. These bits must be set to a 32-bit aligned value (REG[02B8h] bit 1 = 0b).

	PIP2 Window	Line Addres	s Offset Regis	ster			
Default = 000	0h						Read/Write
	n/	'a			PIP2 window Line Ad	Idress Offset bit 11	-8
15	14	13	12	11	10	9	8
PIP2 window Line Address Offset bit 7-1							n/a
7	6	5	4	3	2	1	0
bits 11-1	The	se bits specify		n the beginning	g of one display IP2 window. Ca		eginning of the ine Address

Offset as follows (valid for both pixel doubling enabled and disabled).

REG[02BCh] bits 11-0 = Line width in pixels x $16 \div 8$

Note

These bits must be set to a 32-bit aligned value (REG[02BCh] bit 1 = 0b).

	REG[02BEh] PIP2 Source Image Horizontal Size Register Default = 0000h Read/Write									
	n/a									
15	14	13	12	11	10	9	8			
		PIP2 Sourc	e Image Horizontal S	Size bits 7-1			n/a			
7	7 6 5 4 3 2 1									

bits 8-1

PIP2 Source Image Horizontal Size bits [8:1]

These bits specify the horizontal size (or width) of the PIP2 source image, in pixels. REG[02BEh] bits 8-1 = PIP2 Source Image Horizontal Size in pixels

Note

- 1. These bits must be set to an even number of pixels.
- 2. These bits must be set such that the following formula is valid. REG[02BEh] bits $8-1 \ge 4$

	REG[02C0h] PIP2 Source Image Vertical Size Register Default = 0000h Read/Write									
	n/a						Vertical Size bits 9- 3			
15	14	13	12	11	10	9	8			
			PIP2 Source Image	Vertical Size bits 7-0)					
7	6	5	4	3	2	1	0			

bits 9-0

PIP2 Source Image Vertical Size bits [9:0]

These bits specify the vertical size (or height) of the PIP2 source image, in pixels. PEC[02C0h] bits 0.0 – PIP2 Source Image Vertical Size in pixels.

REG[02C0h] bits 9-0 = PIP2 Source Image Vertical Size in pixels

Note

These bits must be set such that the following formula is valid. REG[02C0h] bits $9-0 \ge 4$

REG[02C2h Default = 00	l] PIP2 Panorar 00h	ma Area A Ve	rtical Scale R	egister			Read/Write
	n/a		Panorama Area A Vertical Scale bits 12-8				
15	14	13	12	11	10	9	8
	•		Panorama Area A V	ertical Scale bits 7-0			•
7	6	5	4	3	2	1	0

bits 12-0

Panorama Area A Vertical Scale bits [12:0]

These bits determine the vertical scaling factor for the PIP2 scaler and must be programmed based on the following formula.

REG[02C2h] bits $12-0 = 1024 \text{ x} (1 \div \text{Scaling Ratio})$

Note

When Linear Panorama Scaling Mode is selected (REG[02AEh] bits 5-4 = 10b), the Vertical Initial Scale value should be specified in these bits instead.

	PIP2 Panoran	na Area B Ve	rtical Scale Re	egister				
Default = 000		Read/Write						
	n/a			Panorama Area B Vertical Scale bits 12-8				
15	14	13	12	11	10	9	8	
			Panorama Area B V	ertical Scale bits 7-0			•	
7	6	5	4	3	2	1	0	
bits 12-0	Pane	orama Area B	Vertical Scale	bits [12:0]			1	

These bits determine the vertical scaling factor for the scaler and must be programmed based on the following formula.

REG[02C4h] bits $12-0 = 1024 \text{ x} (1 \div \text{Scaling Ratio})$

Note

These bits have no effect when Linear Panorama Scaling Mode is selected (REG[02AEh] bits 5-4 = 10b).

	REG[02C6h] PIP2 Panorama Area 1 Vertical Start Line Register Default = 0000h Read/Write									
	n/a						ea 1 Vertical Starts its 9-8			
15	14	13	12	11	10	9	8			
		PIP2	2 Panorama Area 1 \	ertical Start Line bite	s 7-0					
7	6	5	4	3	2	1	0			

bits 9-0

PIP2 Panorama Area 1 Vertical Start Line bits [9:0]

These bits specify the PIP2 Panorama Area 1 Vertical Start Line, in pixels. REG[02C6h] bits 9-0 = PIP2 Panorama Area 1 Vertical Start Line in pixels

Note

When Linear Panorama Scaling Mode is selected (REG[02AEh] bits 5-4 = 10b), the vertical normal scaling area start line should be specified by these bits, in lines.

	REG[02C8h] PIP2 Panorama Area 2 Vertical Start Line Register Default = 0000h Read/Write										
			ea 2 Vertical Starts its 9-8								
15	14	13	12	11	10	9	8				
		PIP2	Panorama Area 2 \	ertical Start Line bit	s 7-0						
7	6	5	4	3	2	1	0				

bits 9-0

PIP2 Panorama Area 2 Vertical Start Line bits [9:0] These bits specify the PIP2 Panorama Area 2 Vertical Start Line, in pixels.

REG[02C8h] bits 9-0 = PIP2 Panorama Area 2 Vertical Start Line in pixels

Note

When Linear Panorama Scaling Mode is selected (REG[02AEh] bits 5-4 = 10b), the 2nd vertical panorama Area start line should be specified in these bits, in lines.

REG[02CAh] Default = 000	PIP2 Panora 0h	ma Area 3 Vei	rtical Start Lir	e Register			Read/Write
		n	/a				rea 3 Vertical Starts bits 9-8
15	14	13	12	11	10	9	8
		PIP2	2 Panorama Area 3 \	/ertical Start Line bit	s 7-0		
7	6	5	4	3	2	1	0

bits 9-0

PIP2 Panorama Area 3 Vertical Start Line bits [9:0]

These bits specify the PIP2 Panorama Area 3 Vertical Start Line, in pixels. REG[02CAh] bits 9-0 = PIP2 Panorama Area 3 Vertical Start Line in pixels

Note

These bits have no affect when Linear Panorama Scaling Mode is selected (REG[02AEh] bits 5-4 = 10b).

REG[02CCh] Default = 000		ma Area 4 Vei	rtical Start Lin	e Register			Read/Write
		n	/a				ea 4 Vertical Starts its 9-8
15	14	13	12	11	10	9	8
		PIP2	2 Panorama Area 4 \	/ertical Start Line bits	s 7-0		
7	6	5	4	3	2	1	0

bits 9-0

PIP2 Panorama Area 4 Vertical Start Line bits [9:0]

These bits specify the PIP2 Panorama Area 4 Vertical Start Line, in pixels.

REG[02CCh] bits 9-0 = PIP2 Panorama Area 4 Vertical Start Line in pixels

Note

These bits have no affect when Linear Panorama Scaling Mode is selected (REG[02AEh] bits 5-4 = 10b).

REG[02CEh] Default = 000		Panorama Are	a Vertical Del	ta Register			Read/Write
n	ı/a		PIP2	Linear Panorama Ar	ea Vertical Delta bits	13-8	
15	14	13	12	11	10	9	8
		PIP2	Linear Panorama A	rea Vertical Delta bit	s 7-0		•
7	6	5	4	3	2	1	0
bits 13-0			rama Area Vert ine the linear p			ng factor delta	a for the scaler

and must be programmed based on the following formula.

(REG[02CEh] bits 13- 0) =256 x Δ scale

Where:

 $\Delta scale = (REG[02A4h] - REG[02C2h]) \div (REG[02C6h] - 1)$

Note

These bits only have an effect when Linear Panorama Scaling Mode is selected (REG[02AEh] bits 5-4 = 10b).

REG[02E0h] through REG[02E2h] are Reserved

These registers are Reserved and should not be written.

10.4.10 GPIO Registers

DEC[0200b]	GPIO Configu	ration Pogist	or 0				
Default = 000	-	nation negist					Read/Write
GPIO15 Configuration	GPIO14 Configuration	GPIO13 Configuration	GPIO12 Configuration	GPIO11 Configuration	GPIO10 Configuration	GPIO9 Configuration	GPIO8 Configuration
15	14	13	12	11	10	9	8
GPIO7 Configuration	GPIO6 Configuration	GPIO5 Configuration	GPIO4 Configuration	GPIO3 Configuration	GPIO2 Configuration	GPIO1 Configuration	GPIO0 Configuration
7	6	5	4	3	2	1	0
REG[0302h] Default = 000	GPIO Configu 0h	ration Regist	er 1				Read/Write
			n	/a			
15	14	13	12	11	10	9	8
GPIO23 Configuration	GPIO22 Configuration	GPIO21 Configuration	GPIO20 Configuration	GPIO19 Configuration	GPIO18 Configuration	GPIO17 Configuration	GPIO16 Configuration
7	6	5	4	3	2	1	0

REG[0302h] bits 7-0

REG[0300h] bits 15-0 GPIO[23:0] Configuration

These bits configure each individual GPIO pin between an input or an output. When this bit = 0b, the corresponding GPIO pin is configured as an input pin. (default) When this bit = 1b, the corresponding GPIO pin is configured as an output pin.

REG[0304h]	GPIO Input Ei	nable Registe	r 0				
Default = 000	•		-				Read/Write
GPIO15 Input Enable	GPIO14 Input Enable	GPIO13 Input Enable	GPIO12 Input Enable	GPIO11 Input Enable	GPIO10 Input Enable	GPIO9 Input Enable	GPIO8 Input Enable
15	14	13	12	11	10	9	8
GPIO7 Input Enable	GPIO6 Input Enable	GPIO5 Input Enable	GPIO4 Input Enable	GPIO3 Input Enable	GPIO2 Input Enable	GPIO1 Input Enable	GPIO0 Input Enable
7	6	5	4	3	2	1	0
REG[0306h] Default = 000	GPIO Input E i 0h	nable Registe	r 1				Read/Write
			n	/a			
15	14	13	12	11	10	9	8
GPIO23 Input Enable	GPIO22 Input Enable	GPIO21 Input Enable	GPIO20 Input Enable	GPIO19 Input Enable	GPIO18 Input Enable	GPIO17 Input Enable	GPIO16 Input Enable

4

REG[0306h] bits 7-0 REG[0304h] bits 15-0

6

7

5-0 GPIO[23:0] Input Enable

5

These bits enable the input function of each individual GPIO pin. They must be changed to a 1b after power-on/reset to enable the input function of the corresponding GPIO pin. When this bit = 0b, the input function for the corresponding GPIO pin is disabled. (default)

2

1

When this bit = 1b, the input function for the corresponding GPIO pin is enabled.

3

0

REG[0308h] GPIO Pull-down Control Register 0									
Default = FFFFh									
GPIO15 Pull-down Control	GPIO14 Pull-down Control	GPIO13 Pull-down Control	GPIO12 Pull-down Control	GPIO11 Pull-down Control	GPIO10 Pull-down Control	GPIO9 Pull-down Control	GPIO8 Pull-down Control		
15	14	13	12	11	10	9	8		
GPIO7 Pull-down Control	GPIO6 Pull-down Control	GPIO5 Pull-down Control	GPIO4 Pull-down Control	GPIO3 Pull-down Control	GPIO2 Pull-down Control	GPIO1 Pull-down Control	GPIO0 Pull-down Control		
7	6	5	4	3	2	1	0		
REG[030Ah]	GPIO Pull-do	wn Control Re	egister 1						
Default = 00F			0				Read/Write		

	n/a									
15	14	13	12	11	10	9	8			
GPIO23 Pull-down Control	GPIO22 Pull-down Control	GPIO21 Pull-down Control	GPIO20 Pull-down Control	GPIO19 Pull-down Control	GPIO18 Pull-down Control	GPIO17 Pull-down Control	GPIO16 Pull-down Control			
7	6	5	4	3	2	1	0			

REG[030Ah] bits 7-0

REG[0308h] bits 15-0 GPIO[23:0] Pull-down Control

All GPIO pins have internal pull-down resistors. These bits control the state of the pulldown resistor for each individual GPIO pin.

When the bit = 0b, the pull-down resistor for the associated GPIO pin is inactive. When the bit = 1b, the pull-down resistor for the associated GPIO pin is active.

REG[030Ch] GPIO Status Register 0 Default = 0000h Read/Write									
GPIO15 Status	GPIO14 Status	GPIO13 Status	GPIO12 Status	GPIO11 Status	GPIO10 Status	GPIO9 Status	GPIO8 Status		
15	14	13	12	11	10	9	8		
GPIO7 Status	GPIO6 Status	GPIO5 Status	GPIO4 Status	GPIO3 Status	GPIO2 Status	GPIO1 Status	GPIO0 Status		
7	6	5	4	3	2	1	0		
									

REG[030Eh] GPIO Status Register 1 Default = 0000h

			n	/a			
15	14	13	12	11	10	9	8
GPIO23 Status	GPIO22 Status	GPIO21 Status	GPIO20 Status	GPIO19 Status	GPIO18 Status	GPIO17 Status	GPIO16 Status
7	6	5	4	3	2	1	0

REG[030Eh] bits 7-0

REG[030Ch] bits 15-0 GPIO[23:0] Status

When GPIOx is configured as an output (see REG[0300h] ~ REG[0302h]), writing a 1b to these bits drives GPIOx high and writing a 0b to these bits drives GPIOx low. When GPIOx is configured as an input (see REG[0300h] ~ REG[0302h]), a read from these bits returns the status of GPIOx.

Read/Write

REG[0310h] Default = 000		Edge Interru	pt Trigger Re	gister 0			Read/Write
GPIO15 Positive Edge Trigger	GPIO14 Positive Edge Trigger	GPIO13 Positive Edge Trigger	GPIO12 Positive Edge Trigger	GPIO11 Positive Edge Trigger	GPIO10 Positive Edge Trigger	GPIO9 Positive Edge Trigger	GPIO8 Positive Edge Trigger
15	14	13	12	11	10	9	8
GPIO7 Positive Edge Trigger	GPIO6 Positive Edge Trigger	GPIO5 Positive Edge Trigger	GPIO4 Positive Edge Trigger	GPIO3 Positive Edge Trigger	GPIO2 Positive Edge Trigger	GPIO1 Positive Edge Trigger	GPIO0 Positive Edge Trigger
7	6	5	4	3	2	1	0

REG[0312h] GPIO Positive Edge Interrupt Trigger Register 1 Default = 0000h

n/a									
15	14	13	12	11	10	9	8		
GPIO23 Positive Edge Trigger	GPIO22 Positive Edge Trigger	GPIO21 Positive Edge Trigger	GPIO20 Positive Edge Trigger	GPIO19 Positive Edge Trigger	GPIO18 Positive Edge Trigger	GPIO17 Positive Edge Trigger	GPIO16 Positive Edge Trigger		
7	6	5	4	3	2	1	0		

REG[0312h] bits 7-0

REG[0310h] bits 15-0 GPIO[23:0] Positive Edge Trigger

These bits determine whether the corresponding GPIO interrupt (see REG[0318h] ~ REG[031Ah]) is triggered on the positive edge (when the GPIOx pin changes from 0 to 1). When this bit = 0b, the corresponding GPIO interrupt is not triggered on the positive edge. When this bit = 1b, the corresponding GPIO interrupt is triggered on the positive edge.

Default = 0000h										
GPIO15 Negative Edge Trigger	GPIO14 Negative Edge Trigger	GPIO13 Negative Edge Trigger	GPIO12 Negative Edge Trigger	GPIO11 Negative Edge Trigger	GPIO10 Negative Edge Trigger	GPIO9 Negative Edge Trigger	GPIO8 Negative Edge Trigger			
15	14	13	12	11	10	9	8			
GPIO7 Negative Edge Trigger	GPIO6 Negative Edge Trigger	GPIO5 Negative Edge Trigger	GPIO4 Negative Edge Trigger	GPIO3 Negative Edge Trigger	GPIO2 Negative Edge Trigger	GPIO1 Negative Edge Trigger	GPIO0 Negative Edge Trigger			
7	6	5	4	3	2	1	0			

	EG[0316h] GPIO Negative Edge Interrupt Trigger Register 1 Default = 0000h Read/Write								
	n/a								
15	14	13	12	11	10	9	8		
GPIO23 Negative Edge Trigger									
7	6	5	4	3	2	1	0		

REG[0316h] bits 7-0

REG[0314h] bits 15-0

GPIO[23:0] Negative Edge Trigger

These bits determine whether the corresponding GPIO interrupt (see REG[0318h] ~ REG[031Ah]) is triggered on the negative edge (when the GPIOx pin changes from 1 to 0).

When this bit = 0b, the corresponding GPIO interrupt is not triggered on the negative edge.

When this bit = 1b, the corresponding GPIO interrupt is triggered on the negative edge.

Read/Write

REG[0318h]	REG[0318h] GPIO Interrupt Status Register 0								
Default = 0000h							Read/Write		
GPIO15 Interrupt Status	GPIO14 Interrupt Status	GPIO13 Interrupt Status	GPIO12 Interrupt Status	GPIO11 Interrupt Status	GPIO10 Interrupt Status	GPIO9 Interrupt Status	GPIO8 Interrupt Status		
15	14	13	12	11	10	9	8		
GPIO7 Interrupt Status	GPIO6 Interrupt Status	GPIO5 Interrupt Status	GPIO4 Interrupt Status	GPIO3 Interrupt Status	GPIO2 Interrupt Status	GPIO1 Interrupt Status	GPIO0 Interrupt Status		
7 6 5 4 3 2 1 0									
REG[031Ah]	GPIO Interrur	ot Status Regi	ister 1						

G[031Ah] GPIO Interrupt Status Register 1 Default = 0000h

Default = 000	• 0h	5					Read/Write
			n	/a			
15	14	13	12	11	10	9	8
GPIO23 Interrupt Status	GPIO22 Interrupt Status	GPIO21 Interrupt Status	GPIO20 Interrupt Status	GPIO19 Interrupt Status	GPIO18 Interrupt Status	GPIO17 Interrupt Status	GPIO16 Interrupt Status
7	6	5	4	3	2	1	0

REG[031Ah] bits 7-0

REG[0318h] bits 15-0 GPIO[23:0] Interrupt Status

These bits indicate the status of the corresponding GPIOx interrupt. When this bit = 0b, a GPIOx interrupt has not occurred. When this bit = 1b, a GPIOx interrupt has occurred.

To clear a GPIOx Interrupt Status bit, write a 1b then a 0b to the bit.

	REG[0400h] PIP2-LUT Address Counter Register Read/Write Default = 0000h Read/Write							
			n	/a				
15	14	13	12	11	10	9	8	
			PIP2-LUT Addres	s Counter bits 7-0				
7	6	5	4	3	2	1	0	

bits 7-0

PIP2-LUT Address Counter bits [7:0]

These bits specify the address (or index) into the PIP2-LUT. The PIP2-LUT can be used for gamma control of the PIP2 window and consists of 256 RGB entries.

The RGB values are written into the PIP2-LUT using the PIP2-LUT Data Port (REG[0402h] bits 15-0) as shown in Table 10-39: "PIP2-LUT Data Mapping," on page 157. After each RGB data write to the PIP2-LUT Data Port is completed, the counter is automatically incremented up to a value of FFh. When the address counter value reaches FFh, the address counter is reset to 00h.

	REG[0402h] PIP2-LUT Data Port Register Default = 0000h Read/Write							
			PIP2-LUT Data	a Port bits 15-8				
15	14	13	12	11	10	9	8	
	•	•	PIP2-LUT Dat	ta Port bits 7-0			•	
7	6	5	4	3	2	1	0	

bits 15-0

PIP2-LUT Data Port bits [15:0]

These bits are the access port for setting the PIP2-LUT RGB data. The PIP2-LUT can only be accessed when the PIP2 window is disabled (REG[0202h] bit 2 = 0b) or the LCD Output Port is set to "All Off" (REG[0202h] bits 12-10 = 000b). The LUT data must be set as follows.

Table 10-39:	PIP2-LUT Data Mapping
--------------	-----------------------

Cycle	PIP2-LUT Address (REG[0400h] bits 7-0)	REG[0402h] bits 15-8	REG[0402h] bits 7-0
1	00h	Green 0	Red 0
2	00h	n/a	Blue 0
3	01h	Green 1	Red 1
4	01h	n/a	Blue 1
•	•	•	•
•	•	•	•
•	•	•	•
511	FFh	Green 255	Red 255
512	FFh	n/a	Blue 255

	REG[0500h] LCD-LUT Address Counter Register Default = 0000h Read/Write								
	n/a								
15	14	13	12	11	10	9	8		
			LCD-LUT Addres	s Counter bits 7-0					
7	7 6 5 4 3 2 1 0								

bits 7-0

LCD-LUT Address Counter bits [7:0]

These bits specify the address (or index) into the LCD-LUT. The LCD-LUT can be used for gamma control of the LCD display output and consists of 256 RGB entries.

The RGB values are written into the LCD-LUT using the LCD-LUT Data Port (REG[0502h] bits 15-0) as shown in Table 10-40: "LCD-LUT Data Mapping," on page 158. After each RGB data write to the LCD-LUT Data Port is completed, the counter is automatically incremented up to a value of FFh. When the address counter value reaches FFh, the address counter is reset to 00h.

	REG[0502h] LCD-LUT Data Port Register Default = 0000h Read/Write								
			LCD-LUT Data	a Port bits 15-8					
15	14	13	12	11	10	9	8		
	•		LCD-LUT Dat	a Port bits 7-0					
7	6	5	4	3	2	1	0		

bits 15-0

LCD-LUT Data Port bits [15:0]

These bits are the access port for setting the LCD-LUT RGB data. The LCD-LUT can only be accessed when the LCD-LUT is bypassed (REG[0200h] bit 5 = 1b) or the display is not active (REG[0202h] bits 15-13 = 000b). The LUT data must be set as follows.

Cycle	LCD-LUT Address (REG[0500h] bits 7-0)	REG[0502h] bits 15-8	REG[0502h] bits 7-0
1	00h	Green 0	Red 0
2	00h	n/a	Blue 0
3	01h	Green 1	Red 1
4	01h	n/a	Blue 1
•	•	•	•
•	•	•	•
•	•	•	•
511	FFh	Green 255	Red 255
512	FFh	n/a	Blue 255

Tahle	10-40.	LCD-LUT	Data	Mannina
rubie	10-40.	LCD-LUI	Daia	mapping

10.4.12 Interrupt Control Registers

Default = 0000	Dh						Read Only
GPIO Interface Interrupt Status				n/a			
15	14	13	12	11	10	9	8
	n/a	·	Host Interface Interrupt Status		n/a		Reserved
7	6	5	4	3	2	1	0
	 This bit indicates the status of the GPIO Interface interrupt. This bit is masked by the GPIO Interface Interrupt Enable bit and is only available when REG[0A02h] bit 15 = 1b. When this bit = 0b, a GPIO Interface interrupt has not occurred. When this bit = 1b, a GPIO Interface interrupt has occurred. To determine the exact nature of the interrupt, refer to the status bits in REG[0318h] ~ REG[031Ah] or the status of REG[0A04h] bit 15. To clear this status bit, clear the interrupt condition in REG[0318h] ~ REG[031Ah] or 						
bit 4	REG[0A04h] bit 15, or disable the interrupt (REG[0A02h] bit $15 = 0b$). Host Interface Interrupt Status (Read Only) This bit indicates the status of the Host Interface interrupt. This bit is masked by the Host Interface Interrupt Enable bit and is only available when REG[0A02h] bit 4 = 1b. When this bit = 0b, a Host Interface interrupt has not occurred. When this bit = 1b, a Host Interface interrupt has occurred. To determine the exact nature of the interrupt, refer to the status bits in REG[0192h] or the status of REG[0A04h] bit 4. To clear this status bit, clear the interrupt condition in REG[0192h] or REG[0A04h] bit 4, or disable the interrupt (REG[0A02h] bit 4 = 0b).						
bit 0		erved default value	for this bit is 0	b.			

