74ABT74

Dual D-type flip-flop

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS T _{amb} = 25°C; GND = 0V	TYPICAL	UNIT
t _{PLH} t _{PHL}	Propagation delay CPn to Qn, Qn	C _L = 50pF; V _{CC} = 5V	3.0 2.5	ns
t _{OSLH} t _{OSHL}	Output to Output skew		0.5	ns
C _{IN}	Input capacitance	$V_{I} = 0V \text{ or } V_{CC}$	3	pF
I _{CC}	Total supply current	Outputs disabled; $V_{CC} = 5.5V$	50	μΑ

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1, 2, 3, 4, 10, 11, 12, 13	RDn, Dn, CPn, SDn	Data inputs
5, 6, 8, 9	Qn, Qn	Data outputs
7	GND	Ground (0V)
14	V _{CC}	Positive supply voltage

LOGIC SYMBOL

DESCRIPTION

The 74ABT74 is a dual positive edge-triggered D-type flip-flop featuring individual data, clock, set, and reset inputs; also true and complementary outputs. Set (SD) and reset (RD) are asynchronous active low inputs and operate independently of the clock input. When set and reset are inactive (high), data at the D input is transferred to the Q and \overline{Q} outputs on the low-to-high transition of the clock. Data must be stable just one setup time prior to the low-to-high transition of the clock for predictable operation. Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the D input may be changed without affecting the levels of the output.

LOGIC SYMBOL (IEEE/IEC)

LOGIC DIAGRAM

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
14-Pin Plastic DIP	-40°C to +85°C	74ABT74 N	74ABT74 N	SOT27-1
14-Pin plastic SO	-40°C to +85°C	74ABT74 D	74ABT74 D	SOT108-1
14-Pin Plastic SSOP Type II	-40°C to +85°C	74ABT74 DB	74ABT74 DB	SOT337-1
14-Pin Plastic TSSOP Type I	-40°C to +85°C	74ABT74 PW	74ABT74PW DH	SOT402-1

74ABT74

Product specification

FUNCTION TABLE

	INPUTS			OUTF	PUTS	OPERATING
SD	RD	СР	D	Q	Q	MODE
L	Н	Х	Х	Н	L	Asynchronous set
н	L	х	х	L	Н	Asynchronous reset
L	L	Х	Х	Н	Н	Undetermined*
Н	Н	\uparrow	h	Н	L	Load "1"
Н	Н	\uparrow	I	L	Н	Load "0"
Н	Н	¢	Х	NC	NC	Hold

NOTES:

- H = High voltage level
- High voltage level one setup time prior to low-to-high h = clock transition
 - = Low voltage level
- = Low voltage level one setup time prior to low-to-high 1 clock transition
- NC= No change from the previous setup
- X = ↑ = ↑ = Don't care
 - Low-to-high clock transition

 - Not low-to-high clock transition This setup is unstable and will change when either set = or reset return to the high level.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
I _{IK}	DC input diode current	V ₁ < 0	-18	mA
VI	DC input voltage ³		-1.2 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	output in Off or High state	-0.5 to +5.5	V
I _{OUT}	DC output current	output in Low state	40	mA
T _{stg}	Storage temperature range		–65 to 150	°C

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C. 3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWBOL	FARAMETER	MIN	MAX	UNIT
V _{CC}	DC supply voltage	4.5	5.5	V
VI	Input voltage	0	V _{CC}	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level input voltage		0.8	V
I _{ОН}	High-level output current		-15	mA
I _{OL}	Low-level output current		20	mA
Δt/Δv	Input transition rise or fall rate	0	10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

