|                   | SPECIFICA              | TION                  |
|-------------------|------------------------|-----------------------|
| 品名<br>STYLE NAME: | SWITCHING POWER SU     | PPLY                  |
| 型號<br>MODEL NO.:  | H1U-5300V              |                       |
| 料號<br>PART NO.:   |                        |                       |
| 版次<br>REVISION:   | A2                     |                       |
|                   |                        |                       |
| APPROVE<br>核准     | # 7/R/Feb. 13, 2009    | 正式 正式資料               |
| CHECK BY<br>審核    | 军团星 PeB13 20019.       | 資<br>料<br>FEB 13 2009 |
| FORM MAKER        | PR 60 # 2 FEB. 4. 3009 | 用研發本部                 |

FAX. : +886(2)29134969

POWER DIVISION

# Revisions

| Rev. | Page | Item | Date        | Description                   |
|------|------|------|-------------|-------------------------------|
| A2   | 10   | 11.0 | FEB.13.2009 | ADD Fan speed control voltage |

H1U-5300V SPEC. REV:A2

.....

## MODEL NO. H1U-5300V

#### 1.0 Scope

- 2.0 Input requirements
  - 2.1 Voltage
  - 2.2 Frequency
  - 2.3 Stead-state current
  - 2.4 Inrush current
  - 2.5 Power factor correction
- 3.0 Output requirements
  - 3.1 DC load requirements
  - 3.2 Regulation
  - 3.3 Ripple and noise
    - 3.3.1 Specification
    - 3.3.2 Ripple voltage test circuit
  - 3.4 Overshoot
  - 3.5 Efficiency
  - 3.6 Typical Distribution of Efficiency
  - 3.7 Remote on/off control
- 4.0 Protection
  - 4.1 Input
  - 4.2 Output
    - 4.2.1 OPP
    - 4.2.2 OVP
    - 4.2.3 Short current
- 5.0 Power supply sequencing
  - 5.1 Turn on
  - 5.2 Hold up time
  - 5.3 Power off sequence
- 6.0 Signal requirements
  - 6.1 Power good (POR)
  - 6.2 Under voltage sense level
- 7.0 Environment
  - 7.1 Temperature
  - 7.2 Humidity
  - 7.3 Insulation resistance
  - 7.4 Dielectric withstanding voltage
  - 7.5 Leakage current

- 8.0 Safety
  - 8.1 UL & UL+C
  - 8.2 TUV
  - 8.3 Power Line Transient
  - 8.4 REF/EMI Standards
- 9.0 Reliability
  - 9.1 Burn in
- 10.0 Mechanical requirements 10.1 Physical dimension
- 11.0 Fan speed control voltage

.....

1.0 Scope

This specification defines the performance characteristics of a grounded , single-phase , 300watts , 5 output level power supply. This specification also defines world wide safety requirements and manufactures process test requirements.

#### 2.0 Input requirements

- 2.1 Voltage (sinusoidal) Full range 100~
- Full range $100 \sim 240$  VAC (With  $\pm 10\%$  tolerance)2.2 Frequency
  - The input frequency range will be  $47hz \sim 63hz$ .
- 2.4 Steady-state current
  - $4 \sim 2$  amps maximum at any low/high range input voltage.
- 2.5 Inrush current 20/40 amps @110/220 VAC (at 25 degrees ambient cold start)
- 2.6 Power factor correction PFC can reach the target of 95% @ 115V,full load, following the standard of EN 61000-3-2.
- 3.0 Output requirements
  - 3.1 DC load requirements

| Normal         | Load current |     | Regulation tolerance |      |
|----------------|--------------|-----|----------------------|------|
| Output voltage | Max.         | Min | Max.                 | Min. |
| +5V            | 18           | 1.0 | +5%                  | -5%  |
| +12V           | 22           | 1.0 | +5%                  | -5%  |
| -12V           | 0.5          | 0.1 | +10%                 | -10% |
| +3.3V          | 16           | 1.0 | +5%                  | -5%  |
| +5VSB          | 2            | 0.1 | +5%                  | -5%  |

\*\*\* +5V and +3.3V total output max : 25A \*\*\* \*\*\* +5V,+3.3V and +12V total max:284W \*\*\*

\*\*\* Total power: 300W

Cross regulation shall include 80% max. Load & 20% max. Load any associate at any output

#### 3.2 Regulation and protection

| Output DC | Line                  |
|-----------|-----------------------|
| voltage   | regulation            |
| +5V       | $\pm$ 50mV            |
| +12V      | $\pm 100 \mathrm{mV}$ |
| -12V      | $\pm 120 mV$          |
| +3.3V     | $\pm 50 \mathrm{mV}$  |
| +5VSB     | $\pm 50 \mathrm{mV}$  |

#### 3.3 Ripple and noise

3.3.1 Specification

| +5V   | 50mV (P-P)  |
|-------|-------------|
| +12V  | 120mV (P-P) |
| -12V  | 120mV (P-P) |
| +3.3V | 50mV (P-P)  |
| +5VSB | 50mV (P-P)  |
|       |             |

#### 3.3.2 Ripple voltage test circuit



0.1 uf is ceramic, the other is tantalum. Noise bandwidth is from DC to 20Mhz

#### 3.4 Overshoot

Any overshoot at turn on or turn off shall be less than 15% of the nominal voltage value , all output shall be within the regulation limit of section 3.2 before issuing the power good signal of section 6.0.