REG[0A02h] Default = 000		trol Register	0				Read/Write							
GPIO Interface Interrupt Enable														
15	14	13	12	11	10	9	8							
	n/a		Host Interface Interrupt Enable		n/a		Reserved							
7	6	5	4	3	2	1	0							

bit 15

GPIO Interface Interrupt Enable

This bit controls the GPIO Interface interrupt. The status of the GPIO Interface interrupt is indicated by the GPIO Interface Interrupt Status bit, REG[0A00h] bit 15. When this bit = 0b, the GPIO Interface interrupt is disabled.

When this bit = 1b, the GPIO Interface interrupt is enabled.

bit 4	Host Interface Interrupt Enable This bit controls the Host Interface interrupt. The status of the Host Interface interrupt is indicated by the Host Interface Interrupt Status bit, REG[0A00h] bit 4. When this bit = 0b, the Host Interface interrupt is disabled. When this bit = 1b, the Host Interface interrupt is enabled.
bit 0	Reserved The default value for this bit is 0b.

Default = 0000 GPIO Interface				- /-			Read/Write			
Manual Interrupt				n/a						
15	14	13	12	11	10	9	8			
	n/a		n/a		Reserved					
7	6	5	4	3	2	1	0			
	WI	reflected in the GPIO Interface Interrupt Status bit, REG[0A00h] bit 15. When this bit = 0b, the GPIO Interface interrupt is cleared. When this bit = 1b, the GPIO Interface interrupt is asserted.								
bit 4	. Changes to th h] bit 4.	iis bit are								
bit 0	Re Th									

11 Power Save Modes

11.1 Power-On/Power-Off Sequence

Figure 11-1: Power-On/Power-Off Sequence

11.2 Operational Modes

Figure 11-2: Power Modes

11.2.1 Power-On

When powering-on the S1D13748, the following sequence must be used.

- 1. COREVDD, PLLVDD On
- 2. HIOVDD, PIOVDD, GIOVDD On

11.2.2 Reset

After power-on, an active low hardware reset pulse, which is two external clock cycles (CLKI) in length, must be input to the S1D13748 RESET# pin. All registers, including the Clock Configuration registers (REG[000Eh] ~ REG[0018h]) are reset by a hardware reset. After releasing the RESET# signal, the Clock Configuration registers are immediately accessible.

A software reset is enabled by writing to REG[0016h]. All registers, except for the asynchronous registers (REG[0000h] ~ REG[0018h], REG[0300h] ~ REG[031Ah]) are reset. After a software reset, the registers cannot be accessed for four external clock cycles (CLKI).

11.2.3 Standby Mode

Standby Mode offers the lowest power consumption because all internal clock supplies are stopped and the PLL is disabled. This mode must be entered before turning off the power supplies or setting the PLL registers.

In standby mode, the asynchronous registers (REG[0000h] ~ REG[0018h], REG[0300h] ~ REG[031Ah]) can be accessed and the LCD bypass function is available.

11.2.4 Power Save Mode

Power Save Mode stops all internal clock supplies. This mode must be entered before setting the System Clock Setting register (REG[0018h]). Also, there may be up to a 1ms delay before the PLL output becomes stable after it is enabled. The S1D13748 should be in Power Save Mode during this time.

In power save mode, the asynchronous register (REG[0000h] ~ REG[0018h], REG[0300h] ~ REG[031Ah]) can be accessed and the LCD bypass function is available.

11.2.5 Normal Mode

All functions are available in Normal Mode. However, clocks to modules that are not in use are dynamically stopped. Before enabling Power Save Mode (REG[0014] bit 0 = 1b) from Normal Mode, confirm that the memory controller is idle (REG[0014h] bit 6 = 1b).

11.2.6 Power-Off

When powering-off the S1D13748, the following sequence must be used.

- 1. HIOVDD, PIOVDD, GIOVDD Off
- 2. COREVDD, PLLVDD Off

12.1 Host Interface Input Formats

The S1D13748 can receive image data from the Host directly or through the HWC (Host interface Write Controller). The HWC provides configurable functions such as rectangular write, rotational write, mirror write, and additional YUV 4:2:2 and YUV 4:2:0 formats.

When the HWC is enabled (REG[0180h] bit 0 = 1b), data can be sent as YUV 4:2:2 (two formats), YUV 4:2:0 (two formats), or RGB 5:6:5. The following sections describe each possible data format.

12.1.1 YUV 4:2:2 Format 1

When the HWC is enabled (REG[0180h] bit 0 = 1b) and YUV 4:2:2 Format 1 is selected (REG[0180h] bits 7-5 = 000b), the HWC is configured to receive image data from the Host using the following format.

Pixel (0,0)	Pixel (1,0)	Pixel (2,0)	Pixel (3,0)
Pixel (0,1)	Pixel (1,1)	Pixel (2,1)	Pixel (3,1)
Pixel (0,2)	Pixel (1,2)	Pixel (2,2)	Pixel (3,2)
Pixel (0,3)	Pixel (1,3)	Pixel (2,3)	Pixel (3,3)

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	$Y_{(0,0)}^{7}$	Y _(0,0) ⁶	Y _(0,0) ⁵	Y _(0,0) ⁴	Y _(0,0) ³	$Y_{(0,0)}^{2}$	Y _(0,0) ¹	Y _(0,0) ⁰	U _(0,0) ⁷	U _(0,0) ⁶	U _(0,0) ⁵	$U_{(0,0)}^{4}$	U _(0,0) ³	$U_{(0,0)}^{2}$	U _(0,0) ¹	U _(0,0) ⁰
2	Y _(1,0) ⁷	Y _(1,0) ⁶	Y _(1,0) ⁵	Y _(1,0) ⁴	Y _(1,0) ³	$Y_{(1,0)}^{2}$	Y _(1,0) ¹	Y _(1,0) ⁰	V _(0,0) ⁷	V _(0,0) ⁶	V _(0,0) ⁵	V _(0,0) ⁴	V _(0,0) ³	V _(0,0) ²	V _(0,0) ¹	V _(0,0) ⁰
3	Y _(2,0) ⁷	Y _(2,0) ⁶	Y _(2,0) ⁵	Y _(2,0) ⁴	Y _(2,0) ³	$Y_{(2,0)}^{2}$	Y _(2,0) ¹	Y _(2,0) ⁰	U _(2,0) ⁷	U _(2,0) ⁶	U _(2,0) ⁵	U _(2,0) ⁴	U _(2,0) ³	U _(2,0) ²	U _(2,0) ¹	U _(2,0) ⁰
4	$Y_{(3,0)}^{7}$	Y _(3,0) ⁶	Y _(3,0) ⁵	Y _(3,0) ⁴	Y _(3,0) ³	Y _(3,0) ²	Y _(3,0) ¹	Y _(3,0) ⁰	V _(2,0) ⁷	V _(2,0) ⁶	V _(2,0) ⁵	V _(2,0) ⁴	V _(2,0) ³	V _(2,0) ²	V _(2,0) ¹	V _(2,0) ⁰
	$Y_{(0,1)}^{7}$	Y _(0,1) ⁶	Y _(0,1) ⁵	$Y_{(0,1)}^{4}$	Y _(0,1) ³	$Y_{(0,1)}^{2}$	Y _(0,1) ¹	Y _(0,1) ⁰	U _(0,1) ⁷	U _(0,1) ⁶	U _(0,1) ⁵	U _(0,1) ⁴	U _(0,1) ³	$U_{(0,1)}^{2}$	$U_{(0,1)}^{1}$	U _(0,1) ⁰
	$Y_{(1,1)}^{7}$	Y _(1,1) ⁶	Y _(1,1) ⁵	$Y_{(1,1)}^{4}$	Y _(1,1) ³	$Y_{(1,1)}^{2}$	Y _(1,1) ¹	Y _(1,1) ⁰	V _(0,1) ⁷	V _(0,1) ⁶	V _(0,1) ⁵	$V_{(0,1)}^{4}$	V _(0,1) ³	V _(0,1) ²	V _(0,1) ¹	V _(0,1) ⁰
	Y _(2,1) ⁷	Y _(2,1) ⁶	Y _(2,1) ⁵	Y _(2,1) ⁴	Y _(2,1) ³	Y _(2,1)	Y _(2,1) ¹	Y _(2,1) ⁰	U _(2,1) ⁷	U _(2,1) ⁶	U _(2,1) ⁵	U _(2,1) ⁴	U _(2,1) ³	U _(2,1) ²	U _(2,1) ¹	U _(2,1) ⁰
	Y _(3,1) ⁷	Y _(3,1) ⁶	Y _(3,1) ⁵	Y _(3,1) ⁴	Y _(3,1) ³	Y _(3,1)	Y _(3,1) ¹	Y _(3,1) ⁰	V _(2,1) ⁷	V _(2,1) ⁶	V _(2,1) ⁵	V _(2,1) ⁴	V _(2,1) ³	V _(2,1) ²	V _(2,1) ¹	V _(2,1) ⁰

Table 12-1: YUV 4:2:2 Data Format 1

12.1.2 YUV 4:2:2 Format 2 (Separate Y, UV)

When the HWC is enabled (REG[0180h] bit 0 = 1b) and YUV 4:2:2 Format 2 is selected (REG[0180h] bits 7-5 = 001b), the HWC is configured to receive image data from the Host using the following format.

Note

The upper and lower bytes can be swapped using the HWC Data Bus Swap Enable bit, REG[0180h] bit 4.

Pixel (0,0)	Pixel (1,0)	Pixel (2,0)	Pixel (3,0)
Pixel (0,1)	Pixel (1,1)	Pixel (2,1)	Pixel (3,1)
Pixel (0,2)	Pixel (1,2)	Pixel (2,2)	Pixel (3,2)
Pixel (0,3)	Pixel (1,3)	Pixel (2,3)	Pixel (3,3)

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Y _(1,0) ⁷	Y _(1,0) ⁶	Y _(1,0) ⁵	Y _(1,0) ⁴	Y _(1,0) ³	Y _(1,0) ²	Y _(1,0) ¹	Y _(1,0) ⁰	Y _(0,0) ⁷	Y _(0,0) ⁶	Y _(0,0) ⁵	Y _(0,0) ⁴	Y _(0,0) ³	Y _(0,0) ²	Y _(0,0) ¹	Y _(0,0) ⁰
2	Y _(3,0) ⁷	Y _(3,0) ⁶	Y _(3,0) ⁵	Y _(3,0) ⁴	Y _(3,0) ³	Y _(3,0) ²	Y _(3,0) ¹	Y _(3,0) ⁰	Y _(2,0) ⁷	Y _(2,0) ⁶	Y _(2,0) ⁵	Y _(2,0) ⁴	Y _(2,0) ³	Y _(2,0) ²	Y _(2,0) ¹	Y _(2,0) ⁰
	$Y_{(1,1)}^{7}$	Y _(1,1) ⁶	Y _(1,1) ⁵	Y _(1,1) ⁴	Y _(1,1) ³	Y _(1,1) ²	$Y_{(1,1)}^{1}$	Y _(1,1) ⁰	Y _(0,1) ⁷	Y _(0,1) ⁶	Y _(0,1) ⁵	Y _(0,1) ⁴	Y _(0,1) ³	Y _(0,1) ²	Y _(0,1) ¹	Y _(0,1) ⁰
	Y _(3,1) ⁷	Y _(3,1) ⁶	Y _(3,1) ⁵	Y _(3,1) ⁴	Y _(3,1) ³	Y _(3,1) ²	Y _(3,1) ¹	Y _(3,1) ⁰	Y _(2,1) ⁷	Y _(2,1) ⁶	Y _(2,1) ⁵	Y _(2,1) ⁴	Y _(2,1) ³	Y _(2,1) ²	Y _(2,1) ¹	Y _(2,1) 0

Table	12-2:	YUV	4:2:2	Data	Format 2
Inone	122.	10,	1.2.2	Dain	1 01111011 2

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	V _(0,0) ⁷	V _(0,0) ⁶	V _(0,0) ⁵	V _(0,0) ⁴	V _(0,0) ³	V _(0,0) ²	V _(0,0) ¹	V _(0,0) ⁰	U _(0,0) ⁷	U _(0,0) ⁶	U _(0,0) ⁵	$U_{(0,0)}^{4}$	U _(0,0) ³	U _(0,0) ²	U _(0,0) ¹	U _(0,0) ⁰
2	V _(2,0) ⁷	V _(2,0) ⁶	V _(2,0) ⁵	V _(2,0) ⁴	V _(2,0) ³	V _(2,0) ²	V _(2,0) ¹	V _(2,0) ⁰	U _(2,0) ⁷	U _(2,0) ⁶	U _(2,0) ⁵	U _(2,0) ⁴	U _(2,0) ³	U _(2,0) ²	U _(2,0) ¹	U _(2,0) ⁰
	V _(0,1) ⁷	V _(0,1) ⁶	V _(0,1) ⁵	V _(0,1) ⁴	V _(0,1) ³	V _(0,1) ²	V _(0,1) ¹	V _(0,1) ⁰	U _(0,1) ⁷	U _(0,1) ⁶	U _(0,1) ⁵	$U_{(0,1)}^{4}$	U _(0,1) ³	U _(0,1) ²	U _(0,1) ¹	U _(0,1) ⁰
	V _(2,1) ⁷	V _(2,1) ⁶	V _(2,1) ⁵	V _(2,1) ⁴	V _(2,1) ³	V _(2,1) ²	V _(2,1) ¹	V _(2,1) ⁰	U _(2,1) ⁷	U _(2,1) ⁶	U _(2,1) ⁵	U _(2,1) ⁴	U _(2,1) ³	U _(2,1) ²	U _(2,1) ¹	U _(2,1) ⁰

12.1.3 YUV 4:2:0 Format 1

When the HWC is enabled (REG[0180h] bit 0 = 1b) and YUV 4:2:0 Format 1 is selected (REG[0180h] bits 7-5 = 010b), the HWC is configured to receive image data from the Host using the following format.

Pixel (0,0)	Pixel (1,0)	Pixel (2,0)	Pixel (3,0)
Pixel (0,1)	Pixel (1,1)	Pixel (2,1)	Pixel (3,1)
Pixel (0,2)	Pixel (1,2)	Pixel (2,2)	Pixel (3,2)
Pixel (0,3)	Pixel (1,3)	Pixel (2,3)	Pixel (3,3)

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Y _(0,0) ⁷	Y _(0,0) ⁶	Y _(0,0) ⁵	$Y_{(0,0)}^{4}$	Y _(0,0) ³	Y _(0,0) ²	Y _(0,0) ¹	Y _(0,0) ⁰	U _(0,0) ⁷	U _(0,0) ⁶	U _(0,0) ⁵	$U_{(0,0)}^{4}$	U _(0,0) ³	U _(0,0) ²	U _(0,0) ¹	U _(0,0) ⁰
2	Y _(1,0) ⁷	Y _(1,0) ⁶	Y _(1,0) ⁵	Y _(1,0) ⁴	Y _(1,0) ³	Y _(1,0) ²	Y _(1,0) ¹	Y _(1,0) ⁰	V _(0,0) ⁷	V _(0,0) ⁶	V _(0,0) ⁵	V _(0,0) ⁴	V _(0,0) ³	V _(0,0) ²	V _(0,0) ¹	V _(0,0) ⁰
3	Y _(2,0) ⁷	Y _(2,0) ⁶	Y _(2,0) ⁵	Y _(2,0) ⁴	Y _(2,0) ³	Y _(2,0) ²	Y _(2,0) ¹	Y _(2,0) ⁰	U _(2,0) ⁷	U _(2,0) ⁶	U _(2,0) ⁵	U _(2,0) ⁴	U _(2,0) ³	U _(2,0) ²	U _(2,0) ¹	U _(2,0) ⁰
4	Y _(3,0) ⁷	Y _(3,0) ⁶	Y _(3,0) ⁵	Y _(3,0) ⁴	Y _(3,0) ³	Y _(3,0) ²	Y _(3,0) ¹	Y _(3,0) ⁰	V _(2,0) ⁷	V _(2,0) ⁶	V _(2,0) ⁵	V _(2,0) ⁴	V _(2,0) ³	V _(2,0) ²	V _(2,0) ¹	V _(2,0) ⁰
	Y _(1,1) ⁷	Y _(1,1) ⁶	Y _(1,1) ⁵	Y _(1,1) ⁴	Y _(1,1) ³	$Y_{(1,1)}^{2}$	$Y_{(1,1)}^{1}$	Y _(1,1) ⁰	Y _(0,1) ⁷	Y _(0,1) ⁶	Y _(0,1) ⁵	Y _(0,1) ⁴	Y _(0,1) ³	Y _(0,1) ²	Y _(0,1) ¹	Y _(0,1) ⁰
	Y _(3,1) ⁷	Y _(3,1) ⁶	Y _(3,1) ⁵	Y _(3,1) ⁴	Y _(3,1) ³	Y _(3,1) ²	Y _(3,1) ¹	Y _(3,1) ⁰	Y _(2,1) ⁷	Y _(2,1) ⁶	Y _(2,1) ⁵	Y _(2,1) ⁴	Y _(2,1) ³	Y _(2,1) ²	Y _(2,1) ¹	Y _(2,1) ⁰

12.1.4 YUV 4:2:0 Format 2 (Separate Y, UV)

When the HWC is enabled (REG[0180h] bit 0 = 1b) and YUV 4:2:2 Format 2 is selected (REG[0180h] bits 7-5 = 011b), the HWC is configured to receive image data from the Host using the following format.

Note

The upper and lower bytes can be swapped using the HWC Data Bus Swap Enable bit, REG[0180h] bit 4.

Pixel (0,0)	Pixel (1,0)	Pixel (2,0)	Pixel (3,0)
Pixel (0,1)	Pixel (1,1)	Pixel (2,1)	Pixel (3,1)
Pixel (0,2)	Pixel (1,2)	Pixel (2,2)	Pixel (3,2)
Pixel (0,3)	Pixel (1,3)	Pixel (2,3)	Pixel (3,3)

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	Y _(1,0) ⁷	Y _(1,0) ⁶	Y _(1,0) ⁵	Y _(1,0) ⁴	Y _(1,0) ³	Y _(1,0) ²	Y _(1,0) ¹	Y _(1,0) ⁰	Y _(0,0) ⁷	Y _(0,0) ⁶	Y _(0,0) ⁵	Y _(0,0) ⁴	Y _(0,0) ³	Y _(0,0) ²	Y _(0,0) ¹	Y _(0,0) ⁰
2	Y _(3,0) ⁷	Y _(3,0) ⁶	Y _(3,0) ⁵	Y _(3,0) ⁴	Y _(3,0) ³	Y _(3,0) ²	Y _(3,0) ¹	Y _(3,0) ⁰	Y _(2,0) ⁷	Y _(2,0) ⁶	Y _(2,0) ⁵	Y _(2,0) ⁴	Y _(2,0) ³	Y _(2,0) ²	Y _(2,0) ¹	Y _(2,0) ⁰
	Y _(1,1) ⁷	Y _(1,1) ⁶	Y _(1,1) ⁵	Y _(1,1) ⁴	Y _(1,1) ³	Y _(1,1) ²	Y _(1,1) ¹	Y _(1,1) ⁰	Y _(0,1) ⁷	Y _(0,1) ⁶	Y _(0,1) ⁵	Y _(0,1) ⁴	Y _(0,1) ³	Y _(0,1) ²	Y _(0,1) ¹	Y _(0,1) ⁰
	Y _(3,1) ⁷	Y _(3,1) ⁶	Y _(3,1) ⁵	Y _(3,1) ⁴	Y _(3,1) ³	Y _(3,1) ²	Y _(3,1) ¹	Y _(3,1) ⁰	Y _(2,1) ⁷	Y _(2,1) ⁶	Y _(2,1) ⁵	Y _(2,1) ⁴	Y _(2,1) ³	Y _(2,1) ²	Y _(2,1) ¹	Y _(2,1) ⁰

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	V _(0,0) ⁷	V _(0,0) ⁶	V _(0,0) ⁵	V _(0,0) ⁴	V _(0,0) ³	V _(0,0) ²	V _(0,0) ¹	V _(0,0) ⁰	U _(0,0) ⁷	U _(0,0) ⁶	U _(0,0) ⁵	$U_{(0,0)}^{4}$	U _(0,0) ³	$U_{(0,0)}^{2}$	U _(0,0) ¹	U _(0,0) ⁰
2	V _(2,0) ⁷	V _(2,0) ⁶	V _(2,0) ⁵	V _(2,0) ⁴	V _(2,0) ³	V _(2,0) ²	V _(2,0) ¹	V _(2,0) ⁰	U _(2,0) ⁷	U _(2,0) ⁶	U _(2,0) ⁵	U _(2,0) ⁴	U _(2,0) ³	U _(2,0) ²	U _(2,0) ¹	U _(2,0) ⁰
	V _(0,2) ⁷	V _(0,2) ⁶	V _(0,2) ⁵	V _(0,2) ⁴	V _(0,2) ³	V _(0,2) ²	V _(0,2) ¹	V _(0,2) ⁰	U _(0,2) ⁷	U _(0,2) ⁶	U _(0,2) ⁵	U _(0,2) ⁴	U _(0,2) ³	$U_{(0,2)}^{2}$	U _(0,2) ¹	U _(0,2) ⁰
	V _(2,2) ⁷	V _(2,2) ⁶	V _(2,2) ⁵	V _(2,2) ⁴	V _(2,2) ³	V _(2,2) ²	V _(2,2) ¹	V _(2,2) ⁰	U _(2,2) ⁷	U _(2,2) ⁶	U _(2,2) ⁵	U _(2,2) ⁴	U _(2,2) ³	U _(2,2) ²	U _(2,2) ¹	U _(2,2) ⁰

12.1.5 RGB 5:6:5

When the HWC is enabled (REG[0180h] bit 0 = 1b) and RGB 5:6:5 is selected (REG[0180h] bits 7-5 = 100b), the HWC is configured to receive image data from the Host using the following format.

The following table specifies pixel data in the following manner. For example, $R_{(0,0)}^4$ defines the most significant bit of R data for the pixel at X,Y position 0,0. All pixel positions correspond to the row and column positions shown below.