74ABT74

DC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITIONS	T _{amb} = +25°C			T _{amb} = −40°C to +85°C		UNIT
			MIN	TYP	MAX	MIN	MAX	1
V _{IK}	Input clamp voltage	V _{CC} = 4.5V; I _{IK} = -18mA		-0.9	-1.2		-1.2	V
V _{OH}	High-level output voltage	V_{CC} = 4.5V; I_{OH} = -15mA; V_I = V_{IL} or V_{IH}	2.5	2.9		2.5		V
V _{OL}	Low-level output voltage	V_{CC} = 4.5V; I_{OL} = 20mA; V_I = V_{IL} or V_{IH}		0.35	0.5		0.5	V
l _l	Input leakage current	$V_{CC} = 5.5V; V_{I} = GND \text{ or } 5.5V$		±0.01	±1.0		±1.0	μA
I _{OFF}	Power-off leakage current	V_{CC} = 0.0V; V_O or $V_I\leq 4.5V$		±5.0	±100		±100	μA
I _{CEX}	Output High leakage current	V_{CC} = 5.5V; V_{O} = 5.5V; V_{I} = GND or V_{CC}		5.0	50		50	μA
Ι _Ο	Output current ¹	V _{CC} = 5.5V; V _O = 2.5V	-50	-75	-180	-50	-180	mA
I _{CC}	Quiescent supply current	V_{CC} = 5.5V; V_{I} = GND or V_{CC}		2	50		50	μA
ΔI_{CC}	Additional supply current per input pin ²	V_{CC} = 5.5V; One data input at 3.4V, other inputs at V_{CC} or GND		0.25	500		500	μΑ

NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

2. This is the increase in supply current for each input at 3.4V.

3. For valid test results, data must not be loaded into the flip-flop or latch after applying the power.

AC ELECTRICAL CHARACTERISTICS

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$, $R_L = 500\Omega$

		WAVEFORM						
SYMBOL	PARAMETER		T _{amb} = +25°C V _{CC} = +5.0V			T _{amb} = -40° V _{CC} = +5	UNIT	
			MIN	TYP	MAX	MIN	MAX	
f _{MAX}	Maximum clock frequency	1	180	250		150		MHz
t _{PLH} t _{PHL}	Propagation delay CPn to Qn, Qn	1	1.0 1.0	3.0 2.5	4.2 3.5	1.0 1.0	4.7 4.0	ns
t _{PLH} t _{PHL}	Propagation delay Sn, Rn to Qn, Qn	3	1.0 1.0	3.4 2.9	4.9 4.5	1.0 1.0	6.2 5.2	ns
t _{OSHL} t _{OSLH} 1	Output to Output skew An or Bn to Yn	4		0.5	0.6		0.6	ns

NOTE:

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the the same direction, either HIGH–to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

AC SETUP REQUIREMENTS

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$, $R_L = 500\Omega$

	PARAMETER					
SYMBOL		WAVEFORM	T _{amb} = +25°C V _{CC} = +5.0V		T _{amb} = −40°C to +85°C V _{CC} = +5.0V ±0.5V	UNIT
			MIN	TYP	MIN	
t _{su} (H) t _{su} (L)	Setup time, high or low Dn to CPn	1	2.6 2.4	1.4 1.4	2.6 2.4	ns
t _h (H) t _h (L)	Hold time, high or low Dn to CPn	1	0 0	-1.4 -1.4	0 0	ns
t _w (H) t _w (L)	CPn pulse width, high or low	1	1.7 1.7	1.0 1.0	2.1 2.1	ns
t _w (L)	SDn, RDn pulse width, low	3	2.0	1.3	2.2	ns
t _{rec}	Recovery time SDn, RDn to CPn	2	2.1	1.4	2.4	ns

74ABT74

AC WAVEFORMS

 V_{M} = 1.5V, V_{IN} = GND to 3.0V

The shaded areas indicate when the input is permitted to change for predictable output performance

Waveform 1. Propagation delay for data to output, data setup time and hold times, and clock width, and maximum clock frequency

Waveform 2. Recovery time for set or reset to clock

Waveform 4. Common edge skew

74ABT74

TEST CIRCUIT AND WAVEFORMS

- R_L = Load resistor; see AC CHARACTERISTICS for value.
- C_L = Load capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.
- R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS							
	Amplitude	Rep. Rate	t _W	t _R	t _F			
74ABT	3.0V	1MHz	500ns	2.5ns	2.5ns]		
					SH000	67		