THT Current Sense Transformers

- *UL/C-UL* recognized components
- @ 3000Vrms gate to drive winding test
- @ Useful operating frequency from 50kHz to 500 kHz
- *[®]* Most popular winding configurations

Electrical Specifications @ 25°C - Operating Temperature -40°C to +130°C								
Part⁵ Number	Turns Ratio	Primary Inductance (1-10) (mH MIN)	DCR Pri (1-10) (Ω MAX)	DCR Sec1 (3-7) (mΩ ±15%)	DCR Sec2 (4-8) (mΩ ±15%)	Hipot (Pri-Sec) (Vrms)		
P0581NL	200:1:1	76	2.8	1.7	1.7	3000		
P0582NL	100:1:1	19	1.4	1.7	1.7	3000		
P0583NL	50:1:1	5	0.7	1.7	1.7	3000		

Additional Specifications								
		Referen	Calculation Data					
Part Number	RT	lpk (Amps)	Droop (%)	Max Flux Density	Kb	Req (mΩ)		
P0581NL	200	34	1.00	2000	17.12	.9		
P0582NL	100	35	1.98	2000	68.49	.8		
P0583NL	15	36	1.19	2000	273.97	.75		

Notes:

- 1. These current sense transformers have two one turn primaries that can be used in parallel. The listed current ratings are for parallel connection.
- The reference values are for an application using the termination resistor (Rt) and operating with unipolar waveform at 100kHz, 40% duty cycle. The estimated temperature rise is 55°C.
- 3. The peak flux density should remain below 2100 Gauss to ensure that the core does not saturate. Use the following formula to calculate the peak flux density: Bpk = Kb * Ipk * Rt * don/(Ff * freq. in kHz) where: Rt is the terminating resistor in the application and the Ff is 1 for unipolar waveform and 2 for bipolar waveform.
- 4. To calculate the droop: Droop Exponent (D) = Rt * don/(Lpri in mH * Freq. in kHz %Droop = (1-e^-D) * 100

- 5. The temperature rise of the component is calculated based on the total core loss and copper loss:
 - A. To calculate total copper loss (W): P(cu) = lpk² * Req * Ff * don where Ff is 1 for unipolar waveform and 2 for bipolar waveform
 - B. To calculate total core loss (W): P (core) = $0.000073 * (Freq. in kHz)^{1.61*} (Bop in kG)^{2.532}$ where: Bop in kG = Kb * lpk * Rt * don/(2000 * Freq. in kHz)
 - C. To calculate temperature rise: Temperature Rise (C) = 60.18 * (Core Loss (W) + Copper Loss (W))⁸³³

THT Current Sense Transformers

P0581NL / P0582NL AND P0583NL

SUGGESTED PCB HOLE PATTERN

For More Information	n				
Pulse Worldwide Headquarters 15255 Innovation Drive Ste 100 San Diego, CA 92128 U.S.A.	Pulse Europe Pulse Electronics GmbH Am Rottland 12 58540 Meinerzhagen Germany	Pulse China Headquarters Pulse Electronics (ShenZhen) CO., LTD D708, Shenzhen Academy of Aerospace Technology, The 10th Keji South Road, Nanshan District, Shenzhen, P.R. China 518057	Pulse North China Room 2704/2705 Super Ocean Finance Ctr. 2067 Yan An Road West Shanghai 200336 China	Pulse South Asia 3 Fraser Street 0428 DUO Tower Singapore 189352	Pulse North Asia 1F., No.111 Xiyuan Road Zhongli District Taoyuan City 32057 Taiwan (R.O.C)
Tel: 858 674 8100 Fax: 858 674 8262	Tel: 49 2354 777 100 Fax: 49 2354 777 168	Tel: 86 755 33966678 Fax: 86 755 33966700	Tel: 86 21 62787060 Fax: 86 2162786973	Tel: 65 6287 8998 Fax: 65 6280 0080	Tel: 886 3 4356768 Fax: 886 3 4356820

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved.

2