Pixel (0,0)	Pixel (1,0)	Pixel (2,0)	Pixel (3,0)
Pixel (0,1)	Pixel (1,1)	Pixel (2,1)	Pixel (3,1)
Pixel (0,2)	Pixel (1,2)	Pixel (2,2)	Pixel (3,2)
Pixel (0,3)	Pixel (1,3)	Pixel (2,3)	Pixel (3,3)

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	$R_{(0,0)}^{4}$	R _(0,0) ³	$R_{(0,0)}^{2}$	R _(0,0) ¹	R _(0,0) ⁰	$G_{(0,0)}^{5}$	$G_{(0,0)}^{4}$	$G_{(0,0)}^{3}$	$G_{(0,0)}^{2}$	G _(0,0) ¹	G _(0,0) ⁰	B _(0,0) ⁴	B _(0,0) ³	B _(0,0) ²	B _(0,0) ¹	B _(0,0) ⁰
2	R _(1,0) ⁴	R _(1,0) ³	$R_{(1,0)}^{2}$	R _(1,0) ¹	R _(1,0) ⁰	G _(1,0) ⁵	G _(1,0) ⁴	G _(1,0) ³	G _(1,0) ²	G _(1,0) ¹	G _(1,0) ⁰	B _(1,0) ⁴	B _(1,0) ³	B _(1,0) ²	B _(1,0) ¹	B _(1,0) ⁰
3	R _(2,0) ⁴	R _(2,0) ³	R _(2,0) ²	R _(2,0) ¹	R _(2,0) ⁰	G _(2,0) ⁵	G _(2,0) ⁴	G _(2,0) ³	$G_{(2,0)}^{2}$	G _(2,0) ¹	G _(2,0) ⁰	B _(2,0) ⁴	B _(2,0) ³	B _(2,0) ²	B _(2,0) ¹	B _(2,0) ⁰
4	$R_{(3,0)}^{4}$	R _(3,0) ³	$R_{(3,0)}^{2}$	R _(3,0) ¹	R _(3,0) ⁰	G _(3,0) ⁵	G _(3,0) ⁴	G _(3,0) ³	$G_{(3,0)}^{2}$	G _(3,0) ¹	G _(3,0) ⁰	B _(3,0) ⁴	B _(3,0) ³	B _(3,0) ²	B _(3,0) ¹	B _(3,0) ⁰
	R _(0,1) ⁴	R _(0,1) ³	$R_{(0,1)}^{2}$	R _(0,1) ¹	R _(0,1) ⁰	G _(0,1) ⁵	G _(0,1) ⁴	G _(0,1) ³	$G_{(0,1)}^{2}$	G _(0,1) ¹	G _(0,1) ⁰	B _(0,1) ⁴	B _(0,1) ³	B _(0,1) ²	B _(0,1) ¹	B _(0,1) ⁰
	$R_{(1,1)}^{4}$	R _(1,1) ³	$R_{(1,1)}^{2}$	$R_{(1,1)}^{1}$	$R_{(1,1)}^{0}$	G _(1,1) ⁵	G _(1,1) ⁴	G _(1,1) ³	$G_{(1,1)}^{2}$	G _(1,1) ¹	G _(1,1) ⁰	B _(1,1) ⁴	B _(1,1) ³	B _(1,1) ²	B _(1,1) ¹	B _(1,1) ⁰
	R _(2,1) ⁴	R _(2,1) ³	$R_{(2,1)}^{2}$	R _(2,1) ¹	R _(2,1) ⁰	G _(2,1) ⁵	G _(2,1) ⁴	G _(2,1) ³	G _(2,1) ²	G _(2,1) ¹	G _(2,1) 0	B _(2,1) ⁴	B _(2,1) ³	B _(2,1) ²	B _(2,1) ¹	B _(2,1) ⁰
	R _(3,1) ⁴	R _(3,1) ³	$R_{(3,1)}^{2}$	$R_{(3,1)}^{1}$	R _(3,1) ⁰	G _(3,1) ⁵	G _(3,1) ⁴	G _(3,1) ³	$G_{(3,1)}^{2}$	G _(3,1) ¹	G _(3,1) ⁰	B _(3,1) ⁴	B _(3,1) ³	B _(3,1) ²	B _(3,1) ¹	B _(3,1) ⁰

Table 12-5: RGB 5:6:5 Data Format

12.2 Frame Buffer Data Format

Image data is stored in the frame buffer using the following formats according to the selected input format from the Host. The input format is selected using the Host Interface Data Type Select bits, REG[0180h] bits 7-5. Set the writing starting address so that it is stored as follows when it rotates, the mirror reverses, and input the image from the host interface.

YUV 4:2:2 input data is stored as shown below. YUV 4:2:0 input data is first converted to YUV 4:2:2 data, and then stored as shown below. For example, Y_0^7 defines the most significant bit of Y data for pixel 0.

Address	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000h	Y ₀ ⁷	Y_0^6	Y_0^{5}	Y ₀ ⁴	Y ₀ ³	Y_0^2	Y_0^1	Y_0^0	U_0^{7}	U_0^{6}	U_0^{5}	U_0^4	U_0^3	U_0^2	U_0^1	U_0^0
0002h	Y ₁ ⁷	Y ₁ ⁶	Y ₁ ⁵	Y ₁ ⁴	Y ₁ ³	Y ₁ ²	Y_1^1	Y ₁ ⁰	V ₀ ⁷	V0 ⁶	V_0^5	V ₀ ⁴	V ₀ ³	V_0^2	V ₀ ¹	V ₀ ⁰
0004h	Y ₂ ⁷	Y2 ⁶	Y2 ⁵	Y ₂ ⁴	Y ₂ ³	Y ₂ ²	Y_2^1	Y_2^0	U_2^7	U_2^6	U_2^5	U_2^4	U_2^3	U_2^2	U_2^1	U_2^0
0006h	Y ₃ ⁷	Y ₃ ⁶	Y ₃ ⁵	Y ₃ ⁴	Y ₃ ³	Y_3^2	Y_3^1	Y_3^0	V ₂ ⁷	V2 ⁶	V2 ⁵	V2 ⁴	V2 ³	V_2^2	V ₂ ¹	V ₂ ⁰

Table 12-6: YUV Format Data Stored in the Frame Buffer

RGB 5:6:5 input data is stored as shown below. For example, R_0^4 defines the most significant bit of R data for pixel 0.

Address	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0000h	R_0^4	R_0^3	R_0^2	R_0^1	R_0^0	${G_0}^5$	G_0^4	G_0^3	G_0^2	G_0^1	G_0^{0}	B_0^4	B ₀ ³	B ₀ ²	B ₀ ¹	B ₀ ⁰
0002h	R_1^4	R_1^3	R_1^2	R_1^1	R_1^0	G1 ⁵	G_1^4	G_1^3	G_1^2	G_1^1	G_1^0	B_1^4	B1 ³	B1 ²	B1 ¹	B ₁ ⁰
0004h	R_2^4	R_2^3	R_2^2	R_2^1	R_2^0	${\rm G_2}^5$	G_2^4	G_2^3	G_2^2	G_2^1	G_2^0	B_2^4	B_2^3	B_2^2	B_2^1	B ₂ ⁰
0006h	R_3^4	R_3^3	R_3^2	R_3^1	R_3^0	${G_3}^5$	G_3^4	G_3^3	G_3^2	G ₃ ¹	G_3^0	B_3^4	B_3^3	B_3^2	B_3^1	B ₃ ⁰

Table 12-7: RGB Format Data Stored in the Frame Buffer

13 Display Functions

The S1D13748 supports up to three layers which support Transparency and Alpha Blending functions.

- Main Layer
- PIP1 Layer
- PIP2 Layer

The Main Layer can consist of up to two non-overlapping windows. The image data is always stored as RGB 5:6:5 and the output image can be doubled in size using the Pixel Doubling feature.

The PIP1 Layer image data is stored as either RGB 5:6:5 or YUV 4:2:2. It includes a bicubic scaler that can resize the image data from $8x \sim 1/8x$ and an edge enhancement function.

The PIP2 Layer image data is stored as either RGB 5:6:5 or YUV 4:2:2. It also includes a bi-cubic scaler that can resize the image data from $8x \sim 1/8x$. In addition, it can perform Panorama scaling (vertical variable rate scaling). The PIP2 includes an edge enhancement function and a LUT which can be used for independent gamma control of the PIP2 window.

Any portion of the display not covered by one of the layers is set to the configurable Background Color (see REG[0206h]).

13.1 Main Layer

The Main Layer can consist of up to 2 windows (Main1 and Main2). The windows cannot overlap and must observe the restrictions shown in Section 13.1.1, "Main Layer Restrictions" on page 173. Each window is independently configured using an x,y coordinate to determine the location of the window relative to the top left corner of the panel (0,0), and height and width registers to specify the size of each window.

The size of the entire display image is determined by the HDP (Horizontal Display Period) and VDP (Vertical Display Period) settings. Any portion of the display not covered is set to the background color.

The main window(s) image data is stored in display memory as RGB 5:6:5 format starting at the specified display start address. The following figure shows the registers used to configure the x,y start positions and sizes of the Main windows.

Figure 13-2: Configuring the Main Windows

13.1.1 Main Layer Restrictions

The following restrictions must be considered when configuring the Main Layer windows.

- The right edge of the main window (Main1 or Main2) must not exceed the width of the display panel as defined by HDP, in pixels.
- The bottom edge of the main window (Main1 or Main2) must not exceed the height of the display panel as defined by VDP, in lines.
- The bottom edge of the Main1 window must not exceed the top edge of the Main2 window, in lines.

Figure 13-3: Main Layer Restrictions

13.1.2 Main Layer Input Format

The image data must be input to the S1D13748 as RGB 5:6:5 format. It is stored in this format and converted to RGB 8:8:8 format before being output to the panel in the following manner.

Figure 13-4: RGB 5:6:5 to RGB 8:8:8 Conversion

13.1.3 Main Layer Pixel Doubling

The image data for both main windows can be expanded using Pixel Doubling allowing easy migration to larger panel sizes using existing image data. The following figure shows an example where pixel doubling is enabled for the Main1 Window.

Figure 13-5: Main Layer Pixel Doubling Example

Note

The Main Layer restrictions contained in Section 13.1.1, "Main Layer Restrictions" on page 173 apply to the "Pixel Doubled" dimensions. For example, enabling horizontal pixel doubling cannot cause the right edge of the Main1 window to exceed the HDP.

Pixel Doubling can be independently controlled in both the horizontal and vertical directions for each Main window using the following registers. For further information on each bit, refer to the bit descriptions in Section 10.4.7, "Display Configuration Registers" on page 105

Table 13-1: Main Layer Pixel Doubling Registers

Main Window	Horizontal Enable	Vertical Enable
Main 1	REG[0244h] bit 12	REG[0244h] bit 13
Main 2	REG[024Eh] bit 12	REG[024Eh] bit 13

13.2 PIP Layers

The S1D13748 supports two PIP Layers (PIP1 and PIP2). Each layer consists of a window which can overlap the other PIP window and the Main windows. The PIP windows must observe the restrictions shown in Section 13.2.1, "PIP Window Restrictions" on page 177. Each PIP window is independently configured by defining the start and end x,y coordinates of the window relative to the top left corner of the panel (0,0).

The size of the entire display image is determined by the HDP (Horizontal Display Period) and VDP (Vertical Display Period) settings. Any portion of the display not covered by a PIP layer or the Main layer (see Section 13.1, "Main Layer" on page 172), is set to the background color.

The image data for the PIP windows is stored in display memory as RGB 5:6:5 or YUV 4:2:2 format starting at the specified display start address. The following shows the registers used to configure the PIP windows.

Figure 13-6: PIP Window Setting

13.2.1 PIP Window Restrictions

The following restrictions must be considered when configuring the PIP windows.

- The right edge of the PIP window (PIP1 or PIP2) must not exceed the total width of the display panel as defined by HDP, in pixels.
- The bottom edge of the PIP window (PIP1 or PIP2) must not exceed the total height of the display panel as defined by VDP, in lines.

Figure 13-7: PIP Window Restrictions

13.2.2 Using The Scalers

Both PIP Layers include a bi-cubic scaler which can be used to expand the PIP window source image data up to 8x or reduce it down to 1/8x. Both scalers include configurable horizontal and vertical filters which reduce artifacting caused by large scaling (see REG[0260h] and REG[0268h] for PIP1, REG[02A0h] and REG[02A8h] for PIP2). The following restrictions must be observed when configuring the both the PIP1 and PIP2 Scalers.

- The minimum source image size is 4x4 pixels.
- The maximum source image size is 510x1022 pixels.
- The maximum scale-down rate is 1/8 (for details on this restriction refer to REG[0262h] ~ REG[0264h] and REG[02A2h] ~ REG[02A4h] in Section 10.4, "Register Descriptions" on page 71).

Note

The PIP2 window also supports Panorama Scaling which allows a variable scaling rate in the vertical direction. For further information on Panorama Scaling, see Section 13.2.4, "PIP2 Panorama Scaling" on page 183.

When using the scaler, three sizes are important: the Source Image size, the Resulting Image size, and the PIP window size. The horizontal and vertical scaling is applied to the source image to produce the resulting image which is displayed in the PIP window. Depending on the relationship between the resulting size and the PIP window size, there are three possible cases.

• Case 1 - The resulting image is smaller than the defined PIP window in either the horizontal or vertical direction. In this case, the PIP image is positioned at coordinate 0,0 of the PIP window and the area of the PIP window not filled with image data remains black. This case takes place when either of the following formulas are true.

PIP Image Horizontal Size < (PIP Window X End Position - PIP Window X Start Position) PIP Image Vertical Size < (PIP Window Y End Position - PIP Window Y Start Position)

• Case 2 - The resulting image is the same size as the defined PIP window. In this case, the PIP image is positioned at coordinate 0,0 of the PIP window and fills the entire area of the PIP window. This case takes place when both of the following formulas are true.

PIP Image Horizontal Size = (PIP Window X End Position - PIP Window X Start Position) PIP Image Vertical Size = (PIP Window Y End Position - PIP Window Y Start Position)

• Case 3 - The resulting image is larger than the defined PIP window. In this case, the PIP image is positioned at coordinate 0,0 of the PIP window, but it is trimmed to the size of the PIP window. Any image data outside of the PIP window is not displayed. This case takes place when either of the following formulas are true.

PIP Image Horizontal Size > (PIP Window X End Position - PIP Window X Start Position) PIP Image Vertical Size > (PIP Window Y End Position - PIP Window Y Start Position)

The following figure shows examples for each case.

Figure 13-8: Displaying Scaled Images in a PIP Window

To scale the source image display in the PIP window use the following procedure.

Figure 13-9: Scaler Programming Procedure
Horizontal Scale Rate

up operations.

To scale-down the source image using a scaling ratio of 0.7, program the Horizontal Scale Rate register (REG[0262h] for PIP1, REG[02A2h] for PIP2) as follows.

Horizontal Scale Rate = $1024 \times (1 \div 0.7)$ = 1462= 5B6h

To scale-up the source image using a scaling ratio of 1.5, program the Horizontal Scale Rate register (REG[0262h] for PIP1, REG[02A2h] for PIP2) as follows.

Horizontal Scale Rate = $1024 \times (1 \div 1.5)$ = 682= 2AAh

Vertical Scale Rate

To scale-down the source image using a scaling ratio of 0.7, program the Vertical Scale Rate register (REG[0264h] for PIP1, REG[02A4h] for PIP2) as follows.

Vertical Scale Rate $= 1024 \text{ x} (1 \div 0.7)$ = 1462= 5B6h

To scale-up the source image using a scaling ratio of 1.5, program the Horizontal Scale Rate register (REG[0264h] for PIP1, REG[02A4h] for PIP2) as follows.

Vertical Scale Rate $= 1024 \text{ x} (1 \div 1.5)$ = 682= 2AAh

13.2.3 Data Conversion to RGB

After scaling takes place, all PIP window image data is converted to RGB 8:8:8.

If the input format is RGB 5:6:5, it is converted using the following method.

RGB 5:6:5 Format		RGB 8:8:8 Format							
R4 R3 R2	R1 R0	→ R4	R3	R2	R1	R0	R4	R4	R4
G5 G4 G3	G2 G1 G0	→ G8	6 G4	G3	G2	G1	G0	G5	G5
B4 B3 B2	B1 B0	→ B4	B3	B2	B1	B0	B4	B4	B4

Figure 13-10: RGB 5:6:5 to RGB 8:8:8 Conversion

If the input format is YUV 4:2:2, it is converted according to the following equation.

$$\begin{bmatrix} R\\G\\B \end{bmatrix} = \begin{bmatrix} 1.000 & 0.000 & 1.402\\ 1.000 & -0.344 & -0.714\\ 1.000 & 1.722 & 0.00 \end{bmatrix} \begin{bmatrix} Y\\U\\V \end{bmatrix}$$

13.2.4 PIP2 Panorama Scaling

Partial Panorama Mode

The following example uses partial panorama mode to expand a 240x320 image to 480x800.

Figure 13-11: Partial Panorama Mode Example

Bit riedValueDescriptionREG[0230h] bits 9-0PIP2 Window X Start PositionREG[0232h] bits 9-0PIP2 Window Y Start PositionREG[0236h] bits 9-0PIP2 Window X End PositionREG[0236h] bits 9-0PIP2 Window Y End PositionREG[0236h] bits 9-0PIP2 Window Display Start AddressREG[0236h] bits 9-0PIP2 Window Display Start AddressREG[0286h] is 11-1PIP2 Source Image Horizontal SizeREG[0286h] bits 8-1PIP2 Source Image Vertical SizeREG[0226h] bits 8-1PIP2 Source Image Vertical SizeREG[02A6h] bit 7Scalar Soft ResetREG[02A6h] bit 7Scalar Input Format SelectREG[02A6h] bit 1-11REG[02A6h] bit 51Vertical Filter ModeREG[02A6h] bit 11REG[02A0h] bit 11Horizontal ScaleREG[02A0h] bit 12-0200hVertical ScaleREG[02A4h] bits 12-0200hREG[02A4h] bits 12-0200hVertical ScaleREG[02C4h] bit 51REG[02C4h] bits 12-0209hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 9-0C9hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-015FhPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 3 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 5-41hWirde Scaling Mode SelectREG[02A6h] bit 7-0Coefficient Table Access Port </th <th>F</th> <th></th> <th>na Mode Programming Example</th>	F		na Mode Programming Example
REG[0232h] bits 9-0PIP2 Window Y Start PositionREG[0234h] bits 9-0PIP2 Window X End PositionREG[0236h] bits 9-0PIP2 Window V End PositionREG[0286h] bits 9-0PIP2 Window Display Start Addressbits 19-1PIP2 Window Line Address OffsetREG[0286h] bits 11-1PIP2 Window Line Address OffsetREG[0286h] bits 11-1PIP2 Source Image Horizontal SizeREG[0286h] bits 8-1PIP2 Source Image Horizontal SizeREG[02A6h] bit 15Scalar Soft ResetREG[02A6h] bit 7Scalar Input Format SelectREG[02A6h] bit 51REG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51REG[02A0h] bit 11Horizontal ScaleREG[02A2h] bit 12-0200hHorizontal ScaleREG[02A4h] bits 12-0200hREG[02A4h] bits 12-0200hREG[02A4h] bits 12-0200hREG[02A4h] bits 12-0299hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area 1 Vertical ScaleREG[02C4h] bits 9-0C9hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 3 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access Port<	Bit Field	Value	Description
REG[0234h] bits 9-0PIP2 Window X End PositionREG[0236h] bits 9-0PIP2 Window Y End PositionREG[0288h] ~ REG[028Ah] bits 19-1PIP2 Window Display Start AddressREG[028Ch] bits 11-1PIP2 Window Line Address OffsetREG[028Ch] bits 11-1PIP2 Source Image Horizontal SizeREG[022Ch] bits 8-1PIP2 Source Image Vertical SizeREG[02ACh] bits 9-0PIP2 Source Image Vertical SizeREG[02ACh] bits 9-0PIP2 Source Image Vertical SizeREG[02ACh] bits 7Scalar Soft ResetREG[02ACh] bits 151REG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51REG[02A0h] bit 11Horizontal Filter ModeREG[02A0h] bit 11REG[02A0h] bits 12-0200hREG[02A0h] bits 12-0200hVertical ScaleREG[02Ch] bits 12-017FhPIP2 Panorama Area A Vertical ScaleREG[02Ch] bits 12-0299hPIP2 Panorama Area 1 Vertical Start LineREG[02Ch] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02Ch] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02Ch] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 51REG[02A6h] bit 7Coefficient Table Access PortREG[02A6h] bit 51<			
REG[0236h] bits 9-0PIP2 Window Y End PositionREG[0288h] ~ REG[02BAh] bits 19-1PIP2 Window Display Start AddressREG[02BCh] bits 11-1PIP2 Window Line Address OffsetREG[02BCh] bits 8-1PIP2 Source Image Horizontal SizeREG[02C0h] bits 9-0PIP2 Source Image Vertical SizeREG[02Ach] bit 7Scalar Soft ResetREG[02Ach] bit 7Scalar Input Format SelectREG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51REG[02A0h] bit 11Horizontal Filter ModeREG[02A0h] bit 12-0200hREG[02A2h] bit 12-0200hREG[02A2h] bits 12-0200hREG[02A2h] bits 12-0200hREG[02C4h] bits 12-0200hREG[02C4h] bits 12-0200hREG[02C4h] bits 12-0209hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 9-015FhPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 3 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 7Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7			PIP2 Window Y Start Position
REG[0288h] ~ REG[028Ah] bits 19-1PIP2 Window Display Start AddressREG[028Ch] bits 11-1PIP2 Window Line Address OffsetREG[028Ch] bits 8-1PIP2 Source Image Horizontal SizeREG[0200h] bits 9-0PIP2 Source Image Vertical SizeREG[02Ach] bit 15Scalar Soft ResetREG[02Ach] bit 7Scalar Input Format SelectREG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51REG[02A0h] bit 11Horizontal Filter ModeREG[02A0h] bit 12-0200hREG[02A1] bit 12-0200hREG[02A24h] bit 12-0200hREG[02A4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0209hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 9-015FhPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40REG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Tabl	REG[0234h] bits 9-0		PIP2 Window X End Position
bits 19-1PIP2 Window Display Start AddressREG[02BCh] bits 11-1PIP2 Window Line Address OffsetREG[02BCh] bits 8-1PIP2 Source Image Horizontal SizeREG[02C0h] bits 9-0PIP2 Source Image Vertical SizeREG[02AEh] bit 15Scalar Soft ResetREG[02AEh] bit 7Scalar Input Format SelectREG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 11Horizontal ScaleREG[02A0h] bits 12-0200hREG[02A2h] bits 12-0200hVertical ScaleREG[02C2h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area 1 Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area 3 Vertical Start LineREG[02C4h] bits 9-015FhPIP2 Panorama Area 3 Vertical Start LineREG[02CAh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 3 -0Coefficient Table Access PortREG[02A6h] bit 41REG[02A6h] bit 5 -0Coefficient Table Access PortREG[02A6h] bit 5 -0Coefficient Table Access PortREG[02A6h] bit 5 -0Coefficient Table Access PortREG[02A6h] bit 5 -0Coefficient Ta	REG[0236h] bits 9-0		PIP2 Window Y End Position
REG[02BEh] bits 8-1PIP2 Source Image Horizontal SizeREG[02C0h] bits 9-0PIP2 Source Image Vertical SizeREG[02AEh] bit 15Scalar Soft ResetREG[02AEh] bit 7Scalar Input Format SelectREG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 11REG[02A2h] bits 12-0200hREG[02A2h] bits 12-0200hREG[02A2h] bits 12-0200hREG[02C2h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area A Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40REG[02A6h] bit 5 -41hWide Scaling Mode SelectREG[02A6h] bit 5 -0Coefficient Table Access PortREG[02A6h] bit 70Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h			PIP2 Window Display Start Address
REG[02C0h] bits 9-0PIP2 Source Image Vertical SizeREG[02AEh] bit 15Scalar Soft ResetREG[02AEh] bit 7Scalar Input Format SelectREG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 11Horizontal Filter ModeREG[02A0h] bit 11REG[02A2h] bits 12-0200hHorizontal ScaleREG[02A2h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area A Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02Ch] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02Ch] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 40REG[02A6h] bit 5REG[02A6h] bit 5REG[02A6h] bit 4REG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7REG[02A0h] bit 7REG[02A0h] bit 7REG[02A0h] bit 7REG[02A0h] bit 7REG[02A0h] bit 7REG[02	REG[02BCh] bits 11-1		PIP2 Window Line Address Offset
REG[02AEh] bit 15Scalar Soft ResetREG[02AEh] bit 7Scalar Input Format SelectREG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 11Horizontal Filter ModeREG[02A0h] bit 11Horizontal ScaleREG[02A0h] bit 12-0200hHorizontal ScaleREG[02A4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0209hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area 1 Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-0C9hPIP2 Panorama Area 2 Vertical Start LineREG[02C6h] bits 9-015FhPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 70Coefficient Table Access PortREG[02A6h] bit 71Vertical Scaling EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02BEh] bits 8-1		PIP2 Source Image Horizontal Size
REG[02AEh] bit 7Scalar Input Format SelectREG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 51Horizontal Filter ModeREG[02A0h] bit 11Horizontal Filter ModeREG[02A2h] bits 12-0200hHorizontal ScaleREG[02A4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-0C9hPIP2 Panorama Area 2 Vertical Start LineREG[02C6h] bits 9-015FhPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-015FhPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 70Coefficient Table Access PortREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 41Filter Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 15Edge Enhance EnableREG[02A0h] bit 71REG[02A0h] bit 71 <td>REG[02C0h] bits 9-0</td> <td></td> <td>PIP2 Source Image Vertical Size</td>	REG[02C0h] bits 9-0		PIP2 Source Image Vertical Size
REG[02A0h] bits 10-8Edge Enhance EffectREG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 11Horizontal Filter ModeREG[02A2h] bits 12-0200hHorizontal ScaleREG[02A4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-0200hVertical ScaleREG[02C4h] bits 12-017FhPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02C6h] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-11REG[02A0h] bit 71	REG[02AEh] bit 15		Scalar Soft Reset
REG[02A0h] bit 51Vertical Filter ModeREG[02A0h] bit 11Horizontal Filter ModeREG[02A2h] bits 12-0200hHorizontal ScaleREG[02A4h] bits 12-0200hVertical ScaleREG[02C2h] bits 12-017FhPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area 1 Vertical ScaleREG[02C4h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C6h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CAh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02CAh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bits 9-0259hPIP2 Panorama Area 5 Vertical Start LineREG[02A6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bits 9-0259hPIP2 Panorama Area 5 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 71Vertical Scaling EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02AEh] bit 7		Scalar Input Format Select
REG[02A0h] bit 11Horizontal Filter ModeREG[02A2h] bits 12-0200hHorizontal ScaleREG[02A4h] bits 12-0200hVertical ScaleREG[02C2h] bits 12-017FhPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area 1 Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 2 Vertical Start LineREG[02C8h] bits 9-015FhPIP2 Panorama Area 3 Vertical Start LineREG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CAh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02CAh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 0259hPIP2 Panorama Area 5 Vertical Start LineREG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 15Edge Enhance EnableREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02A0h] bits 10-8		Edge Enhance Effect
REG[02A2h] bits 12-0200hHorizontal ScaleREG[02A4h] bits 12-0200hVertical ScaleREG[02C2h] bits 12-017FhPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C8h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02C6h] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bits 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 7-01REG[02A0h] bit 71REG[02A0h] bit 71	REG[02A0h] bit 5	1	Vertical Filter Mode
REG[02A4h] bits 12-0200hVertical ScaleREG[02C2h] bits 12-017FhPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C8h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02C8h] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02C6h] bits 9-01C3hPIP2 Panorama Area 4 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bits 9-0259hPIP2 Panorama Area 5 Vertical Start LineREG[02A6h] bits 9-0259hPIP2 Panorama Area 6 Vertical Start LineREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient SelectREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 71REG[02A0h] bit 71	REG[02A0h] bit 1	1	Horizontal Filter Mode
REG[02C2h] bits 12-017FhPIP2 Panorama Area A Vertical ScaleREG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C8h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02C4h] bits 9-015FhPIP2 Panorama Area 3 Vertical Start LineREG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CAh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02C6h] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bits 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 71REG[02A0h] bit 71	REG[02A2h] bits 12-0	200h	Horizontal Scale
REG[02C4h] bits 12-0299hPIP2 Panorama Area B Vertical ScaleREG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C8h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CCh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02CCh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02A6h] bit 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 5Coefficient Table Access PortREG[02A6h] bit 71Vertical Scaling EnableREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71REG[02A0h] bit 71	REG[02A4h] bits 12-0	200h	Vertical Scale
REG[02C6h] bits 9-0C9hPIP2 Panorama Area 1 Vertical Start LineREG[02C8h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CCh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02CCh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02AEh] bits 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 41REG[02A6h] bit 5Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 71Vertical Scaling EnableREG[02A0h] bit 71	REG[02C2h] bits 12-0	17Fh	PIP2 Panorama Area A Vertical Scale
REG[02C8h] bits 9-015FhPIP2 Panorama Area 2 Vertical Start LineREG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CCh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02AEh] bits 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 10Port Address Counter ResetREG[02A6h] bit 2Coefficient Table Access PortREG[02A6h] bit 41REG[02A6h] bit 5Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 71REG[02A0h] bit 71	REG[02C4h] bits 12-0	299h	PIP2 Panorama Area B Vertical Scale
REG[02CAh] bits 9-01C3hPIP2 Panorama Area 3 Vertical Start LineREG[02CCh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02AEh] bits 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 10Port Address Counter ResetREG[02A6h] bit 2Coefficient Table Access PortREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 71Vertical Scaling Enable	REG[02C6h] bits 9-0	C9h	PIP2 Panorama Area 1 Vertical Start Line
REG[02CCh] bits 9-0259hPIP2 Panorama Area 4 Vertical Start LineREG[02AEh] bits 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 5-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 10Port Address Counter ResetREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 10Port Address Counter ResetREG[02A6h] bit 41REG[02A6h] bit 5Coefficient Table Access PortREG[02A0h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02C8h] bits 9-0	15Fh	PIP2 Panorama Area 2 Vertical Start Line
REG[02AEh] bits 5-41hWide Scaling Mode SelectREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 7-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 41REG[02A6h] bit 41REG[02A6h] bit 7-0Coefficient SelectREG[02A6h] bit 71REG[02A0h] bit 71Vertical Scaling Enable	REG[02CAh] bits 9-0	1C3h	PIP2 Panorama Area 3 Vertical Start Line
REG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 40Filter Coefficient SelectREG[02A6h] bit 40Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 41Filter Coefficient SelectREG[02A6h] bit 5Coefficient Table Access PortREG[02A0h] bit 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02CCh] bits 9-0	259h	PIP2 Panorama Area 4 Vertical Start Line
REG[02A6h] bit 40Filter Coefficient SelectREG[02A8h] bits 7-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 41Filter Coefficient SelectREG[02A8h] bits 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02AEh] bits 5-4	1h	Wide Scaling Mode Select
REG[02A8h] bits 7-0Coefficient Table Access PortREG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 41Filter Coefficient SelectREG[02A8h] bits 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02A6h] bit 0		Port Address Counter Reset
REG[02A6h] bit 0Port Address Counter ResetREG[02A6h] bit 41Filter Coefficient SelectREG[02A8h] bits 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02A6h] bit 4	0	Filter Coefficient Select
REG[02A6h] bit 41Filter Coefficient SelectREG[02A8h] bits 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02A8h] bits 7-0		Coefficient Table Access Port
REG[02A8h] bits 7-0Coefficient Table Access PortREG[02A0h] bit 15Edge Enhance EnableREG[02A0h] bit 71Vertical Scaling Enable	REG[02A6h] bit 0		Port Address Counter Reset
REG[02A0h] bit 15 Edge Enhance Enable REG[02A0h] bit 7 1 Vertical Scaling Enable	REG[02A6h] bit 4	1	Filter Coefficient Select
REG[02A0h] bit 7 1 Vertical Scaling Enable	REG[02A8h] bits 7-0		Coefficient Table Access Port
	REG[02A0h] bit 15		Edge Enhance Enable
REG[02A0h] bit 3 1 Horizontal Scaling Enable	REG[02A0h] bit 7	1	Vertical Scaling Enable
	REG[02A0h] bit 3	1	Horizontal Scaling Enable