3.5 Efficiency

Power supply efficiency typical 80-84% at 115V FULL LOAD

| sto Typical Districtioner                                                 |               |              |                  |        |                         |         |           |
|---------------------------------------------------------------------------|---------------|--------------|------------------|--------|-------------------------|---------|-----------|
| 20% Max load, Efficiency test condition @ Ambient temperature 30 degrees  |               |              |                  |        |                         |         |           |
| Valtaga                                                                   | +12V          | +5V          | -12V             | 12 237 | +3.3V +5VSB AC INPUT Vo |         | T Voltage |
| Voltage                                                                   | $\pm 12V$     | νcτ          | -12 V            | ±2.2¥  | TINID                   | 115V    | 230V      |
| Load                                                                      | 3.1A          | 2.6A         | 0.1A             | 2.3A   | 0.3A                    | >80%    | >80%      |
| 50% Max load, Efficiency test condition @ Ambient temperature 30 degrees  |               |              |                  |        |                         |         |           |
| Valtara                                                                   | +12V          | +5V          | -12V             | +3.3V  | +5VSB                   | AC INPU | T Voltage |
| Voltage                                                                   | $\pm 12V$     | +3 V         | -12 V            | +3.3 V | +3A2B                   | 115V    | 230V      |
| Load                                                                      | 7.8A          | 6.4A         | 0.2A             | 5.7A   | 0.7A                    | >82%    | >84%      |
| 80% Max load, Efficiency test condition @ Ambient temperature 30 degrees  |               |              |                  |        |                         |         |           |
| Valtara                                                                   | 11017         | 1537         | 1017             | 12.237 | 12.2X 15XCD             | AC INPU | T Voltage |
| Voltage                                                                   | +12V          | +5V          | -12V             | +3.3V  | +5VSB                   | 115V    | 230V      |
| Load                                                                      | 12.5A         | 10.2A        | 0.3A             | 9.1A   | 1.1A                    | >80%    | >82%      |
| 100% Max load, Efficiency test condition @ Ambient temperature 30 degrees |               |              |                  |        |                         |         |           |
| Valtaga                                                                   | +12V          | <b>⊥5</b> 1/ | - <b>5</b> V 10V | 10.057 | LEVED                   | AC INPU | T Voltage |
| Voltage                                                                   | <i>τ</i> 12 V | +5V          | -12V             | +3.3V  | +5VSB                   | 115V    | 230V      |
| Load                                                                      | 15.6A         | 12.8A        | 0.4A             | 11.4A  | 1.4A                    | >80%    | >82%      |

#### 3.6 Typical Distribution of Efficiency

#### P.S:

Any difference either on the DC output cable (i.e., length, wire gauge) or on the accurate of instruments will conclude different test result.

3.7 Remote on/off control

The power supply DC outputs (with the exception of +5VSB) shall be enabled with an active-low , TTL-compatible signal("PS-ON") When PS-ON is pulled to TTL low , the DC outputs are to be enabled. When PS-ON is pulled to TTL high or open circuited , the DC outputs are to be disabled.

The DC output enable circuit shall be SELV compliant.

#### 4.0 Protection

4.1 Input (primary)

The input power line must have an over power protection device in accordance with safety requirement of section 8.0

4.2 Output (secondary)

#### 4.2.1 Over power protection

Over power protection at  $110\% \sim 160\%$  of rated output power .The power supply latches all DC output into a shutdown state. Over power of this type shall cause no damage to power supply , after over power is removed and a power on/off cycle is initiated , the power supply will restart. 4.2.2 Over voltage protection

If an over voltage fault occurs (internal of the power supply), the power supply will latch all DC output into a shutdown state before

+5V : 5.6V  $\sim$  6.6V +3.3V : 3.8V  $\sim$  5V +12V : 13.2V  $\sim$  14.6V

- 4.2.3 Short circuit
  - A: A short circuit placed on any DC output to DC return shall cause no damage.
  - B: The power supply shall be latched in case any short circuit is taken place at +5V, +3.3V, +12V output.
  - C: The power supply shall be auto-recovered in case any short circuit is taken place at -12V, +5Vsb
- 5.0 Power supply sequencing
  - 5.1 Power on (see fig.1)
  - 5.2 Hold up time When power shutdown DC output 5V must be maintain 16msec in regulation limit at normal input voltage.
  - 5.3 Power off sequence (see fig. 1)
- 6.0 Signal requirements
  - 6.1 Power good signal (see fig. 1)

The power supply shall provide a "power good" signal to reset system logic , indicate proper operation of the power supply , and give advance warning of impending loss of regulation at turn off. This signal shall be a TTL compatible up level (2.4V to 5.25V) when +5V output voltage are present and above the minimum UV sense levels specified in paragraph 6.2 , or a down level (0.0V to 0.8V) when any output is below its minimum UV sense level.