The registers must be set according to the following list.

Table 13-2: Partial Panorama Mode Programming Example

Figure 13-12: Scaling Ratios for Partial Panorama Mode

Figure 13-13: Partial Panorama Mode Example

The following example uses linear panorama mode to expand a 240x320 image to 480x800.

Figure 13-14: Linear Panorama Mode Example

Bit Field	Value	Description
REG[0230h] bits 9-0		PIP2 Window X Start Position
REG[0232h] bits 9-0		PIP2 Window Y Start Position
REG[0234h] bits 9-0		PIP2 Window X End Position
REG[0236h] bits 9-0		PIP2 Window Y End Position
REG[02B8h] ~ REG[02BAh] bits 19-1		PIP2 Window Display Start Address
REG[02BCh] bits 11-1		PIP2 Window Line Address Offset
REG[02BEh] bits 8-1		PIP2 Source Image Horizontal Size
REG[02C0h] bits 9-0		PIP2 Source Image Vertical Size
REG[02AEh] bit 15		Scalar Soft Reset
REG[02AEh] bit 7		Scalar Input Format Select
REG[02A0h] bits 10-8		Edge Enhance Effect
REG[02A0h] bit 5	1	Vertical Filter Mode
REG[02A0h] bit 1	1	Horizontal Filter Mode
REG[02A2h] bits 12-0	200h	Horizontal Scale
REG[02A4h] bits 12-0	200h	Vertical Scale
REG[02C2h] bits 12-0	AAh	PIP2 Panorama Area A Vertical Scale
REG[02C6h] bits 9-0	12Dh	PIP2 Panorama Area 1 Vertical Start Line
REG[02C8h] bits 9-0	EEh	PIP2 Panorama Area 2 Vertical Start Line
REG[02CEh] bits 13-0	E9h	PIP2 Linear Panorama Vertical Scale Delta
REG[02AEh] bits 5-4	2h	Wide Scaling Mode Select
REG[02A6h] bit 0		Port Address Counter Reset
REG[02A6h] bit 4	0	Filter Coefficient Select
REG[02A8h] bits 7-0		Coefficient Table Access Port
REG[02A6h] bit 0		Port Address Counter Reset
REG[02A6h] bit 4	1	Filter Coefficient Select
REG[02A8h] bits 7-0		Coefficient Table Access Port
REG[02A0h] bit 15		Edge Enhance Enable
REG[02A0h] bit 7	1	Vertical Scaling Enable

The registers must be set according to the following list.

Table 13-3: Linear Panorama Mode Programming Example

Figure 13-15: Linear Panorama Mode Example

13.3 Alpha Blending

When the Main layer is on top of the PIP layers (REG[0202h] bits 6-5 = 00b or 10b), the S1D13748 can perform Alpha Blending on the pixel data of the selected windows. Four independently enabled key colors are available, each supporting a blend ratio from 0% to 100% in increments of 12.5%.

The Alpha Blend Mode Select bit (REG[0204h] bit 7) determines which windows are alpha blended. When alpha blending between the Main window and the PIP windows is selected (REG[0204h] bit 7 = 0b), the pixel data from the PIP window that is overlapped by the Main window key color is alpha blended with the pixel data from the main window at the selected alpha blend ratio. If the PIP Transparency for the "top" PIP window is enabled and the key color is matched, the main window pixel data is alpha blended with the "bottom" PIP window instead of the top PIP window. For further information on PIP Transparency, see Section 13.3.2, "PIP Transparency" on page 192.

Figure 13-16: Main Window and PIP Windows Alpha Blending Example

For alpha blending and transparency examples for the Main, PIP1, and PIP2 windows, refer to Section 16, "Use Cases" on page 227.

13.3.1 Registers

The following registers are used to control and configure each Alpha Blend Key Color.

Alpha Blend	Enable	Blend Ratio	Key Color
1	REG[0204h] bit 8	REG[0208h] bits 3-0	REG[0210h] bits 15-0
2	REG[0204h] bit 9	REG[0208h] bits 7-4	REG[0212h] bits 15-0
3	REG[0204h] bit 10	REG[0208h] bits 11-8	REG[0214h] bits 15-0
4	REG[0204h] bit 11	REG[0208h] bits 15-12	REG[0216h] bits 15-0

Table 13-4: Alpha Blend Register Summary

Page 191

13.3.2 PIP Transparency

Both PIP windows have a transparency function. When the PIP window transparency is enabled, the PIP window becomes transparent where the pixel data matches the key color. This feature can be used to allow pixel data to "show through" an overlapping PIP window, or allow Main window pixel data to "show through" when the PIP windows are on top of the Main window.

The following registers are used to control and configure PIP Window Transparency.

PIP Window	Enable	Key Color
PIP1 Window	REG[0204h] bit 1	REG[020Ch] bits 15-0
PIP2 Window	REG[0204h] bit 2	REG[020Eh] bits 15-0

Table 13-5: PIP Window Transparency Register Summary

When alpha blending is enabled, the PIP transparency may be used to allow pixel data to be blended with a PIP window that is on the "bottom".

For alpha blending and transparency examples for the Main, PIP1, and PIP2 windows, refer to Section 16, "Use Cases" on page 227.

13.4 Scroll Buffer

The S1D13748 supports a scroll buffer function for the Main1 window, PIP1 window, and PIP2 window. The Main2 window does not support the scroll buffer function.

The scroll buffer function allows image data to be stored non-contiguously. When the scroll buffer is used, image data for the display is read starting from the Display Start Address. When the Scroll End Address is reached, data continues to be read from the Scroll Start Address as shown in the following diagram.

Note

The scroll buffer function cannot be used to write image data from the Host to memory.

Figure 13-18: Scroll Buffer Examples

13.4.1 Registers

The scroll buffer function uses the following registers to define the Display Start Address, Scroll Start Address, and Scroll End Address for each window.

Table 13-6: Scroll	Buffer Registers
--------------------	------------------

Window	Scroll Start Address	Scroll End Address	Display Start Address
Main1 Window	REG[0238h] ~ REG[023Ah]	REG[023Ch] ~ REG[023Eh]	REG[0240h] ~ REG[0242h]
PIP1 Window	REG[0270h] ~ REG[0272h]	REG[0274h] ~ REG[0276h]	REG[0278h] ~ REG[027Ah]
PIP2 Window	REG[02B0h] ~ REG[02B2h]	REG[02B4h] ~ REG[02B6h]	REG[02B8h] ~ REG[02BAh]

Note

To disable scrolling for the selected window, set the Scroll Start Address to 0h and the Scroll End Address to the maximum value.

13.4.2 Restrictions

When configuring the scroll buffer for each window, the following restrictions must be observed.

- The Scroll Start Address must specify the address of the first line of an image in the display memory.
- The Scroll End Address must specify the address of the last line of an image in the display memory.
- The Scroll Start Address for each window must be less than the Scroll End Address. Main1 Window: REG[0238h] ~ REG[023Ah] < REG[023Ch] ~ REG[023Eh] PIP1 Window: REG[0270h] ~ REG[0272h] < REG[0274h] ~ REG[0276h] PIP2 Window: REG[02B0h] ~ REG[02B2h] < REG[02B4h] ~ REG[02B6h]

14 Host Interface

The S1D13748 has a 16-bit indirect Host interface which allows high speed register writes (1 write cycle = 3 internal system clocks). It also includes a Host interface Write Controller (HWC) which supports clockwise rotation and mirror functions while writing to a rectangular area of the frame buffer. Alternately, image data can be written to the frame buffer without using the HWC, if rotation and mirroring are not required.

When LCD Bypass Mode is enabled, the Host interface can directly control input to parallel and serial interface panels connected to the S1D13748.

14.1 Indirect Interface Overview

The Host controls the S1D13748 through the indirect interface which provides access to the S1D13748 internal register set using the Index and Data register ports. The Status register port provides the status of the HWC (Host interface Write Controller) and the memory controller. All internal register ports are accessed using address lines AB[3:1] as shown in Figure 14-1: Indirect Interface Overview. For a detailed description of the register ports, see Section 14.1.1, "Indirect Addressing Register Ports" on page 196).

AB[3:1] also provide optional access to selected GPIO registers. Note that although the S1D13748 includes GPIO[23:0], only GPIO[15:0] are controllable/readable using this method. The complete GPIO registers (REG[0300h] ~ REG[031Ah]) are accessible by accessing the internal register set through the Index and Data register ports. For a detailed description of the GPIO registers, see Section 10.4.10, "GPIO Registers" on page 153.

Figure 14-1: Indirect Interface Overview

14.1.1 Indirect Addressing Register Ports

Register Address bits 15-1												R/W Selec	
15												1	0
bits 15-1Register Address bits [15:1]These bits set the register address for the indirect interface.													
bit 0 R/W Select This bit selects whether a read or a write is performed. When this bit = 0b, a write is performed. When this bit = 1b, a read is performed.													

AB[3:1] = 010 Default = 0000		terface D	oata Regist	er							Read	/Write
				Register D	ata bits 1	5-0						
15 14	13 12	11	10 9	8	7	6	5	4	3	2	1	0
bits 15-0			a bits [15:0 e the data p	-	he indi	rect int	erface					

-	1] = 00 It = 000		irect Ir	nterfac	e Statu	is Reg	ister							R	ead Only
			n/a			HWC Status n/a (RO)							Memory Status (RO)		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIL 8	 HWC Status (Read Only) This bit indicates the status of the Host interface Write Controller (HWC) block. When this bit = 0b, the HWC is ready (not busy). When this bit = 1b, the HWC is busy. 														
bit 0			Th cho aco W	ecked b cesses i hen this	ndicates before a s not n s bit = (s the st accessinecessan b, the	atus of th	emory, contro	howev ller is r	er conf eady (1	irmati	on for (

14.2 Register Access

The indirect addressing register ports (see Section 14.1.1, "Indirect Addressing Register Ports" on page 196) are used to access the S1D13748 internal register set as shown in the following procedures. For a list of the internal register set, see Section 10.2, "Register Set" on page 68.

When the Host interface access cycle is greater than or equal to 6 internal system clocks (SYSCLK), the following procedure should be used to access the internal registers.

Figure 14-2: Register Access Procedure for Access Cycles \geq 6 SYSCLK

Note

The register index must be set for each read cycle.

When the Host interface access cycle is from 3 to 5 internal system clocks (SYSCLK), the following procedure should be used to access the internal registers.

Figure 14-3: Register Access Procedure for Host Access Cycles from 3-5 SYSCLK

Note

- 1. The register index must be set for each read cycle.
- 2. The status read on the Write Access path is a dummy access and is not required if the next "Index Register Set" takes place 3 or more SYSCLKs after the previous "Data Register Write".

Figure 14-4: Register Write Access Timing (Access Cycle = 3~5 Internal System Clocks)

Figure 14-5: Register Read Access Timing (Access Cycle = 3~5 Internal System Clocks)

14.3 Memory Access Using the HWC

The HWC (Host interface Write Controller) can be used to write image data from the Host to a rectangular area of the frame buffer (REG[0180h] bit 0 = 1b). The HWC can be independently configured for the following write modes.

- Rotation: 0°, 90°, 180°, or 270° clockwise rotation of the image data
- Mirror: horizontal mirror effect

When using the HWC, the following bit fields must be configured before writing to the frame buffer using the Memory Access Port, REG[018Ch].

Host Interface Data Type Select
HWC Mirror Enable
HWC Rotation Mode Select
HWC Module Enable
Memory Start Address 1
Memory Start Address 0
HWC Memory Rectangular Write Address Offset
HWC Memory Rectangular Write Horizontal Size
HWC Memory Rectangular Write Vertical Size

The input image data is written to the frame buffer according to the setting of the HWC Mirror Enable bit (REG[0180h] bit 3) and the HWC Rotation Mode Select bits (REG[0180h] bits 2-1). For each combination of rotation and mirror, the write direction of the input data changes and the start address must be re-programmed. The vertical size and horizontal size remain the same for all combinations.

Figure 14-6: Input Image Example

The following sections provide examples for each combination of Rotation and Mirror settings.

14.3.1 Writing for Rotation=0° and Mirror Disabled

When REG[0180h] bits 2-1 = 00b and REG[0180h] bit 3 = 0b, bit 1 of the Memory Start Address must be set to 0b (REG[0182h] bit 1 = 0b).

Figure 14-7: Writing for Rotation=0° and Mirror Disabled Example

For the above example, the Start Address is calculated using the following formula.

REG[0182h] ~ REG[0184h] = memory start address = 1000h

14.3.2 Writing for Rotation=90° and Mirror Disabled

When REG[0180h] bits 2-1 = 01b and REG[0180h] bit 3 = 0b, bit 1 of the Memory Start Address must be set to 1b (REG[0182h] bit 1 = 1b).

Figure 14-8: Writing for Rotation=90° and Mirror Disabled Example

For the above example, the Start Address is calculated using the following formula.

```
REG[0182h] ~ REG[0184h]
= memory start address + (input image vertical size x 2) - 2
= 1000h + (180 pixels x 2) - 2h
= 1000h + 168h - 2h
= 1166h
```

14.3.3 Writing for Rotation=180° and Mirror Disabled

When REG[0180h] bits 2-1 = 10b and REG[0180h] bit 3 = 0b, bit 1 of the Memory Start Address must be set to 1b (REG[0182h] bit 1 = 1b).

Figure 14-9: Writing for Rotation=180° and Mirror Disabled Example

For the above example, the Start Address is calculated using the following formula.

```
REG[0182h] ~ REG[0184h]
= (memory start address + input image data size) - 2
= (1000h + (180 x 100 x 2)) - 2h
= (1000h + 8CA0h) - 2h
= 9CA0h - 2h
= 9C9Eh
```

14.3.4 Writing for Rotation=270° and Mirror Disabled

When REG[0180h] bits 2-1 = 11b and REG[0180h] bit 3 = 0b, bit 1 of the Memory Start Address must be set to 0b (REG[0182h] bit 1 = 0b).

Figure 14-10: Writing for Rotation=270° and Mirror Disabled Example

For the above example, the Start Address is calculated using the following formula.

REG[0182h] ~ REG[0184h] = (memory start address + input image data size) - (input image vertical size x 2) = (1000h + (180 x 100 x 2)) - (180 pixels x 2) = (1000h + 8CA0h) - 168h = 9CA0h - B4h = 9B38h

14.3.5 Writing for Rotation=0° and Mirror Enabled

Figure 14-11: Writing for Rotation=0° and Mirror Enabled Example

For the above example, the Start Address is calculated using the following formula.

```
REG[0182h] ~ REG[0184h]
= memory start address + (input image horizontal size x 2) - 2
= 1000h + (100 pixels x 2) - 2h
= 1000h + C8h - 2h
= 10C6h
```

14.3.6 Writing for Rotation=90° and Mirror Enable

When REG[0180h] bits 2-1 = 01b and REG[0180h] bit 3 = 0b, bit 1 of the Memory Start Address must be set to 0b (REG[0182h] bit 1 = 0b).

Figure 14-12: Writing for Rotation=90° and Mirror Enabled Example

For the above example, the Start Address is calculated using the following formula.

```
REG[0182h] ~ REG[0184h]
= memory start address
= 1000h
```

14.3.7 Writing for Rotation=180° and Mirror Enabled

When REG[0180h] bits 2-1 = 10b and REG[0180h] bit 3 = 0b, bit 1 of the Memory Start Address must be set to 0b (REG[0182h] bit 1 = 0b).

Figure 14-13: Writing for Rotation=180° and Mirror Enabled Example

For the above example, the Start Address is calculated using the following formula.

REG[0182h] ~ REG[0184h]

```
= (memory start address + input image data size) - (input image horizontal size x 2)
```

$$= (1000h + (180 x 100 x 2)) - (100 pixels x 2)$$

$$= 1000h + 8CA0h - C8h$$

= 9CA0h - C8h

14.3.8 Writing for Rotation=270° and Mirror Enabled

When REG[0180h] bits 2-1 = 11b and REG[0180h] bit 3 = 0b, bit 1 of the Memory Start Address must be set to 1b (REG[0182h] bit 1 = 1b).

Figure 14-14: Writing for Rotation=270° and Mirror Enabled Example

For the above example, the Start Address is calculated using the following formula.

REG[0182h] ~ REG[0184h] = (memory start address + input image data size) - 2 = (1000h + (180 x 100 x 2)) - 2h = 1000h + 8CA0h - 2h = 9CA0h - 2h = 9C9Eh

14.3.9 HWC Memory Write Procedure

All memory accesses through the HWC use the Memory Access Port (REG[018Ch]). The following procedure allows data to be continuously written without resetting the Index. This procedure is used for all access using the HWC, regardless of the number of CLKs required for each Host interface access.

Figure 14-15: HWC Write Access Procedure (REG[0180h] bit 0 = 1b)

14.4 Direct Memory Access

The Host can directly access the S1D13748 frame buffer memory without using the HWC. Direct memory access (REG[0180h] bit 0 = 0b) allows the frame buffer to be accessed using linear address mode or rectangular address mode (see REG[0184h] bit 15). However, when direct memory access is selected, the rotation and mirror functions are not available because they are part of the HWC.

14.4.1 Linear Address Mode

The S1D13748 frame buffer can be directly accessed using the following procedure when linear access mode is selected, REG[0184h] bit 15 = 0b.

Figure 14-16: Direct Memory Access (REG[0180h] bit 0 = 0b, REG[0184h] bit 15 = 0b)

14.4.2 Rectangular Address Mode

The S1D13748 frame buffer can be directly accessed using the following procedure when rectangular access mode is selected, REG[0184h] bit 15 = 1b.

Figure 14-17: Direct Rectangular Memory Access (REG[0180h] bit 0 = 0b, REG[0184h] bit 15 = 1b)

14.5 Host Interface VSYNC Output

When a RGB interface panel is selected (REG[0032h] bits 1-0), the state of the LCD VSYNC signal (on the FPFRAME LCD interface pin) is output to the Host interface on the VOUT pin.

The frequency of VOUT output can be varied using the VOUT Output Rate bits (REG[0198h] bits 15-12) to range from one VOUT output for each LCD VSYNC to one VOUT for every 15 LCD VSYNCs. VOUT output can also be delayed for up to 1023 lines after the LCD VSYNC takes place by configuring the VOUT Delay Control bits (REG[0198h] bits 9-0).

14.6 LCD Bypass Mode

The S1D13748 supports LCD Bypass Mode which allows the Host to directly control the input to parallel and serial LCD panels on LCD1 and LCD2. For further information, refer to Section 15.4, "LCD Bypass Mode" on page 224.

15 LCD Interface

The S1D13748 can be connected to a maximum of two LCD panels, however, LCD2 is only supported using LCD Bypass Mode.

The following interface modes are available which offer support for RGB interface panels, Serial interface panels with integrated RAM, and Parallel interface panels with integrated RAM.

- LCD1 can be configured as:
 - RGB interface panel
 - Parallel interface panel with integrated RAM
- LCD2 is supported through LCD Bypass Mode
 - Parallel interface panel with integrated RAM
 - Serial interface panel with integrated RAM

RGB 8:8:8 image data is passed from Window Control, which controls windowing functions such as transparency and alpha blending, to the LCD Interface. The LCD-LUT allows the LCD output to be gamma corrected, if required. The Dither (or Pseudo Output Color) block provides several methods to optimize the internal RGB 8:8:8 format data for output to panels of various data widths.

Additionally, the S1D13748 supports LCD Bypass Mode which allows the Host to directly control parallel or serial LCD panels.

Figure 15-1: LCD Interface Overview

15.1 RGB Interface Data Formats

When the Panel Interface bits are configured for Mode 1 (REG[0032h] bits 1-0 = 00b), RGB interface LCD panels can be used on LCD1. The data format for the panel is determined by the data bus width, which is set using the RGB Interface Panel Data Bus Width bits (REG[0032h] bits 6-4). The following data formats are supported.

When REG[0032h] bits 6-4 = 000b, the data width is 9-bit When REG[0032h] bits 6-4 = 001b, the data width is 12-bit When REG[0032h] bits 6-4 = 010b, the data width is 16-bit When REG[0032h] bits 6-4 = 011b, the data width is 18-bit When REG[0032h] bits 6-4 = 100b, the data width is 24-bit

Pin	9-bit	12-bit	16-bit	18-bit	24-bit
FPDAT0	R ⁷				
FPDAT1	R ⁶				
FPDAT2	R ⁵				
FPDAT3	G ⁷				
FPDAT4	G ⁶				
FPDAT5	G ⁵				
FPDAT6	B ⁷				
FPDAT7	B ⁶				
FPDAT8	B ⁵				
FPDAT9	Low	R ⁴	R ⁴	R ⁴	R ⁴
FPDAT10	Low	Low	R ³	R ³	R ³
FPDAT11	Low	Low	Low	R ²	R ²
FPDAT12	Low	G ⁴	G ⁴	G ⁴	G ⁴
FPDAT13	Low	Low	G ³	G ³	G ³
FPDAT14	Low	Low	G ²	G ²	G ²
FPDAT15	Low	B ⁴	B ⁴	B ⁴	B ⁴
FPDAT16	Low	Low	B ³	B ³	B ³
FPDAT17	Low	Low	Low	B ²	B ²
FPDAT18	Low	Low	Low	Low	R ¹
FPDAT19	Low	Low	Low	Low	R ⁰
FPDAT20	Low	Low	Low	Low	G ¹
FPDAT21	Low	Low	Low	Low	G ⁰
FPDAT22	Low	Low	Low	Low	B ¹
FPDAT23	Low	Low	Low	Low	B ⁰

Table 15-1: 9/12/16/18/24-bit RGB Interface Data Formats

15.2 Parallel Interface Data Formats

When the Panel Interface bits are configured for Mode 2 (REG[0032h] bits 1-0 = 10b), parallel interface LCD panels can be used on LCD1. The data format for the panel is controlled by the LCD1 Parallel Data Format bits (REG[0056h] bits 3-0) The following sections define the data formats that are supported.

15.2.1 8-Bit Parallel RGB 3:3:2 Data Format

When REG[0056h] bits 3-0 = 0000b, the parallel panel on LCD1 is configured for the 8-bit parallel RGB 3:3:2 data format.

The 8-bit parallel RGB 3:3:2 data format outputs one pixel per cycle, as follows.

Cycle Count	1	2	3	 n+1
D7	R_0^7	R_1^7	R_2^7	 R_n^7
D6	R_0^{6}	R_1^6	R_2^6	 R _n ⁶
D5	R_0^{5}	R1 ⁵	R_2^5	 R _n ⁵
D4	${G_0}^7$	G1 ⁷	G_2^7	 G _n ⁷
D3	G_0^{6}	G1 ⁶	${\rm G_2}^{6}$	 G _n ⁶
D2	G_0^{5}	G1 ⁵	G_2^{5}	 G _n ⁵
D1	B ₀ ⁷	B1 ⁷	B ₂ ⁷	 B _n ⁷
D0	B0 ⁶	B1 ⁶	B2 ⁶	 Bn ⁶

 Table 15-2: 8-bit Parallel RGB 3:3:2 Data Format

15.2.2 8-Bit Parallel RGB 4:4:4 Data Format

When REG[0056h] bits 3-0 = 0001b, the parallel panel on LCD1 is configured for the 8-bit parallel RGB 4:4:4 data format.

The 8-bit parallel RGB 3:3:2 data format outputs two pixels per three cycles, as follows.

Cycle Count	1	2	3	 3n+1	3n+2	3n+3
D7	R_0^7	B ₀ ⁷	G1 ⁷	 R_n^7	B _n ⁷	G _{n+1} ⁷
D6	R_0^{6}	B0 ⁶	G1 ⁶	 R_n^{6}	B _n ⁶	G _{n+1} ⁶
D5	R_0^{5}	B0 ⁵	G1 ⁵	 R_n^{5}	B _n ⁵	G _{n+1} ⁵
D4	R_0^4	B ₀ ⁴	G1 ⁴	 R_n^4	B _n ⁴	G _{n+1} ⁴
D3	${G_0}^7$	R ₁ ⁷	B ₁ ⁷	 G _n ⁷	R_{n+1}^{7}	B _{n+1} ⁷
D2	G_0^{6}	R ₁ ⁶	В ₁ ⁶	 G _n ⁶	R _{n+1} ⁶	B _{n+1} ⁶
D1	G0 ⁵	R1 ⁵	B1 ⁵	 G _n ⁵	R _{n+1} ⁵	B _{n+1} ⁵
D0	G_0^4	R ₁ ⁴	B1 ⁴	 G _n ⁴	R _{n+1} ⁴	B _{n+1} ⁴

Table 15-3: 8-bit Parallel RGB 4:4:4 Data Format
15.2.3 8-Bit Parallel RGB 5:6:5 Data Format

When REG[0056h] bits 3-0 = 1xxxb, the parallel panel on LCD1 is configured for the 8-bit parallel RGB 5:6:5 data format.

The 8-bit parallel RGB 5:6:5 data format outputs one pixel per two cycles, as follows.

Cycle Count	1	2	 3n+1	3n+2
D7	R_0^7	G_0^4	 R_n^7	G _n ⁴
D6	R_0^6	G_0^3	 R _n ⁶	G _n ³
D5	R_0^5	G_0^2	 R _n ⁵	G _n ²
D4	R_0^4	B ₀ ⁷	 R _n ⁴	B _n ⁷
D3	R_0^3	B0 ⁶	 R _n ³	Bn ⁶
D2	${G_0}^7$	B_0^5	 G _n ⁷	Bn ⁵
D1	${G_0}^{6}$	B ₀ ⁴	 G _n ⁶	Bn ⁴
D0	${G_0}^5$	B_0^3	 G _n ⁵	B _n ³

Table 15-4: 8-bit Parallel RGB 5:6:5 Data Format

15.2.4 8-Bit Parallel RGB 8:8:8 Data Format

When REG[0056h] bits 3-0 = 0011b, the parallel panel on LCD1 is configured for the 8-bit parallel RGB 8:8:8 data format.

The 8-bit parallel RGB 8:8:8 data format outputs one pixel per three cycles, as follows.

Cycle Count	1	2	2	 3n+1	3n+2	3n+2
D7	R_0^{7}	G ₀ ⁷	B ₀ ⁷	 R_n^7	G _n ⁷	B _n ⁷
D6	R_0^6	G0 ⁶	B0 ⁶	 R _n ⁶	G _n ⁶	B _n ⁶
D5	R_0^{5}	G0 ⁵	B0 ⁵	 R _n ⁵	G _n ⁵	B _n ⁵
D4	R_0^4	G_0^4	B ₀ ⁴	 R _n ⁴	G _n ⁴	B _n ⁴
D3	R_0^3	G_0^{3}	B ₀ ³	 R _n ³	G _n ³	B _n ³
D2	R_0^2	G_0^2	B ₀ ²	 R _n ²	G _n ²	B _n ²
D1	R_0^1	G ₀ ¹	B ₀ ¹	 R _n ¹	G _n ¹	B _n ¹
D0	R_0^{0}	G_0^{0}	B ₀ ⁰	 R_n^0	G _n ⁰	B _n ⁰

Table 15-5: 8-bit Parallel RGB 8:8:8 Data Format

15.2.5 16-Bit Parallel RGB 4:4:4 Data Format

When REG[0056h] bits 3-0 = 0101b, the parallel panel on LCD1 is configured for the 16-bit parallel RGB 4:4:4 data format.

The 16-bit parallel RGB 4:4:4 data format outputs one pixel per cycle, as follows.

Cycle Count	1	2	3	 n+1
D15	R_0^7	R ₁ ⁷	R_2^7	 R_n^7
D14	R_0^6	R ₁ ⁶	R ₂ ⁶	 R _n ⁶
D13	R_0^{5}	R1 ⁵	R_{2}^{5}	 R _n ⁵
D12	R_0^4	R_1^4	R_2^4	 R _n ⁴
D11	${G_0}^7$	G1 ⁷	G ₂ ⁷	 G _n ⁷
D10	${G_0}^{6}$	G1 ⁶	G2 ⁶	 Gn ⁶
D9	${G_0}^5$	G1 ⁵	G2 ⁵	 G _n ⁵
D8	G_0^4	G_1^5 G_1^4	G_2^5 G_2^4	 Gn ⁴
D7	B ₀ ⁷	B ₁ ⁷	B ₂ ⁷	 B _n ⁷
D6	B0 ⁶	B1 ⁶	B2 ⁶	 B _n ⁶
D5	B0 ⁵	B1 ⁵	B2 ⁵	 B _n ⁵
D4	B ₀ ⁴	B1 ⁴	B ₂ ⁴	 B _n ⁴
D3			—	 —
D2	_		—	 —
D1			_	 _
D0	_	_	_	 _

Table 15-6: 16-bit Parallel RGB 4:4:4 Data Format

15.2.6 16-Bit Parallel RGB 5:6:5 Data Format

When REG[0056h] bits 3-0 = 0110b, the parallel panel on LCD1 is configured for the 16-bit parallel RGB 5:6:5 data format.

The 16-bit parallel RGB 5:6:5 data format outputs one pixel per cycle, as follows.

Cycle Count	1	2	3	 n+1
D15	R_0^7	R_1^7	R_2^7	 R_n^7
D14	R_0^6	R ₁ ⁶	R ₂ ⁶	 R _n ⁶
D13	R_0^{5}	R1 ⁵	R_{2}^{5}	 R _n ⁵
D12	R_0^4	R_1^4	R_2^4	 R _n ⁴
D11	R_0^3	R ₁ ³	R_2^3	 R _n ³
D10	${G_0}^7$	G1 ⁷	G_2^7	 G _n ⁷
D9	${G_0}^{6}$	G1 ⁶	G_2^6	 G _n ⁶
D8	${G_0}^5$	G1 ⁵	G_2^{5}	 Gn ⁵
D7	G_0^4	G_1^4	G_2^4	 Gn ⁴
D6	G_0^3	G ₁ ³	$ \begin{array}{r} G_2^4 \\ G_2^3 \\ G_2^2 \\ \end{array} $	 $ G_n^4 G_n^3 G_n^2 G_n^2 $
D5	G0 ²	G_1^2	G_2^2	 G _n ²
D4	B ₀ ⁷	B ₁ ⁷	B ₂ ′	 B _n ⁷
D3	B0 ⁶	B1 ⁶	B2 ⁶	 Bn ⁶
D2	B0 ⁵	B1 ⁵	B2 ⁵	 B _n ⁵
D1	B ₀ ⁴	B1 ⁴	B ₂ ⁴	 Bn ⁴
D0	B_0^3	Β ₁ ³	B_2^3	 B _n ³

Table 15-7: 16-bit Parallel RGB 5:6:5 Data Format

15.2.7 16-Bit Parallel RGB 8:8:8 Data Format

When REG[0056h] bits 3-0 = 0010b, the parallel panel on LCD1 is configured for the 16-bit parallel RGB 8:8:8 data format.

The 16-bit parallel RGB 8:8:8 data format outputs two pixels per three cycles, as follows.

Cycle Count	1	2	3	 3n+1	3n+2	3n+3
D15	R_0^7	B ₀ ⁷	G1 ⁷	 R_n^7	B _n ⁷	G _{n+1} ⁷
D14	R_0^6	B0 ⁶	G1 ⁶	 R _n ⁶	B _n ⁶	G _{n+1} ⁶
D13	R_0^5	B0 ⁵	G1 ⁵	 R _n ⁵	B _n ⁵	G _{n+1} ⁵
D12	R_0^4	B_0^4	G_1^4	 R_n^4	B _n ⁴	G _{n+1} ⁴
D11	R_0^3	B ₀ ³	G ₁ ³	 R_n^3	B _n ³	G _{n+1} ³
D10	R_0^2	B ₀ ²	G ₁ ²	 R _n ²	B _n ²	G _{n+1} ²
D9	R_0^1	B ₀ ¹	G ₁ ¹	 R _n ¹	B _n ¹	G _{n+1} ¹
D8	R_0^0	B ₀ ⁰	G_1^0	 R_n^0	B _n ⁰	G _{n+1} ⁰
D7	${G_0}^7$	R ₁ ⁷	B ₁ ⁷	 G _n ⁷	R_{n+1}^{7}	B _{n+1} ⁷
D6	${G_0}^{6}$	R1 ⁶	B1 ⁶	 Gn ⁶	R_{n+1}^{6}	B _{n+1} ⁶
D5	${G_0}^5$	R1 ⁵	B1 ⁵	 Gn ⁵	R _{n+1} ⁵	B _{n+1} ⁵
D4	G_0^4	R_1^4	B1 ⁴	 Gn ⁴	R_{n+1}^4	B _{n+1} ⁴
D3	G_0^3	R_1^3	Β ₁ ³	 G _n ³	R _{n+1} ³	B _{n+1} ³
D2	G_0^2	R_1^2	B1 ²	 G _n ²	R_{n+1}^2	B _{n+1} ²
D1	G ₀ ¹	R ₁ ¹	B1 ¹	 G _n ¹	R _{n+1} ¹	B _{n+1} ¹
D0	G_0^0	R_1^0	B1 ⁰	 G _n ⁰	R _{n+1} ⁰	B _{n+1} ⁰

Table 15-8: 16-bit Parallel RGB 8:8:8 Data Format

15.2.8 18-Bit Parallel RGB 6:6:6 Data Format

When REG[0056h] bits 3-0 = 0111b, the parallel panel on LCD1 is configured for the 18-bit parallel RGB 6:6:6 data format.

The 18-bit parallel RGB 6:6:6 data format outputs one pixel per cycle, as follows.

Cycle Count	1	2	3	 n+1
D17	R_0^7	R ₁ ⁷	R_2^7	 R_n^7
D16	R_0^6	R ₁ ⁶	R_{2}^{6}	 R _n ⁶
D15	R_0^{5}	R1 ⁵	R_{2}^{5}	 R _n ⁵
D14	R_0^4	R_1^4	R_2^4	 R_n^4
D13	R_0^3	R ₁ ³	R_2^3	 R _n ³
D12	R_0^2	R_1^2	R_2^2	 R_n^2
D11	${G_0}^7$	G1 ⁷	G_2^7	 G _n ⁷
D10	${G_0}^{6}$	G1 ⁶	G_2^{6}	 Gn ⁶
D9	${\rm G_0}^5$	G1 ⁵	G_2^{5}	 Gn ⁵
D8	G_0^4	G_1^4	G_2^4	 Gn ⁴
D7	G_0^3	G ₁ ³	G_2^3 G_2^2 B_2^7	 G _n ³
D6	G_0^2	G_1^2	G_2^2	 G _n ²
D5	B ₀ ⁷	B1 ⁷	B ₂ ⁷	 B _n ⁷
D4	B0 ⁶	B1 ⁶	B_2^6	 Bn ⁶
D3	B0 ⁵	B1 ⁵	B2 ⁵	 Bn ⁵
D2	B ₀ ⁴	B1 ⁴	B ₂ ⁴	 Bn ⁴
D1	B ₀ ³	Β ₁ ³	B ₂ ³	 B _n ³
D0	B_0^2	B1 ²	B_2^2	 B _n ²

Table 15-9: 18-bit Parallel RGB 6:6:6 Data Format

15.2.9 24-Bit Parallel RGB 8:8:8 Data Format

When REG[0056h] bits 3-0 = 0100b, the parallel panel on LCD1 is configured for the 24-bit parallel RGB 8:8:8 data format.

The 24-bit parallel RGB 8:8:8 data format outputs one pixel per cycle, as follows.

Table 15-10: 24-bit Parallel RGB 8:8:8 Data Format

Cycle Count	1	2	3	 n+1
D23	R_0^{7}	R ₁ ⁷	R_2^7	 R_n^7
D22	R_0^6	R ₁ ⁶	R_{2}^{6}	 R _n ⁶
D21	R_0^5	R1 ⁵	R_2^5	 R _n ⁵
D20	R_0^4	R_1^4	R_2^4	 R_n^4
D19	R_0^3	R ₁ ³	R_2^3	 R _n ³
D18	R_0^2	R ₁ ²	R_2^2	 R _n ²
D17	R_0^1	R_1^1	R_2^1	 R_n^1
D16	R_0^{0}	R ₁ ⁰	R_{2}^{0}	 R _n ⁰
D15	${G_0}^7$	G1 ⁷	G ₂ ⁷	 G _n ⁷
D14	${G_0}^{6}$	G1 ⁶	G2 ⁶	 G _n ⁶
D13	${G_0}^5$	G1 ⁵	G2 ⁵	 Gn ⁵
D12	G_0^4	G_1^4	G_2^4	 Gn ⁴
D11	G_0^3	G1 ³	G_2^3	 G _n ³
D10	G_0^2	G_1^2	G_2^2	 G _n ²
D9	G ₀ ¹	G ₁ ¹	G_2^1	 G _n ¹
D8	G_0^{0}	G_1^0	G_2^{0}	 G _n ⁰
D7	B ₀ ⁷	B1 ⁷	B ₂ ⁷	 B _n ⁷
D6	B0 ⁶	В ₁ ⁶	B2 ⁶	 Bn ⁶
D5	B0 ⁵	B1 ⁵	B2 ⁵	 Bn ⁵
D4	B ₀ ⁴	B1 ⁴	B ₂ ⁴	 Bn ⁴
D3	B ₀ ³	Β ₁ ³	B ₂ ³	 B _n ³
D2	B ₀ ²	B ₁ ²	B ₂ ²	 B _n ²
D1	B ₀ ¹	B1 ¹	B ₂ ¹	 B _n ¹
D0	B ₀ ⁰	B1 ⁰	B_2^{0}	 B _n ⁰

15.3 Parallel Interface Command/Parameter Format

The following shows the command/parameter output format when LCD1 is configured for a parallel interface LCD panel.

Table 15-11: LCD1 Parallel Interface Co	Command/Parameter Format
---	--------------------------

REG[0056h]	bits 5-4 = 00b		bits 5-4	4 = 01b	bits 5-4	1 = 10b
D17	—	—	Command[15]	Parameter[15]	Command[15]	Parameter[15]
D16	—	—	Command[14]	Parameter[14]	Command[14]	Parameter[14]
D15	Command[15]	Parameter[15]	Command[13]	Parameter[13]	Command[13]	Parameter[13]
D14	Command[14]	Parameter[14]	Command[12]	Parameter[12]	Command[12]	Parameter[12]
D13	Command[13]	Parameter[13]	Command[11]	Parameter[11]	Command[11]	Parameter[11]
D12	Command[12]	Parameter[12]	Command[10]	Parameter[10]	_	—
D11	Command[11]	Parameter[11]	Command[9]	Parameter[9]	Command[10]	Parameter[10]
D10	Command[10]	Parameter[10]	Command[8]	Parameter[8]	Command[9]	Parameter[9]
D9	Command[9]	Parameter[9]	—	_	Command[8]	Parameter[8]
D8	Command[8]	Parameter[8]	Command[7]	Parameter[7]	Command[7]	Parameter[7]
D7	Command[7]	Parameter[7]	Command[6]	Parameter[6]	Command[6]	Parameter[6]
D6	Command[6]	Parameter[6]	Command[5]	Parameter[5]	Command[5]	Parameter[5]
D5	Command[5]	Parameter[5]	Command[4]	Parameter[4]	Command[4]	Parameter[4]
D4	Command[4]	Parameter[4]	Command[3]	Parameter[3]	Command[3]	Parameter[3]
D3	Command[3]	Parameter[3]	Command[2]	Parameter[2]	Command[2]	Parameter[2]
D2	Command[2]	Parameter[2]	Command[1]	Parameter[1]	Command[1]	Parameter[1]
D1	Command[1]	Parameter[1]	Command[0]	Parameter[0]	Command[0]	Parameter[0]
D0	Command[0]	Parameter[0]	—	—	—	—

15.4 LCD Bypass Mode

Figure 15-2: Parallel Bypass Mode (Modes C-H)

Figure 15-3: Parallel Bypass Mode (Modes C-E, I)

Figure 15-4: Serial Bypass Mode (Modes A-B)

REG[0014h] bits 11-8	Mode	LCD Interface	SCS#	SCK	SA0	SI
0100b	А	LCD2	FPCS2#	FPSCK	FPA0	FPSO
0110b	В	LCD1	FPCS1#	FPSCK	FPA0	FPSO

Table 15-12: Serial Bypass Mode

Table 15-13: Parallel Bypass Mode

REG[0014h] bits 11-8	Mode	LCD Interface	SCS#/CS#	SA0	WR#	RD#	DB[15:0]
0010b	С	LCD1	FPCS1#	FPLINE	FPFRAME	FPDRDY	FPDAT[15:0]
0011b	D	LCD1	FPCS1#	FPLINE	FPFRAME	FPDRDY	FPDAT[17:13], FPDAT[11:1]
1011b	Е	LCD1	FPCS1#	FPLINE	FPFRAME	FPDRDY	FPDAT[17:10], FPDAT[8:1]
0000b	F	LCD2	FPCS2#	FPLINE	FPFRAME	FPDRDY	FPDAT[15:0]
0001b	G	LCD2	FPCS2#	FPLINE	FPFRAME	FPDRDY	FPDAT[17:13], FPDAT[11:1]
1001b	Н	LCD2	FPCS2#	FPLINE	FPFRAME	FPDRDY	FPDAT[17:10], FPDAT[8:1]
1000b	I	LCD2	FPCS2#	GPIO8 (P2A0)	GPIO9 (P2WR#)	_	GPIO[17:10] (P2DAT[7:0])

Table 15-14: Bypass Chip Select Mode

REG[0014h] bit 3	Chip Select Mode	SCS#	CS#
Ob	SCS#	Bypassed to LCD Interface	Memory/Register
1b	CS#	1 input	Memory/Register
10	00#	0 input	Bypassed to LCD Interface

The SCS# input is output as PCS## at the SCS# mode.