At power on , the power good signal shall have a turn on delay of at least 100ms but not greater than 500ms after the output voltages have reached their respective minimum sense levels.

6.2 Under voltage (UV) sense levels

| Output | Minimum sense voltage |
|--------|-----------------------|
| +5V    | +4.50V                |
| +3.3V  | +2.50V                |

### 7.0 Environment

| 7.1          | Temperature                                                                                              |                                                                                                             |
|--------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|              | Operating temperature                                                                                    | 0 to 40 degrees centigrade<br>(Evaluated for UL recognition at an operating<br>temperature of 25°C ambient) |
|              | Storage temperature                                                                                      | -20 to 80 degrees centigrade                                                                                |
|              | Safety regulation temperature                                                                            | Applied at room temperature (25°C)                                                                          |
|              | Operating temperature from $0^{\circ}$ C she                                                             |                                                                                                             |
| 7.2          | Humidity                                                                                                 |                                                                                                             |
|              | Operating humidity                                                                                       | 20% to 80%                                                                                                  |
|              | Non-operating humidity                                                                                   | 10% to 90%                                                                                                  |
| 7.3          | Insulation resistance                                                                                    |                                                                                                             |
|              | Primary to secondary                                                                                     | : 50 meg. ohm min. 500 VDC                                                                                  |
|              | Primary to FG                                                                                            | : 50 meg. ohm min. 500 VDC                                                                                  |
| 7.4          | Dielectric withstanding voltage                                                                          |                                                                                                             |
|              | Condition for approval :                                                                                 |                                                                                                             |
|              | Primary to secondary<br>Primary to FG                                                                    | :3K VAC for 1min.<br>:1800 VAC for 1 min.                                                                   |
|              | Timary to PO                                                                                             | .1800 VAC IOUT IIIIII.                                                                                      |
|              | For production purpose:100% test                                                                         |                                                                                                             |
|              | Primary to FG                                                                                            | :1800 VAC for 2 sec OR 2650 VDC for 2 sec.                                                                  |
| 7.5          | Leakage current<br>1.5 mA. max. at nominal voltage 250                                                   | ) VAC                                                                                                       |
| 8.0 Safety   |                                                                                                          |                                                                                                             |
| 8.1          | Recognized to U.S. and Canadian recognition program of Underwriter<br>The power supply shall be designed | s Laboratories Inc.                                                                                         |
| 8.2          | TUV Standards                                                                                            |                                                                                                             |
| 0.2          | The power supply shall be designed                                                                       | l to meet TUV EN-60950.                                                                                     |
| 8.3          | Power Line Transient                                                                                     |                                                                                                             |
|              | The power supply shall be designed                                                                       | to meet the following standards                                                                             |
|              | a). EN 61000-4-2(ESD) Criterion B                                                                        | , $\pm 4$ KV by contact, $\pm 8$ KV by air.                                                                 |
|              | b). EN 61000-4-4(EFT) Criterion B                                                                        | , $\pm 1$ KV.                                                                                               |
|              | c). EN 61000-4-5(SURGE) Criterio                                                                         | n B, Line-Line $\pm 1$ KV,                                                                                  |
|              | Line-Earth $\pm 2$ KV.                                                                                   |                                                                                                             |
| 8.4          | RFI / EMI Standards                                                                                      |                                                                                                             |
|              |                                                                                                          | the following radiated and conducted                                                                        |
|              | Emissions standards,                                                                                     |                                                                                                             |
|              | a). FCC part 15. (CLASS A)                                                                               |                                                                                                             |
| 300V SPEC P  | b). CISPR 22. (EN 55022/CLASS A                                                                          | A)                                                                                                          |
| NULV SHELL V | H V / A / B / A / B / A / B / A / B / B / B                                                              |                                                                                                             |

H1U-5300V SPEC. REV:A2

Page 9 of 11

#### 9.0 Reliability

#### 9.1 Burn in

All products shipped to customer must be processed by burn-in. The burn- in shall be performed for 1 hour at full load.

#### 10.0 Mechanical requirements

10.1 Physical dimension : 40 mm \* 100 mm \* 155 mm (H\*W\*D)

#### 11.0 Fan speed control voltage (TC= $30^{\circ}$ C)

Fan speed is in varying with different temperature of heatsinks. The relationship between fan noise and changes in temperature per shown in the following diagram.





| Vn   | Nominal voltages +5V                   |
|------|----------------------------------------|
| Vm   | Minimum voltages +4.5V                 |
| Va   | Nominal voltages +3.3V                 |
| Tson | Switch on time(500ms. Max)             |
| Trs  | +5V rise time (100ms. max.)            |
| Tdon | Delay turn-on (100ms. < Tdon < 500ms.) |

- Tdoff Delay turn-off (1 ms. min.)
- Toff Hold up time (16ms. min.)

《Figure 1》