When SCS# is "0", CS# is output to PxCS# at the CS# mode.

When SCS# is "1", PxCS# is not output, and it becomes a register access at the CS# mode.

16 Use Cases

16.1 Display using Main and PIP1 Window

Figure 16-1: Main Window (Top) and PIP1 Window (Bottom) Display Example

REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	1: on
REG[0202h] bit 2	PIP2 Window Display Enable	0: off
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	0: Main on PIP
REG[0202h] bit 6	PIP Layer Mode Select	-
REG[0204h] bit 1	PIP1 Transparency Enable	0: off
REG[0204h] bit 2	PIP2 Transparency Enable	0: off
REG[0204h] bit 7	Alpha Blend Mode Select	0: Main and PIP
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0 or 1
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	4h: 50%
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	-
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	-
REG[0210h] bit 15-0	Alpha Blend1 Key Color	
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-

Table 16-1: Main Window (Top) and PIP1 Window (Bottom) Display Example Settings

Figure 16-2: PIP1 Window (Top) and Main Window (Bottom) Display Example

		ispitity Entimple Setting
REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	1: on
REG[0202h] bit 2	PIP2 Window Display Enable	0: off
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	1: PIP on Main
REG[0202h] bit 6	PIP Layer Mode Select	-
REG[0204h] bit 1	PIP1 Transparency Enable	0 or 1
REG[0204h] bit 2	PIP2 Transparency Enable	0: off
REG[0204h] bit 7	Alpha Blend Mode Select	-
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0: off
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	-
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	-
REG[0210h] bit 15-0	Alpha Blend1 Key Color	-
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-

Table 16-2: PIP1 Window	(Top) and Main W	indow (Bottom) Display	Example Settings
10010 10 2.1111 1000000	(IUP)		maon (Donom)	Dispice	Drampic Dennigs

16.2 Display using Main and PIP2 Window

Figure 16-3: Main Window (Top) and PIP2 Window (Bottom) Display Example

	(10p) and 1112 ((indo)) (Bottom) Br	~r,
REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	0: off
REG[0202h] bit 2	PIP2 Window Display Enable	1: on
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	0: Main on PIP
REG[0202h] bit 6	PIP Layer Mode Select	-
REG[0204h] bit 1	PIP1 Transparency Enable	0: off
REG[0204h] bit 2	PIP2 Transparency Enable	0: off
REG[0204h] bit 7	Alpha Blend Mode Select	0: Main and PIP
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0 or 1
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	4h: 50%
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	-
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	-
REG[0210h] bit 15-0	Alpha Blend1 Key Color	
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-

Table 16-3: Main Window (Top) and PIP2 Window (Bottom) Display Example	Settings
--	----------

Figure 16-4: PIP2 Window (Top) and Main Window (Bottom) Display Example

Tuble 10-4. 111 2 Wind	ow (Top) and Main Window (Doitom) L	hspilly Example Setting.
REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	0: off
REG[0202h] bit 2	PIP2 Window Display Enable	1: on
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	1: PIP on Main
REG[0202h] bit 6	PIP Layer Mode Select	-
REG[0204h] bit 1	PIP1 Transparency Enable	0: off
REG[0204h] bit 2	PIP2 Transparency Enable	0 or 1
REG[0204h] bit 7	Alpha Blend Mode Select	-
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0: off
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	-
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	-
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	
REG[0210h] bit 15-0	Alpha Blend1 Key Color	-
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-

Table 16-4: PIP2 Window (Top) and Main Window	w (Bottom) Display Example Settings
---	-------------------------------------

16.3 Display using Main, PIP1 and PIP2 Window

Figure 16-5: Main Window (Top), PIP1 (Middle), PIP2 (Bottom) Display Example

REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	1: on
REG[0202h] bit 2	PIP2 Window Display Enable	1: on
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	0: Main on PIP
REG[0202h] bit 6	PIP Layer Mode Select	0: PIP1 on PIP2
REG[0204h] bit 1	PIP1 Transparency Enable	0 or 1
REG[0204h] bit 2	PIP2 Transparency Enable	0: off
REG[0204h] bit 7	Alpha Blend Mode Select	0: Main and PIP
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0 or 1
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	4h: 50%
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	-
REG[0210h] bit 15-0	Alpha Blend1 Key Color	
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-

Table 16-5: Main Window (Top), PIP1 (Middle), PIP2 (Bottom) Display Exam	nple Settings
--	---------------

Figure 16-6: Main Window (Top), PIP2 (Middle), and PIP1 (Bottom) Display Example

Table 16-6: Main V	Vindow (Top).	PIP2 (Middle), and PIP	1 (Bottom) Display	v Example Settings
1 4010 10 0. 114111 1	, indon (10p), 1	1 11 2 (minune), unu 1 11	I (Donom) Dispin	Drampic Schings

REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	1: on
REG[0202h] bit 2	PIP2 Window Display Enable	1: on
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	0: Main on PIP
REG[0202h] bit 6	PIP Layer Mode Select	1: PIP2 on PIP1
REG[0204h] bit 1	PIP1 Transparency Enable	0: off
REG[0204h] bit 2	PIP2 Transparency Enable	0 or 1
REG[0204h] bit 7	Alpha Blend Mode Select	0: Main and PIP
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0 or 1
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	4h: 50%
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	-
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	
REG[0210h] bit 15-0	Alpha Blend1 Key Color	
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-
	•	•

Figure 16-7: PIP1 (Top), PIP2 (Middle), and Main (Bottom) Display Example

$T_{able} = 16.7$, DID1 (T_{able})	$DID(M:ddl_a)$	and Main (Dattam)	Dignlan, Engine la Cattinga
Table 10-7: PIPT (10p),	PIP2 (Miaale),	апа мат (Бонот)) Display Example Settings

REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	1: on
REG[0202h] bit 2	PIP2 Window Display Enable	1: on
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	1: PIP on Main
REG[0202h] bit 6	PIP Layer Mode Select	0: PIP1 on PIP2
REG[0204h] bit 1	PIP1 Transparency Enable	0 or 1
REG[0204h] bit 2	PIP2 Transparency Enable	0 or 1
REG[0204h] bit 7	Alpha Blend Mode Select	-
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0: off
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	-
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	
REG[0210h] bit 15-0	Alpha Blend1 Key Color	-
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-

Figure 16-8: PIP2 (Top), PIP1 (Middle), and Main (Bottom) Display Example

Тирие 10-0. Т П 1 (10р), FIF2 (midale), and main (Bollom) Dis	spidy Example Settings
REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1	PIP1 Window Display Enable	1: on
REG[0202h] bit 2	PIP2 Window Display Enable	1: on
REG[0202h] bit 4	Main Display Mode Select	1: Main1 and Main2
REG[0202h] bit 5	Main Layer Mode Select	1: PIP on Main
REG[0202h] bit 6	PIP Layer Mode Select	1: PIP2 on PIP1
REG[0204h] bit 1	PIP1 Transparency Enable	0 or 1
REG[0204h] bit 2	PIP2 Transparency Enable	0 or 1
REG[0204h] bit 7	Alpha Blend Mode Select	-
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	0: off
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	0: off
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	0: off
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	0: off
REG[0206h] bit 15-0	Back Ground Color	
REG[0208h] bit 3-0	Alpha Blend1 Ratio	-
REG[0208h] bit 7-4	Alpha Blend2 Ratio	-
REG[0208h] bit 11-8	Alpha Blend3 Ratio	-
REG[0208h] bit 15-12	Alpha Blend4 Ratio	-
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	
REG[0210h] bit 15-0	Alpha Blend1 Key Color	-
REG[0212h] bit 15-0	Alpha Blend2 Key Color	-
REG[0214h] bit 15-0	Alpha Blend3 Key Color	-
REG[0216h] bit 15-0	Alpha Blend4 Key Color	-

Table 16-8: PIP1 (Top),	PIP2 (Middle),	and Main (Bottom)	Display Example Settings
-------------------------	----------------	-------------------	--------------------------

Figure 16-9: Main Window (Top), PIP1 (Middle), PIP2 (Bottom) Display Example 2

Page 2	239
--------	-----

REG[0202h] bit 0	Main Window Display Enable	1: on
REG[0202h] bit 1 PIP1 Window Display Enable		1: on
REG[0202h] bit 2	PIP2 Window Display Enable	1: on
REG[0202h] bit 4	Main Display Mode Select	0: Main1
REG[0202h] bit 5	Main Layer Mode Select	0: Main on PIP
REG[0202h] bit 6	PIP Layer Mode Select	0: PIP1 on PIP2
REG[0204h] bit 1	PIP1 Transparency Enable	0: off
REG[0204h] bit 2	PIP2 Transparency Enable	0: off
REG[0204h] bit 7	Alpha Blend Mode Select	1: PIP1 and PIP2
REG[0204h] bit 8	Alpha Blend Key Color1 Enable	1
REG[0204h] bit 9	Alpha Blend Key Color2 Enable	1
REG[0204h] bit 10	Alpha Blend Key Color3 Enable	1
REG[0204h] bit 11	Alpha Blend Key Color4 Enable	1
REG[0206h] bit 15-0	Back Ground Color	-
REG[0208h] bit 3-0	Alpha Blend1 Ratio	2h: 25%
REG[0208h] bit 7-4	Alpha Blend2 Ratio	4h: 50%
REG[0208h] bit 11-8	Alpha Blend3 Ratio	6h: 75%
REG[0208h] bit 15-12	Alpha Blend4 Ratio	8h: 100%
REG[020Ch] bit 15-0	PIP1 Transparency Key Color	-
REG[020Eh] bit 15-0	PIP2 Transparency Key Color	-
REG[0210h] bit 15-0	Alpha Blend1 Key Color	
REG[0212h] bit 15-0	Alpha Blend2 Key Color	
REG[0214h] bit 15-0	Alpha Blend3 Key Color	
REG[0216h] bit 15-0	Alpha Blend4 Key Color	

Table 16-9. Main	Window (Top)	PIP1 (Midd	lle) PIP2 (Bottom) Display Example 2 Settings

17 Mechanical Data

Figure 17-1: S1D13748B PFBGA 121-pin Package

18 References

The following documents contain additional information related to the S1D13748. Document numbers are listed in parenthesis after the document name. All documents can be found at the Epson Research and Development Website at **www.erd.epson.com**.

• S1D13748 Product Brief (X80A-C-001-xx)

19 Sales and Technical Support

AMERICA

EPSON ELECTRONICS AMERICA, INC.

214 Devcon Drive San Jose, CA 95112,USA Phone: +1-800-228-3964 FAX: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD. 7F, Jinbao Bldg., No.89 Jinbao St.,

Pr, Jinbao Biog., No.89 Jinbao St., Dongcheng District, Beijing 100005, CHINA Phone: +86-10-8522-1199 FAX: +86-10-8522-1125

SHANGHAI BRANCH

7F, Block B, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5577 FAX: +86-21-5423-4677

SHENZHEN BRANCH

12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON HONG KONG LTD.

Unit 715-723, 7/F Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP.

KOREA OFFICE 5F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP. MICRODEVICES OPERATIONS DIVISION

IC Sales & Marketing Department 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117

19.1 Ordering Information

To order the S1D13748 Mobile Graphics Engine, contact the Epson sales representative in your area.

Change Record

X80A-A-001-01	Revision 1.5 - Issued: April 26, 2012
	 chapter 5.2.4 Miscellaneous Pins - change VCP power to "PLLVDD"
	• chapter 6 - D.C. Characteristics - add PLLVDD information to all subsections
	• chapter 6.3 Electrical Characteristics - in table 6-5, <i>Electrical Characteristics 1</i> , correct typo - change IQio parameter "CIOVDD" to "GIOVDD"
X80A-A-001-01	Revision 1.4 - Issued: June 11, 2010
	• change revision number format to "x.x" from "x.0x"
	• globally change S1D13748B00 to S1D13748 except for the following
	 section 5.1 Pin Diagrams - in figure 5-1, S1D13748B PFBGA 121-Pin Layout (Top View), change S1D13748B00 to S1D13748B and "Mapping" to "Layout"
	 section 5.1 Pin Diagrams - in figure 5-2, S1D13748B PFBGA 121-Pin Mapping (Top View), change S1D13748B00 to S1D13748B
	 section 5.1 Pin Diagrams - in figure 5-3, S1D13748F QFP20 144-Pin Mapping (Top View), change S1D13748F00 to S1D13748F
	 section 17 Mechanical Data - in figure 17-1, S1D13748B PFBGA 121-Pin Package, change S1D13748B00 to S1D13748B
	 section 17 Mechanical Data - in figure 17-2, S1D13748F QFP20 144-Pin Package, change S1D13748F00 to S1D13748F
X80A-A-001-01	Revision 1.03 - Issued: September 14, 2007
	• all changes from the previous revision of the spec are highlighted in Red
	• section 2.7, added QFP20 144-pin package to Miscellaneous Features section
	• section 5.1, added QFP20 144-pin package pin mapping diagram
	• section 5.2, added QFP20 144-pin package pin#s for the pin descriptions sections
	• section 6.2, added 3.3V to the Recommended Operating Conditions tables
	 section 6.3, added Electrical Characteristics for 3.3V
	 section 7, added conditions for "HIOVDD = PIOVDD = GIOVDD = 3.00 ~ 3.60V and removed references to CNF0
	• section 7.3.1, added "HIOVDD = 3.3V" for the Indirect 80 Host Timings
	• section 7.3.2, added "HIOVDD = $3.3V$ " for the Indirect 68 Host Timings
	 REG[0004h] bits 15-13, added 3.3V description for HIOVDD/PIOVDD/GIOVDD Interface Drive Level bits
	• section 17, added mechanical drawing for QFP20 144-pin package
	• section 19, updated Sales and Technical Support addresses

Revision 1.02 - Issued: March 27, 2007
• all changes from the previous revision of the spec are highlighted in Red
 REG[0268h] - changes to PIP1 Filter Coefficient Examples table for Cubic-0.5 and B- spline
 REG[02A8h] - changes to PIP2 Filter Coefficient Examples table for Cubic-0.5 and B-spline
Revision 1.01 - Issued: December 14, 2006
 section 5.2.2, for the LCD Interface Pin Descriptions changed the RESET# state of GPIO[23:18], GPIO[17:10], GPIO9, and GPIO8 from "—" to "0"
 section 5.2.4, for the Miscellaneous Pin Descriptions changed the RESET# state of GPIO[7:0] from "—" to "0"
• REG[0204h] bits 2-1, added notes to the PIP1 and PIP2 Transparency Enable bits to mention that the transparency only affects window layers underneath the PIP1/PIP2 window and has no effect on the background color
Revision 1.0 - Issued: June 21, 2006
• released as revision 1.0
Revision 0.06 - Issued: June 21, 2006
• all changes from the last revision of the spec are highlighted in Red
 section 1.2, removed reference to "image data for LCD2"
 section 2.5, changed LCD Interface Features section to discuss LCD2 for Bypass Mode only
 section 2.6, for Display Functions Features section changed "Overlay" to "Transparency" to clarify this function
 section 3, for System Diagram 1 changed "DATA[7:0]" to "DB[7:0]", "A0" to "SA0", and removed "FPVIN2"
 section 3, for System Diagram 2 changed "CS#" to "SCS#", "A0" to "SA0", and removed "FPVIN2"
 section 3, added note about LCD2 Interface to the Typical System Diagrams
 section 4, in the Block Diagram changed the reference from "Overlay" to "Transparency"
• section 4, added note to the block diagram about LCD2
• section 5.1, reserved the FPVIN2 pin from the Pinout diagram/table
• section 5.2.2, for the LCD Interface Pins overview removed Modes 3/4 and changed the LCD2 description to be "determined by REG[0014h] bits 11-8"
 section 5.2.2, for the LCD Interface Pin descriptions removed references to Mode 3 and Mode 4

- section 5.2.2, for the GPIO[23:18] pin description removed reference to 24-bit parallel interfaces on LCD2 as 24-bit is not supported by bypass mode
- section 5.2.2, for the LCD Interface Pin descriptions reserved the FPVIN2 pin
- section 5.5, removed Mode 3 and Mode 4 from the LCD Interface Pin Mapping table and changed LCD2 column to refer to the LCD Bypass Pin Mapping table
- section 5.5, removed FPVIN2 from the LCD Interface Pin Mapping table
- section 5.6, removed FPVIN2 from the LCD Bypass Mode Pin Mapping table
- section 7.1.2, for the PLL Start-up Time figure, changed the PLL output range from "40-60MHz" to "33-58MHz"
- section 7.3.1, for the Indirect 80 Read Cycle Timing figures/table
 - for read single timing figure, changed DB[15:0] to Hi-Z between data cycles
 - for read burst timing figure, fixed typo "WE#" should be "RD#" and changed DB[15:0] to Hi-Z between data cycles
 - changed t13min from "8ns" to "4ns" for 1.8V and from "8ns" to "3ns" for 2.8V
 - changed t16min from "3ns" to "2ns" for 1.8V and from "3ns" to "2ns" for 2.8V
- section 7.3.2, for the Indirect 68 Read Cycle Timing table
 - for read single timing figure, changed DB[15:0] to Hi-Z between data cycles
 - for read burst timing figure, changed DB[15:0] to Hi-Z between data cycles
 - changed t13min from "8ns" to "4ns" for 1.8V and from "8ns" to "3ns" for 2.8V
 - changed t16min from "3ns" to "2ns" for 1.8V and from "3ns" to "2ns" for 2.8V
- section 7.4.1, for the Generic TFT Panel timing figure changed the definition of HDPS
- section 7.4.2, removed LCD2 references from the LCD1 ND-TFD, LCD2 8-bit Serial Interface Timing
- section 7.4.2, for LCD1 ND-TFD Interface timing changed t8typ to "This setting depends on software."
- section 7.4.3, removed LCD2 references from the LCD1 ND-TFD, LCD2 9-bit Serial Interface Timing
- section 7.4.3, for LCD1 ND-TFD Interface timing changed t8typ to "This setting depends on software."
- section 7.4.5, reserved the LCD1 24-bit Serial Interface timing figure and table
- section 7.4.6, removed LCD2 references from the LCD1, LCD2 Parallel Interface (80) timing
- section 7.4.6, for the LCD1 Parallel Interface Timing (80) table, changed listed t8 value from max to typ
- section 7.4.7, removed LCD2 references from the LCD1, LCD2 Parallel Interface (68) timing

- section 7.4.7, for the LCD1 Parallel Interface Timing (68) table, changed listed t8 value from max to typ
- section 8.1, for the Physical Memory uses removed "Image data for LCD2"
- section 9.2.1, removed LCD2 reference from the Pixel Clock Description
- section 9.2.2, removed LCD2 reference from the Serial Clock Description
- section 9.3, for the PLL section changed the POUT output frequency maximum from "66MHz" to "58MHz"
- section 10.3, for the Register Restrictions section added text to mention that the Host must issue an index cycle for each data cycle except for REG[018Ch]
- REG[000Eh] ~ REG[0010h], for PLL Setting Registers 1-2 changed the PLL output range from "45-58MHz" to "33-58MHz"
- REG[0014h] bit 7, for the Vertical Non-Display Period Status bit description removed the references to "Mode 4" and "Mode 2"
- REG[0030h] bits 10-8, removed LCD2 reference from the Serial Clock Divide Select bit description
- REG[0030h] bits 4-0, for the Pixel Clock Divide Select bit description removed references to LCD2
- REG[0032h] bits 6-4, for the RGB Interface Panel Data Bus Width reserved the reference to REG[0032h] bits 1-0 = "01b"
- REG[0032h] bits 1-0, for the Panel Interface bit description reserved Mode 3 and Mode 4 and changed LCD2 reference in table to "LCD Bypass Mode Only"
- REG[0034h], for the LCD Interface Command bit description removed references to LCD2
- REG[0034h], for the LCD Interface Command bit description removed note 2 about 24bit serial data type
- REG[0036h], for the LCD Interface Parameter bit description removed references to LCD2
- REG[0036h], for the LCD Interface Parameter bit description removed note 2 about 24bit serial data type
- REG[0038h], for the LCD Interface Status bit description removed references to LCD2
- REG[003Ah], for the LCD Interface Frame Transfer Trigger bit description removed references to LCD2 and serial interface, because serial interface is not available on LCD1
- REG[0040h] ~ REG[0056h], for the LCD1 registers, removed references to Mode 4 (REG[0032h] bits 01b) and removed references to the serial interface, because serial interface is not available on LCD1
- REG[0054h] bits 7-5, for the LCD1 Serial Data Type bit description removed option=111b "24-bit Serial"

- REG[0054h] bit 4, for the LCD1 Serial Data Direction bit description removed the note about 24-bit serial data type
- REG[0058h] ~ REG[0064h], reserved the LCD2 registers
- REG[005Ch] bits 3-2, for the LCD2 Serial Data Format bit description removed the note about LCD2 Serial Data Lengths relative to LCD1 24-bit Serial Mode
- REG[00FEh], reserved the LCD Interface ID register
- REG[0198h] bits 15-12, for the VOUT Output Rate bit description removed references to Mode 4 (REG[0032h] bits 01b)
- REG[0204h], changed register name from "Overlay and Alpha Blend Control Register" to "Transparency and Alpha Blend Control Register"
- REG[0201h] bit 2, changed bit name from "PIP2 Overlay Enable" to "PIP2 Transparency Enable" and changed bit description accordingly
- REG[0201h] bit 1, changed bit name from "PIP1 Overlay Enable" to "PIP1 Transparency Enable" and changed bit description accordingly
- REG[0202h] bits 15-13, for the LCD Output Port Select bit description removed option 010b=LCD2
- REG[0202h] bits 12-10, for the Active LCD Port Status bit description removed option 010b=LCD2
- REG[020Ch], changed register name from "PIP1 Window Overlay Key Color Register" to "PIP1 Window Transparency Key Color Register" and changed all bit descriptions accordingly
- REG[020Eh], changed register name from "PIP2 Window Overlay Key Color Register" to "PIP2 Window Transparency Key Color Register" and changed all bit descriptions accordingly
- REG[0260h] bit 15, changed note to refer to PIP1 Transparency instead of PIP1 Overlay
- REG[0260h] bit 5, changed note to refer to PIP1 Transparency instead of PIP1 Overlay
- REG[0260h] bit 1, changed note to refer to PIP1 Transparency instead of PIP1 Overlay
- REG[0264h], for the PIP1 Vertical Scale bit description updated the Note that outlines the restrictions and formulas that must be observed when calculating the scale rate
- RG[0274h] ~ REG[0276h], for the PIP1 Window Scroll End Address bit description changed reference to "...display start address..." to "...display memory address..."
- REG[0278h] ~ REG[027Ah], for the PIP1 Window Display Start Address bit description changed note 2 from "...32-bit value..." to "...32-bit aligned value..."
- REG[027Ch], for the PIP1 Window Line Address Offset bit description changed note from "...32-bit value..." to "...32-bit aligned value..."
- REG[02A0h] bit 15, changed note to refer to PIP2 Transparency instead of PIP2 Overlay
- REG[02A0h] bit 5, changed note to refer to PIP2 Transparency instead of PIP2 Overlay

- REG[02A0h] bit 1, changed note to refer to PIP2 Transparency instead of PIP2 Overlay
- REG[02A4h], for the PIP2 Vertical Scale bit description updated the Note that outlines the restrictions and formulas that must be observed when calculating the scale rate
- REG[02AEh] bit 15, reserved the following text from the PIP2 Scaler Software Reset bit description "A PIP2 scaler reset will clear the Scaler Data Processing End Interrupt Flag, REG[02AEh] bit 8"
- RG[02B4h] ~ REG[02B6h], for the PIP2 Window Scroll End Address bit description changed reference to "...display start address..." to "...display memory address..."
- REG[02B8h] ~ REG[02BAh], for the PIP2 Window Display Start Address bit description changed note 2 from "...32-bit value..." to "...32-bit aligned value..."
- REG[02BCh], for the PIP2 Window Line Address Offset bit description changed note from "...32-bit value..." to "...32-bit aligned value..."
- REG[0400h], for the PIP2-LUT Address Counter removed the text that stated the counter is not incremented for reads
- REG[0402h], for the PIP2-LUT Data Port bit description fixed typo, should be "(REG[0202h] bit 2 = 0b)" instead of "(REG[0202h] bit 2 = 1b)"
- REG[0500h], for the LCD-LUT Address Counter removed the text that stated the counter is not incremented for reads
- REG[0A00h] bit 15, updated the GPIO Interface Interrupt Status bit description to include checking the status of REG[0A04h] bit 15 and update the method used to clear the status bit
- REG[0A00h] bit 4, updated the Host Interface Interrupt Status bit description to include checking the status of REG[0A04h] bit 4 and update the method used to clear the status bit
- section 12.1, for the Host Interface Input Formats overview added "...and additional YUV 4:2:2 and YUV 4:2:0 formats."
- section 13, in the Display Functions section changed all references to "Overlay" to "Transparency"
- section 13.1, for the Configuring the Main Windows figure, removed references to LCD2 control registers
- section 13.2, for the PIP Window Setting figure, removed references to LCD2 control registers
- section 13.2.2, for the Using the Scalers section added a comment about the filters
- section 13.2.2, changed step 2 from the Scaler Programming Procedure flowchart from "Select Scaler Input Format" to "Select PIP Input Format"
- section 14.1.1, removed the text "This bit is used for Indirect Interface modes only." from the HWC Status description
- section 14.1.1, removed the text "This bit is used for Indirect Interface modes only." from the Memory Status description

- section 14.4.1, clarified that REG[0184h] bit 15 = 0b for the Direct Memory Access flowchart for Linear Address Mode
- section 14.4.2, clarified that REG[0184h] bit 15 = 1b for the Direct Memory Access flowchart for Rectangular Address Mode
- section 15, reworded the LCD Interface overview to emphasize that LCD2 is only supported using LCD Bypass Mode
- section 15, in the LCD Interface section changed all references to "Overlay" to "Transparency"
- section 15.1, for RGB Interface Data Formats removed the reference to Mode 4
- section 15.2, for Parallel Interface Data Formats removed the reference to Mode 3, Mode 4, and references to Parallel panels on LCD2
- section 15.3, for the Parallel Interface Command/Parameter Formats section removed the LCD2 table
- section 15.4, removed the Serial Interface Data Formats section
- section 15.7, removed LCD2 interface path from Parallel Bypass Mode figures
- section 16, in the Use Cases section changed all references to "Overlay" to "Transparency"
- X80A-A-001-00 Revision 0.05 Issued: May 11, 2006
 - all changes from the last revision of the spec are highlighted in Red
 - globally changed "Scalar" to "Scaler"
 - section 1.2, added improved Overview Description section
 - section 2.6, in the Display Functions section changed PIP1 and PIP2 references from "Scaler" to "Bi-Cubic Scaler"
 - section 5.2.4, for the Miscellaneous Pins description, split the CNF[2:1] and CNF0 pin descriptions, changed the CNF0 description to be "This configuration pin is Reserved and must be connected to VSS."
 - section 5.3, Reserved CNF0 and changed description to be "Must be connected to VSS."
 - section 5.6, for the LCD Bypass Mode Pin Mapping table added/changed the following notes:
 - added note 1 to mention that Mode I supports output to the panel only during bypass mode
 - updated note 2 to clarify the signals transmitted on FPFRAME when bypass mode is enabled
 - added note 3 to provide information on the signals that are transmitted on FPDRDY when bypass mode is enabled
 - moved note 4 from note 2
 - moved note 5 from note 3
 - added note 6 to clarify how the chip select mode is controlled

- section 10.3, added cross reference for the Host Interface Register Access section and added a note that the register index must be set for each read cycle
- REG[0014h] bit 13, removed reference to FPDAT[23:18] in the Parallel Bypass Direction Control bit description
- REG[0014h] bit 13, added note about Parallel Bypass Mode I not supporting reads from the panel
- REG[0018h] bits 1-0, for the System Clock Divide Select bit description added the following note "When the System Clock divide ratio is not 1:1 (REG[0018h] bits 1-0 ≠ 00b), odd integer Pixel Clock divide ratios are not supported (see REG[0030h] bits 4-0). For example, if a 2:1 System Clock divide ratio is selected, a Pixel Clock divide ratio of 3:1 is not supported."
- REG[0030h] bits 4-0, for the Pixel Clock Divide Select bit description added the following note "When the System Clock divide ratio is not 1:1 (REG[0018h] bits 1-0 ≠ 00b), odd integer Pixel Clock divide ratios are not supported. For example, if a 2:1 System Clock divide ratio is selected, a Pixel Clock divide ratio of 3:1 is not supported."
- REG[0034h], changed LCD Interface Command bit description from "This bit is only for parallel/serial interface panels on LCD1 or LCD2 and has no effect for RGB type panels (see REG[0032h] bits 1-0)." to "These bits are for parallel/serial interfaces on LCD1 or LCD2 and have no effect on the RGB (TFT) interface signals (see REG[0032h] bits 1-0)."
- REG[0036h], changed LCD Interface Parameter bit description from "This bit is only for parallel/serial interface panels on LCD1 or LCD2 and has no effect for RGB type panels (see REG[0032h] bits 1-0)." to "These bits are for parallel/serial interfaces on LCD1 or LCD2 and have no effect on the RGB (TFT) interface signals (see REG[0032h] bits 1-0)."
- REG[003Ch] bit 7, changed Parameter/Command Polarity Invert Enable bit description from "This bit is only for parallel/serial interface panels on LCD1 or LCD2 and has no effect for RGB type panels (see REG[0032h] bits 1-0)." to "These bits are for parallel/serial interfaces on LCD1 or LCD2 and have no effect on the RGB (TFT) interface signals (see REG[0032h] bits 1-0)."
- REG[0054h] bit 4, for the LCD1 Serial Data Direction bit description added the following note "When a 24-bit serial data type is selected on LCD1 (REG[0054h] bits 7-5 = 111b), this bit must be set to 0b."
- REG[0054h] bit 4, for the LCD1 Serial Data Direction bit description moved the cross reference to the timing section into the main bit description
- REG[0054h] bit 1, for the LCD1 Serial Clock Phase bit description moved the cross reference to the timing section into the main bit description
- REG[0054h] bit 0, for the LCD1 Serial Clock Polarity bit description moved the cross reference to the timing section into the main bit description
- REG[0056h] bits 5-4, for the LCD1 Parallel Command/Parameter Pin bit description in the table description for option=10b, changed the description from "FPDAT[17:3],[11:1]" to "FPDAT[17:13],[11:1]"

- REG[005Ch] bits 3-2, for the LCD2 Serial Data Format bits updated the table to add "REG[005Ch] bit 5" and "Serial Data Type" columns
- REG[005Ch] bits 3-2, for the LCD2 Serial Data Format bits added the following note "LCD2 Serial Data Lengths of 16-bit and 18-bit are not supported when LCD1 is configured for 24-bit Serial Mode, REG[0054h] bits 7-4 = 111b."
- REG[0180h] bit 15, for the HWC Software Reset bit description added the following note "If a software reset of the HWC is performed using this bit, the HWC Module is disabled (REG[0180h] bit 0 = 0b)."
- REG[0180h] bits 2-1, changed the HWC Rotation Mode Select bit description to change "counter-clockwise" to "clockwise"
- REG[0180h] bit 0, for the HWC Module Enable bit description added the following note "If a software reset of the HWC is performed using REG[0180h] bit 15, the HWC Module is disabled (REG[0180h] bit 0 = 0b)."
- REG[0182h] ~ REG[0184h], updated note 1 to refer to the examples in Section 14.3, "Memory Access Using the HWC" on page 201 for memory start address restrictions
- REG[0184h] bit 15, added the following note to the Direct Memory Address Mode bit description "The Memory Rectangular Write Address Offset (REG[0194h]) and Memory Rectangular Write Address Width (REG[0196h] must be configured before selecting rectangular memory address mode."
- REG[018Ah], changed the note under the HWC Memory Rectangular Write Vertical Size bit description to "When the HWC is configured for 90° or 270° write mode (REG[0180h] bits 2-1 = 01b or 11b), these bits must be programmed to an even value."
- REG[0198h] bits 15-12, for the VOUT Output Rate bit description added a comment explaining when VOUT is valid, clarified the bit description, and added a cross reference to the Host Interface VSYNC Output section
- REG[0198h] bits 15-12, for the VOUT Output Rate bit description added the following note "The VOUT polarity is the same as the FPFRAME polarity (see REG[0050h] bit 7)."
- REG[0200h] bit 5, added the following note to the LCD-LUT Bypass Enable bit description "The LCD-LUT can only be accessed when the LCD-LUT is bypassed or the display is not active (REG[0202h] bits 15-13 = 000b)."
- REG[0202h] bit 2, added the following note to the PIP2 Window Display Enable bit description "The PIP2-LUT can be programmed only when the PIP2 window is disabled (REG[0202h] bit 2 = 0b) or when the LCD Output Port is set to "All Off" REG[0202h] bits 12-10 = 000b)"
- REG[0204h] bits 11-8, for the Alpha Blend Key Color Enable bits added a comment that Alpha Blending is only available when the Main Layer is on top of the PIP Layer
- REG[0204h] bit 7, for the Alpha Blend Mode Select bit description added some details on how alpha blending works when the PIP1 and PIP2 windows are blended
- REG[0204h] bit 2, added the following note to the PIP2 Overlay Enable bit description "When the PIP2 Overlay is enabled, the vertical and horizontal scaling filters should be disabled (REG[02A0h] bit 5 = 0b and bit 1 = 0b)."
- REG[0204h] bit 1, added the following note to the PIP1 Overlay Enable bit description "When the PIP1 Overlay is enabled, the vertical and horizontal scaling filters should be disabled (REG[0260h] bit 5 = 0b and bit 1 = 0b)."
- REG[0238h] ~ REG[023Ah], for the Main1 Window Scroll Start Address bit description added information about how to "disable" scrolling for the main window
- REG[0238h] ~ REG[023Ah], added notes that the scroll start address must be less than the scroll end address and the display start address must be less than the scroll end address
- REG[023Ch] ~ REG[023Eh], for the Main1 Window Scroll End Address bit description added information about how to "disable" scrolling for the main window
- REG[023Ch] ~ REG[023Eh], added notes that the scroll start address must be less than the scroll end address and the display start address must be less than the scroll end address
- REG[0240h] ~ REG[0242h], added note that the display start address must be less than the scroll end address
- REG[0244h] bit 13, for the Main1 Window Vertical Pixel Doubling Enable bit description added the following note "When Main1 Window Vertical Pixel Doubling is enabled..."
- REG[0244h] bit 12, for the Main1 Window Horizontal Pixel Doubling Enable bit description added the following note "When Main1 Window Horizontal Pixel Doubling is enabled..."
- REG[024Eh] bit 13, for the Main2 Window Vertical Pixel Doubling Enable bit description added the following note "When Main2 Window Vertical Pixel Doubling is enabled..."
- REG[024Eh] bit 12, for the Main2 Window Horizontal Pixel Doubling Enable bit description added the following note "When Main2 Window Horizontal Pixel Doubling is enabled..."
- REG[0260h] bit 15, added the following note to the PIP1 Edge Enhance Enable bit description "When the PIP1 Overlay is enabled (REG[0204h] bit 1 = 1b), PIP1 edge enhancement should be disabled, REG[0260h] bit 15 = 0b."
- REG[0260h] bit 5, added the following note to the PIP1 Vertical FIlter Mode Select bit description "When the PIP1 Overlay is enabled (REG[0204h] bit 1 = 1b), the vertical scaling filter should be disabled, REG[0260h] bit 5 = 0b."
- REG[0260h] bit 1, added the following note to the PIP1 Horizontal FIlter Mode Select bit description "When the PIP1 Overlay is enabled (REG[0204h] bit 1 = 1b), the horizontal scaling filter should be disabled, REG[0260h] bit 1 = 0b."
- REG[0262h] bits 12-0, added note about the scale-down rate with examples
- REG[0264h] bits 12-0, added note about the scale-down rate with examples

- REG[0266h] bits 12-8, for the PIP1 Scaler Port Address Counter bit description changed the text "When the port address counter value reaches 1Fh, the port address counter is reset to 00h." to "When the port address counter value reaches 1Fh, it must be manually reset to 00h."
- REG[0268h], reversed the order that the values are listed in for the PIP1 Filter Coefficient Examples from "Fh through 0h" to "0h through Fh"
- REG[0270h] ~ REG[0272h], for the PIP1 Window Scroll Start Address bit description added information about how to "disable" scrolling for the main window
- REG[0270h] ~ REG[0272h], added notes that the scroll start address must be less than the scroll end address and the display start address must be less than the scroll end address
- REG[0274h] ~ REG[0276h], for the PIP1 Window Scroll End Address bit description added information about how to "disable" scrolling for the main window
- REG[0274h] ~ REG[0276h], added notes that the scroll start address must be less than the scroll end address and the display start address must be less than the scroll end address
- REG[0278h] ~ REG[027Ah], added note that the display start address must be less than the scroll end address
- REG[02A0h] bit 15, added the following note to the PIP2 Edge Enhance Enable bit description "When the PIP2 Overlay is enabled (REG[0204h] bit 2 = 1b), PIP2 edge enhancement should be disabled, REG[02A0h] bit 15 = 0b."
- REG[02A0h] bit 5, added the following note to the PIP2 Vertical FIlter Mode Select bit description "When the PIP2 Overlay is enabled (REG[0204h] bit 2 = 1b), the vertical scaling filter should be disabled, REG[02A0h] bit 5 = 0b."
- REG[02A0h] bit 1, added the following note to the PIP2 Horizontal FIlter Mode Select bit description "When the PIP2 Overlay is enabled (REG[0204h] bit 2 = 1b), the horizontal scaling filter should be disabled, REG[02A0h] bit 1 = 0b."
- REG[02A2h] bits 12-0, added note about the scale-down rate with examples
- REG[02A4h] bits 12-0, added note about the scale-down rate with examples
- REG[02A6h] bits 12-8, for the PIP2 Scaler Port Address Counter bit description changed the text "When the port address counter value reaches 1Fh, the port address counter is reset to 00h." to "When the port address counter value reaches 1Fh, it must be manually reset to 00h."
- REG[02A8h], reversed the order that the values are listed in for the PIP2 Filter Coefficient Examples from "Fh through 0h" to "0h through Fh"
- REG[02B0h] ~ REG[02B2h], for the PIP2 Window Scroll Start Address bit description added information about how to "disable" scrolling for the main window
- REG[02B0h] ~ REG[02B2h], added notes that the scroll start address must be less than the scroll end address and the display start address must be less than the scroll end address

- REG[02B4h] ~ REG[02B6h], for the PIP2 Window Scroll End Address bit description added information about how to "disable" scrolling for the main window
- REG[02B4h] ~ REG[02B6h], added notes that the scroll start address must be less than the scroll end address and the display start address must be less than the scroll end address
- REG[02B8h] ~ REG[02BAh], added note that the display start address must be less than the scroll end address
- REG[0402h], added comment that the PIP2-LUT is only accessible when the PIP2 window is disabled or the LCD Output Port is "All Off"
- REG[0502h], added comment that the LCD-LUT is only accessible when the LUT is bypassed or the display is not active
- section 13, rewrote the Display Functions section to better organize the functions of the S1D13748 and clarify how each function works
- section 13.1, moved the "Using the HWC..." section to the Host Interface section
- section 13.1, rewrote the Main Layer Section
- section 13.2, moved the "Host Interface VSYNC Output" section to the Host Interface section
- section 13.2, rewrote the PIP Layer Section and added information about using the Scalers
- section 13.3, rewrote the Alpha Blending section
- section 13.4, rewrote the Scroll Buffer section
- section 13.6, moved the Panorama Mode information to the Display Functions section
- section 13.6.1, expanded the Partial Panorama Mode section
- section 13.6.2, expanded the Linear Panorama Mode section
- section 13.7, moved the Scroll Buffer information to the Display Functions section
- section 14, added Host Interface section introduction
- section 14.1, added Indirect Interface Overview description and added GPIO register access to the AB[3:1] figure
- section 14.2, added introduction information to the Register Access section
- section 14.2, added the following note for the register access figures "The register index must be set for each read cycle."
- section 14.3, updated the descriptions and figures to clarify using the HWC for writes to the frame buffer
- section 14.3, moved the "Using the HWC..." section here and included many updates to the descriptions and figures
- section 14.3.1 ~ 14.3.8, added example start address formula calculations for each combination of rotation and mirror

- section 14.3.1 ~ 14.3.8, fixed vertical size and horizontal size notations in the figures
- section 14.4, created new section for Direct Memory Access and added introduction
- section 14.4, fixed typos in the Write Access figures, references to the Status Register Reads should be "AB[3:1] = 001b" instead of "AB[3:1] = 001b"
- section 14.5, the "Host Interface VSYNC Output" section was moved here and updated to improve the description and add appropriate register references
- section 14.6, added short description of LCD Bypass Mode with a reference to the LCD Interface Section to the Host Interface Section
- section 15, added an overview for the LCD interface
- section 15.5, added heading for LCD Gamma Control
- section 15.6, added heading for LCD Dithering
- section 15.7, for Serial Bypass Mode table, fixed typo, "PA0" should be "FPA0"
- section 15.7, for Parallel Bypass Mode table, for Mode I fixed SA0, WR#, RD#, and DB[15:0] to refer to GPIO8 (P2A0), GPIO9 (P2WR#), —, and GPIO[17:10] (P2DAT[7:0]) respectively
- section 16.1.3, figure 16-8, updated the display examples for "PIP2 (Top), PIP1 (Middle), and Main (Bottom) Display Example"
- section 16.3.1, added information that the Scroll Start Address must be less than the Scroll End Address to the Scroll Buffer Limitations section

X80A-A-001-00 Revision 0.04 - Issued: March 13, 2006

- all changes from the last revision of the spec are highlighted in Red
- section 6.3, clarified which Electrical Characteristics apply to which Recommended Operating Conditions
- section 6.3, added IQcore and IQio values for both Electrical Characteristics 1 and Electrical Characteristics 2 tables
- section 7.3.1, added burst timing diagram for Indirect 80 Interface
- section 7.3.1, for Indirect 80 Host Timing Read Cycle, changed t16max from "9ns" to "10ns" and t17max from "21ns" to "22ns"
- section 7.3.2, added burst timing diagram for Indirect 68 Interface
- section 7.3.2, for Indirect 68 Host Timing Read Cycle, changed t16max from "9ns" to "10ns" and t17max from "21ns" to "22ns"
- section 8.2, changed the memory map examples section to clarify the examples and show that WQVGA can be triple-buffered, removed the word "movie"
- section 9.3, added register references for M-Divider Divide Ratio, PLL Up Convert Ratio, and V-Divider Divide Ratio
- REG[0014h] bit 14, changed the Parallel Bypass Pull-down Control bit description to explain that only FPDAT[17:0] are affected, FPDAT[23:18] are not affected

- REG[0014h] bit 13, changed the Parallel Bypass Direction Control bit description to explain that only FPDAT[17:0] are affected, FPDAT[23:18] are not affected
- REG[0034h], for the LCD Interface Command bit description, added the following note "If the LCD1 serial data type is set to 24-bit serial (REG[0054h] bits 7-5 = 111b), REG[0034h] bits 15-0 are used for D[15:0] and REG[00FEh] bits 7-0 are used for D[23:16]."
- REG[0036h], for the LCD Interface Parameter bit description, added the following note "If the LCD1 serial data type is set to 24-bit serial (REG[0054h] bits 7-5 = 111b), REG[0034h] bits 15-0 are used for D[15:0] and REG[00FEh] bits 7-0 are used for D[23:16]."
- REG[0054h] bits 7-5, for the LCD1 Serial Data Type bit description, added a cross reference to the 24-bit Serial Timing section
- REG[0194h], for the Memory Rectangular Write Address Offset bit description, fixed the register reference for HWC disabled, should be REG[0180h] bit 0 = 0b instead of REG[0180h] bit 0 = 1b
- REG[0196h], for the Memory Rectangular Write Address Width bit description, fixed the register reference for HWC disabled, should be REG[0180h] bit 0 = 0b instead of REG[0180h] bit 0 = 1b
- REG[0282h] bits 5-4, updated the Pseudo RGB Output Color Format bit description and added recommended settings
- REG[0282h] bits 2-0, changed the "Pseudo Mode" bits to "Pseudo Color Output Mode" bits and updated the bit description to include a reference to REG[0282h] bits 5-4
- REG[02AEh], added bit description for the Wide Scaling Mode Select bits and added register usage listing to the table
- REG[0402h], for the PIP2-LUT Data Port bit description, changed the last two cycle numbers from "255, 256" to "511, 512" as 2 cycles are required for each RGB entry
- REG[0502h], for the LCD-LUT Data Port bit description, changed the last two cycle numbers from "255, 256" to "511, 512" as 2 cycles are required for each RGB entry
- section 13.4.2, in the PIP2 window description, changed the word "movie" to "image", this clarifies that there are no special "movie" functions
- section 14.3, reworded the register access introduction
- section 15.5, updated the LCD Interface side pin names for Parallel Bypass Mode and Serial Bypass Mode diagrams
- X80A-A-001-00 Revision 0.03 Issued: January 30, 2006
 - all changes from the last revision of the spec are highlighted in Red
 - section 2.1, in the Memory Features section changed "RAM" to "SRAM"
 - section 4, in the block diagram section changed "RAM" to "SRAM"
 - section 5.2, added RESET# States to the key

- section 5.2.1, added introduction to the Host Interface Pins section and added cross reference to the pin mapping table
- section 5.2.1, expanded the pin descriptions for all the Host Interface pins as applicable
- section 5.2.1, for AB[3:1] pin description added cross reference to the Indirect Interface Register Port section
- section 5.2.1, for RD# pin description added pin mapping for Indirect 80/68
- section 5.2.1, for WR# pin description added pin mapping for Indirect 80/68
- section 5.2.1, clarified pin description for VOUT
- section 5.2.1, for SCS#, SCK, SA0, and SI pin descriptions added reference to REG[0014h] bit 4 which can be used to control the pull-up/pull-down resistance for these pins
- section 5.2.2, added introduction to the LCD Interface Pins section and added cross reference to the pin mapping table
- section 5.2.2, expanded the pin descriptions for all the LCD Interface pins as applicable
- section 5.2.3, expanded the CLKI pin description to include information on when the PLL is bypassed and include information about the CLKI Input Control bit
- section 5.2.4, expanded the pin descriptions for all the Miscellaneous pins as applicable
- section 5.3, added introduction to the Summary of Configuration Options section
- section 5.3, changed "(connected to HVDD)" to "(connected to HIOVDD)"
- section 5.4, added introduction to the Host Interface Pin Mapping section
- section 5.5, added introduction to the LCD Interface Pin Mapping section
- section 5.5, for LCD Interface pin mapping changed the RGB interface pin description for FPLINE from "HCYNC" to "HSYNC"
- section 5.6, for FPSCK changed the reference from "SCLK" to "SCK"
- section 5.6, for GPIO[17:10] changed the reference from "FPDAT[7:0]" to "P2DAT[7:0]"
- section 6.1, changed all occurrences of HVDD/PVDD/GVDD to HIOVDD/PIOVDD/GIOVDD
- section 6.2, changed all occurrences of HVDD/PVDD/GVDD to HIOVDD/PIOVDD/GIOVDD
- section 6.3, changed all occurrences of HVDD/PVDD/GVDD to HIOVDD/PIOVDD/GIOVDD
- section 7, re-organized the AC Timing sections
- section 7, added Conditions for 1.62~1.98V and 2.66~2.94V to the AC Characteristics section

- section 7.1.1, for Input Clock Timing changed fOSCImax to 33MHz, changed t3max to 10ns, and t4max to 10ns
- section 7.1.1, added introductions to the Input Clock Timing section for Clock Input Requirements for PLL Used and PLL Bypassed
- section 7.1.1, added Clock Input Requirements timing figure and table for PLL Bypassed
- section 7.3, changed all occurrences of HVDD/PVDD/GVDD to HIOVDD/PIOVDD/GIOVDD
- section 7.3.1, for Indirect 80 Read Cycle Timing, updated t16min and t16max, and t17max
- section 7.3.2, for Indirect 68 Read Cycle Timing, updated t16min and t16max, and t17max
- section 7.4.1, changed Description of HPW and HPP in table from "HSYNC..." to "Horizontal Pulse..." for consistency
- section 7.4.1, changed Description of VPW and VPP in table from "VSYNC..." to "Vertical Pulse..." for consistency
- section 7.4.1, updated the signal names in the Generic TFT Vertical Timing figure from "VSYNC, HSYNC, DATA" to "FPFRAME, FPLINE, FPDAT" for consistency with pin names
- section 7.4.1, updated the signal names in the Generic TFT Horizontal Timing figure from "HSYNC, VSYNC, PCLK, DATA" to "FPLINE, FPFRAME, FPSHIFT, FPDAT" for consistency with pin names
- section 7.4.2, fixed "PSCK" to "FPSCK" in the LCD1 ND-TFD, LCD2 8-bit Serial Interface Timing figure
- section 7.4.3, fixed "PSCK" to "FPSCK" in the LCD1 ND-TFD, LCD2 9-bit Serial Interface Timing figure
- section 7.4.4, fixed "PSCK" to "FPSCK" in the LCD1 uWire Serial Interface Timing figure
- section 7.4.5, added LCD1 24-bit Serial Interface Timing section
- section 7.4.6, fixed "PVIN" to "FPVIN" and "PCS#" to "FPCS#" in the LCD1, LCD2 Parallel Interface timing (80) table
- section 7.4.7, fixed "PVIN" to "FPVIN" and "PCS#" to "FPCS#" in the LCD1, LCD2 Parallel Interface timing (68) table
- section 7.4.8, added LCD Bypass timing section
- section 8.1, added introduction for the Physical memory section
- section 9.1, added introduction to the Clock Tree diagram
- REG[0000h] bits 15-8, added "B00" to S1D13748 for the Revision Code bit description
- REG[0000h] bits 7-0, changed bits to Reserved, these bits will always be 00h

- REG[0002h] bits 15-0, added "B00" to S1D13748 for the Product Code bit description
- REG[0004h] bits 15-13, updated the "HVDD/PVDD/GVDD Interface Drive Level" bits to "HIOVDD/PIOVDD/GIOVDD Interface Drive Level" and changed the bit descriptions accordingly
- REG[0004h] bits 15-13, changed all occurrences of HVDD/PVDD/GVDD to HIOVDD/PIOVDD/GIOVDD
- REG[0004h] bits 2-0, updated the CNF[2:0] Status bit description and added cross reference to the CNF[2:0] Summary table
- REG[000Ch] bits 14-8, changed L-Counter definition from "...the value of this register..." to "...the value of these bits..."
- REG[000Ch] bits 14-8, added note restricting the L-Counter value between 10h and 41h inclusive
- REG[000Ch] bits 5-0, clarified the M-Divider bit description
- REG[000Eh], added brief bit descriptions and recommended values for the PLL Setting Register 1
- REG[0010h], added brief bit descriptions and recommended values for the PLL Setting Register 2
- REG[0012h] bit 8, added cross reference to the Clocks section to the System Clock Source Select bit description
- REG[0014h] bit 14, added cross reference to the Parallel Bypass Pull-down Control bit description
- REG[0014h] bit 13, added cross reference and clarified the Parallel Bypass Direction Control bit description
- REG[0014h] bits 11-8, added cross reference to the LCD Bypass Mode Select bit description
- REG[0014h] bits 11-8, added note that LCD Bypass is not supported for 24-bit parallel panels
- REG[0014h] bits 11-8, changed Bypass Mode I pins used from "P2DAT[7:0]" to "GPIO[17:10] (P2DAT[7:0])"
- REG[0014h] bit 4, for the Bypass Input Pull-up/down Control bit description changed the reference to the "SCLK" pin to the "SCK" pin for consistency with the pin descriptions
- REG[0018h] bits 1-0, added cross reference to the Clocks section to the System Clock Divide Select bit description
- REG[0030h] bits 10-8, added cross reference to the Clocks section to the Serial Clock Divide Select bit description
- REG[0030h] bits 4-, added cross reference to the Clocks section to the Pixel Clock Divide Select bit description
- REG[0032h] bits 15-10, reserved these bits

- REG[0032h] bit 9, changed "...sets the enable..." to "...sets the polarity..." in the FPDRDY Polarity Select bit description
- REG[0032h] bit 8, changed "...sets the enable..." to "...sets the polarity..." in the FPCS1# Polarity Select bit description
- REG[0032h] bits 6-4, added 9-bit and 12-bit panels to the RGB Interface Panel Data Bus Width bit description
- REG[0032h] bits 6-4, added cross reference to the LCD pin mapping table in the RGB Interface Panel Data Bus Width bit description
- REG[0032h] bits 1-0, added cross reference to the LCD pin mapping table in the Panel Interface bit description
- REG[0054h] bits 7-5, added cross references to the Serial Panel timing sections to the LCD1 Serial Data Type bit description
- REG[0054h] bits 4, 1, 0, added cross reference to the appropriate LCD timing section
- REG[0056h] bit 14, added bit description for FPVIN1 Polarity bit
- REG[005Ch] bit 7, added a new bit description with references to REG[005Ch] bit 5 to clarify the usage
- REG[005Ch] bit 5, clarified the reference to REG[005Ch] bit 7 and added pin usage to the table
- REG[005Ch] bits 4, 1, 0, added cross reference to the appropriate LCD timing section
- REG[005Ch] bit 1, added cross reference to the table in the bit 0 bit description
- REG[005Eh] bit 14, added bit description for FPVIN2 Polarity bit
- REG[005Eh] bits 3-0, added cross reference to the LCD Parallel Interface Data Format section to the LCD2 Parallel Data Format bit description
- REG[006Ah] bits 15-8, fixed typo in LCD2 Vsync Width bit description, REG[0056Eh] should be REG[006Eh]
- REG[006Ah] bits 7-0, fixed typo in LCD2 Vsync Position bit description, REG[0056Eh] should be REG[006Eh]
- REG[00FEh], added the LCD Interface ID register and bit description which is used for 24-bit serial interfaces
- REG[0180h] bit 4, updated the HWC Data Bus Swap Enable bit description
- REG[0180h] bit 3, updated the HWC Mirror Enable bit description and added cross reference to the HWC section
- REG[0180h] bits 2-1, updated the HWC Rotation Mode Select bit description and added cross reference to the HWC section
- REG[0180h] bit 0, updated the HWC Module Enable bit description
- REG[0184h] bit 15, added bit description for Direct Memory Access Mode bit

- REG[0186h] ~ REG[018Ah], clarified the HWC Memory Rectangular Write Address Offset / Horizontal Size / Vertical Size bit descriptions
- REG[018Ah], reworded the note about ensuring the HWC Memory Rectangular Write Vertical Size is an even value
- REG[018Eh] ~ REG[0192h], updated the bit descriptions for the HWC Raw Status / Control / Status registers
- REG[0200h] bit 7, updated the bit description for the LCD Software Reset bit
- REG[0200h] bits 5, 4, added a bit description for the LCD-LUT Bypass Enable and PIP2-LUT Bypass Enable bits
- REG[0200h] bits 1, 0, reserved the LCD-LUT Address Clear and PIP2-LUT Address Clear bits
- REG[0202h] bits 12-10, changed the LCD Output Port Select bit description to remove the text "The auto transfer bit (REG[003Ch] bit 0) must be cleared before changing these bits."
- REG[0202h] bit 9, defined the pins used for RGB panel data output and added a cross reference to the table summarizing the Invert and Blank options
- REG[0202h] bit 8, defined the pins used for RGB panel data output and added a note referring to the LCD Interface Pin Mapping table
- REG[0202h] bits 6-5, combined the PIP Layer Mode Select bit and Main Layer Mode Select bit into the "Layer Mode Select bits 1-0" and updated the bit description for clarity, also added cross reference to the Main Window Restrictions section
- REG[0202h] bit 4, expanded the Main Layer Display Mode Select bit description to include information on the restrictions when using two main windows
- REG[0202h] bits 2-0, expanded the bit descriptions for the PIP2/PIP2/Main Display Enable bits and updated note
- REG[0204h], expanded the bit descriptions for all the bits in the Overlay and Alpha Blend Control register
- REG[0208h], added a bit description for the Alpha Blend 4-1 Ratio Setting bits
- REG[020Ch], updated the bit description for the PIP1 Window Overlay Key Color bit descriptions
- REG[020Eh], updated the bit description for the PIP2 Window Overlay Key Color bit descriptions
- REG[0210h] ~ REG[0216h], updated the bit descriptions for the Alpha Blend 1-4 Key Color registers
- REG[0218h] ~ REG[0236h], expanded the bit descriptions for the Main1/Main2 Start Position and the PIP1/PIP2 Start/End Position registers
- REG[0238h] ~ REG[023Eh], added cross references to the Scroll Buffer section for the Main1 Window Scroll Start and Scroll End Address registers

- REG[0240h] ~ REG[0252h], expanded the bit descriptions for the Main1 and Main2 Display Address, Offset, and Size registers
- REG[0260h] ~ REG[0282h], clarified the PIP1 registers and bits from the PIP2 registers, also clarified some of the bit descriptions
- REG[02A0h] ~ REG[02CEh], clarified the PIP2 registers and bits from the PIP1 registers, also clarified some of the bit descriptions
- REG[0300h] ~ REG[031Ah], expanded the bit descriptions for all the GPIO registers
- REG[0400h], updated the PIP2-LUT Address Counter bit description and added cross reference to the PIP2-LUT Data Mapping table
- REG[0500h], updated the LCD-LUT Address Counter bit description and added cross reference to the LCD-LUT Data Mapping table
- REG[0A00h] ~ REG[0A04h], expanded the bit descriptions for all the Interrupt Status/Control registers
- REG[0A00h] bit 15, added information that the GPIO Interface Interrupt Status bit is masked by the GPIO Interface Interrupt Enable bit
- REG[0A00h] bit 4, added information that the Host Interface Interrupt Status bit is masked by the Host Interface Interrupt Enable bit
- section 11.2.1, changed all occurrences of HVDD/PVDD/GVDD to HIOVDD/PIOVDD/GIOVDD
- section 11.2.2, changed reference to the "Clock Setting" registers to "Clock Configuration" registers
- section 11.2.6, changed all occurrences of HVDD/PVDD/GVDD to HIOVDD/PIOVDD/GIOVDD
- section 15, updated the data format bit numbering to make it consistent between RGB/Parallel/Serial data formats
- section 15.1, added 9/12-bit RGB interface data formats
- section 15.1, added introduction to the RGB Interface Data Formats section
- section 15.2, added introduction to the Parallel Interface Data Formats section
- section 15.2.1 ~ section 15.2.9, updated the introduction for each Parallel Data Format and removed the 8-bit RGB 6:6:6 format
- section 15.3, added section for Parallel Interface Command/Parameter Format into the LCD Interface section
- section 15.4, added section for Serial Interface Data Formats

X80A-A-001-00

- all changes from the last revision of the spec are highlighted in Red
 - changed S1D13748 to S1D13748B00 in title and footers
 - restructured the back sections of the spec

Revision 0.02 - Issued: January 13, 2006

- section 2.1, updated Memory Features section
- section 2.2, added a Registers Features section
- section 2.3, updated the Host Interface Features section to include more information on LCD Bypass Mode
- section 2.4, updated the format of the Input Format Features section
- section 2.5, updated the LCD Interface Features section to clarify the features
- section 2.6, combined section 2.6 ~ 2.9 into single section on Display Features
- section 2.7, updated the Miscellaneous section and added PLL/CLKI to list
- section 3, added references to figure 3-1 as follows:
 - P2DAT[7:0] --> GPIO[17:10] (P2DAT[7:0])
 - P2WR# --> GPIO9 (P2WR#)
 - P2A0 --> GPIO8 (P2A0)
- section 3, removed references to P2DAT[7:0], P2WR#, and P2A0 from figure 3-2 as they are not showing any connection
- section 5.1, updated the Pin name PSO to FPSO
- section 5.2.1 Host Interface Pins change description and cell for VOUT pin
- section 5.2.2 LCD Interface Pins correct Pin# for GPIO18
- section 5.2.2, changed the following pin names and all other occurrences
 - P1DAT[17:0] --> FPDAT[17:0]
 - P1FRAME --> FPFRAME
 - P1LINE --> FPLINE
 - P1CLK --> FPSHIFT
 - P1DRDY --> FPDRDY
 - P1VIN --> FPVIN1
 - P1CS# --> FPCS1#
 - P2VIN --> FPVIN2
 - P2CS# --> FPCS2#
 - PSCLK --> FPSCK
 - PSA0 --> FPA0
 - PSO --> FPSO
 - SCS --> SCS#
- section 5.2.4 Miscellaneous Pins add to descriptions for VCP, TESTEN and SCANEN pins
- section 6.2 Recommended Operating Conditions in both tables, 6-2 and 6-3, change the Schmitt Input Rise and Fall Time units to ms
- section 7.4, changed PLL Start-up Time figure from "32kHz Reference Clock" to "MHz Reference Clock"

- section 7.5, added note that Indirect 80 Write Cycle Timing is preliminary
- section 7.5, changes to Indirect 80 Write Cycle Timing table
 - for t2 parameter changed A[3:1] to AB[3:1]
 - for t5 parameter changed AB[2:1] to AB[3:1]
 - for t7 parameter changed W# to WE#
- section 7.5, added note that Indirect 80 Read Cycle Timing is preliminary
- section 7.5, removed "Type 1" from the figure and table descriptions for Indirect 80 Read Cycle Timing
- section 7.5, changes to Indirect 80 Read Cycle Timing table
 - for t17 parameter changed parameter description from "RD# falling edge to valid Data if there are no internal delayed cycle" to "RD# falling edge to valid Data"
- section 7.6, added note that Indirect 68 Write Cycle Timing is preliminary
- section 7.6, added note that Indirect 68 Read Cycle Timing is preliminary
- section 7.6, changes to Indirect 68 Read Cycle Timing figure
 - for t19 changed parameter from "UDS#, LDS# cycle time" to "UDS#, LDS# pulse active time"
- section 7.6, changes to Indirect 68 Read Cycle Timing table
 - for t18 parameter changed symbol from "t148" to "t18"
 - for t19 changed parameter description from "UDS#, LDS# cycle time" to "UDS#, LDS# pulse active time"
- section 7.7 LCD Interface Generic TFT Panel Timing in table 7-8 Generic TFT Panel Timing, change VDPS = REG[004Eh] bits 9-0
- section 7.7, changes to Generic TFT Vertical Timing figure
 - changed "VP" to "VPW"
 - changed "VDPS " to "VDPS VPP"
- section 7.7, changes to Generic TFT Horizontal Timing figure
 changed "HP" to "HPW"
- section 7.7.1, changes for LCD1 ND-TFD, LCD2 8-bit Serial Interface Timing table
 for t9 added units as Ts
 - for t11 changed typ value from 1Ts to 0.5Ts
 - for t12 changed typ value from 0.5Ts to 1Ts
- section 7.7.2, changes for LCD1 ND-TFD, LCD2 9-bit Serial Interface Timing table
 for t9 added units as Ts
- section 10.1, created new register mapping section
- section 10.3, created new section to contain all register restrictions and accessibility information
- REG[0006h] add this reserved register
- REG[0012h] bit 0, changed bit name to System Clock Source Select from PLL Control and added appropriate description

- REG[0016h], added exception that asynchronous registers are not reset to default values by a software reset
- REG[0040h] ~ REG[0052h], updated the bit names and bit descriptions to clarify LCD1 signal usage
- REG[0042h], formula in note 2 changed from "HDP x VDP ± 40 pixels" to HDP x VDP ≥ 40 pixels"
- REG[0046h] bit 7, removed the following note "This bit **does** have an effect on LCD2 configuration, when Mode 1 is selected, REG[0032h] bits 1-0 = 00b."
- REG[0048h] bits 9-0, changed formula to "FPFRAME edge to FPLINE edge in pixels 1"
- REG[0050h] bit 7, removed the following note "This bit **does** have an effect on LCD2 configuration, when Mode 1 is selected, REG[0032h] bits 1-0 = 00b."
- REG[0054h] bits 7-5 finalize the table in the bit description
- REG[0054h] bit 1, added cross reference to the Serial Clock Phase and Polarity table
- REG[0054h] bit 0, added cross reference to the Serial Clock Phase and Polarity table
- REG[0060h] ~ REG[0064h] add these reserved registers
- REG[0180h] bits 7-5, clarified the YUV formats in the table as Format 1 or Format 2, updated the bit description, and added a cross reference to the Host Input Data Format section
- REG[0180h] bit 4 change the name of this bit
- REG[0182h] ~ REG[0184h], added note about "When the HWC is enabled..."
- REG[0194h] corrections to bit description, add register formula
- REG[0194h] corrections to bit description, add register formula and note "The horizontal size of the source image..."
- REG[0202h] bit 2 add note "When the parallel panel interface is selected..."
- REG[0202h] bit 1 add note "When the parallel panel interface is selected..."
- REG[0202h] bit 0 add note "When the parallel panel interface is selected..."
- REG[0206h], added bit descriptions for the Background Color Setting bits
- REG[022Ch] add register formula to bit description
- REG[022Eh] add register formula to bit description
- REG[0234h] add register formula to bit description
- REG[0236h] add register formula to bit description
- REG[0238h] ~ REG[023Ah] rename registers to "Main Window 1 Scroll Start Address" and add bit 1
- REG[023Ch] ~ REG[023Eh] rename registers to "Main Window 1 Scroll End Address" and add bit 1, change default value of REG[023Ch] to FFFEh

- REG[0260h] bit 15, removed the following note "The Edge Enhance function supports YUV data only."
- REG[0260h] bits 4 and 0 mark these bits as n/a
- REG[0268h], changed register from Read/Write to Write Only
- REG[0268h], removed separate Vertical and Horizontal Filter Example tables and replaced with one table
- REG[026Eh] bits 10, 8 and 0 mark these bits as n/a
- REG[026Eh] bit 7 change the name of this bit to "PIP1 Input Format Select"
- REG[027Eh], added bit description for the PIP1 Source Image Horizontal Size bits
- REG[027Eh] add note "2. The minimum value for this register is 4."
- REG[0280h], added bit description for the PIP1 Source Image Vertical Size bits
- REG[0280h] add note "The minimum value for this register is 4."
- REG[0282h], changed register name from "PIP1 Pseudo Setting Register" to "Pseudo Setting Register"
- REG[02A0h] bit 15, removed the following note "The Edge Enhance function supports YUV data only."
- REG[02A0h] bits 4 and 0 mark these bits as n/a
- REG[02A8h], changed register from Read/Write to Write Only
- REG[02A8h], removed separate Vertical and Horizontal Filter Example tables and replaced with one table
- REG[02AEh] bits 10, 8 and 0 mark these bits as n/a
- REG[02AEh] bit 7 change the name of this bit to "PIP2 Input Format Select"
- REG[02AEh] bits 5-4 add table to bit description
- REG[02BEh], added bit description for the PIP2 Source Image Horizontal Size bits
- REG[02BEh] add note "2. The minimum value for this register is 4."
- REG[02C0h], added bit description for the PIP2 Source Image Vertical Size bits
- REG[02C0h] add note "The minimum value for this register is 4."
- REG[02C2h] add "When Linear Panorama Scaling Mode is selected..." to bit description
- REG[02C4h] add "This register has no affect when Linear Panorama Scaling Mode is selected." to bit description
- REG[02C6h] add "When Linear Panorama Scaling Mode is selected..." to bit description
- REG[02C8h] add "When Linear Panorama Scaling Mode is selected..." to bit description

- REG[02CAh] add "This register has no affect when Linear Panorama Scaling Mode is selected" to bit description
- REG[02CCh] add "This register has no affect when Linear Panorama Scaling Mode is selected" to bit description
- REG[02CEh] add this register
- REG[0A02h], changed the Interrupt Control Register 0 from Read Only to Read/Write
- REG[0A04h], changed the Interrupt Control Register 1 from Read Only to Read/Write
- section 11, restructured the spec so that Power Save Modes is section 11
- section 11.1.3, added "REG[0180h] bit 0 = 1b" to Rotation/Mirror Write Access figure description
- section 11.1.3, added "REG[0180h] bit 0 = 0b, REG[0184h] bit 15 = 0b" to Direct Memory Access figure description and updated read all data? loop in figure
- section 11.1.3, added "REG[0180h] bit 0 = 0b, REG[0184h] bit 15 = 1b" to Direct Rectangular Memory Access figure description and updated read all data? loop in figure
- section 11.3.3, for YUV 4:2:0 data format 1 description fixed the colors shown for DB7
- section 12, updated the Use Case section with new examples
- section 14, added References section
- section 15, added Sales and Technical Support section

X80A-A-001-00 Revision 0.01 - Issued 2006/12/09

- Created from the file "S1D13748SpecRev0.16.doc"
- all changes from the last revision of the spec are highlighted in Red
- section 5.2.2, changed the following pin names and all other occurrences
 - P1DAT[17:0] --> FPDAT[17:0]
 - P1FRAME --> FPFRAME
 - P1LINE --> FPLINE
 - P1CLK --> FPSHIFT
 - P1DRDY --> FPDRDY
 - P1VIN --> FPVIN1
 - P1CS# --> FPCS1#
 - P2VIN --> FPVIN2
 - P2CS# --> FPCS2#
 - PSCLK --> FPSCK
 - PSA0 --> FPA0
 - PSO --> FPSO
 - SCS --> SCS#