ESD Protection Diode # Low Capacitance ESD Protection Diode for High Speed Data Line The ESD1L001 surge protection is designed to protect four high speed data lines from ESD. Ultra-low capacitance and low ESD clamping voltage make this device an ideal solution for protecting voltage sensitive high speed data lines. The small form factor, flow-through style package allows for easy PCB layout and matched trace lengths necessary to maintain consistent impedance between high speed differential lines such as USB 3.0 and HDMI. #### **Features** - Low Capacitance (0.3 pF Typical, I/O to GND) - Short to Battery Survivability - Protection for the Following IEC Standards: IEC 61000-4-2 Level 4 (ESD) - Low ESD Clamping Voltage (30 V Typical, +16 A TLP, I/O to GND) - SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant #### **Typical Applications** - USB2.0/3.0 - LVDS - HDMI - High Speed Differential Pairs #### **MAXIMUM RATINGS** (T_J = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |---|------------------|-------------|----------| | Operating Junction Temperature Range | TJ | -55 to +125 | °C | | Storage Temperature Range | T _{stg} | -55 to +150 | °C | | Lead Solder Temperature –
Maximum (10 Seconds) | TL | 260 | °C | | IEC 61000-4-2 Contact
IEC 61000-4-2 Air | ESD | ±8
±15 | kV
kV | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### ON Semiconductor® www.onsemi.com XXX = Specific Device Code M = Date Code = Pb-Free Package (Note: Microdot may be in either location) ## PIN CONFIGURATION AND SCHEMATIC #### **ORDERING INFORMATION** | Device | Package | Shipping | |-----------------|--------------------|-----------------------| | ESD1L001W1T2G | SC-88
(Pb-Free) | 3000 /
Tape & Reel | | SZESD1L001W1T2G | SC-88
(Pb-Free) | 3000 /
Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. 1 #### **ELECTRICAL CHARACTERISTICS** (T_A = 25°C unless otherwise specified) | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |----------------------------------|------------------|--|---------------------|---------------------------|-----|------| | Reverse Working
Voltage | V _{RWM} | I/O Pin to GND | | 5 | 16 | V | | Breakdown Voltage | V_{BR} | I _T = 1 mA, I/O Pin to GND | 16.5 | | | V | | Reverse Leakage
Current | I _R | V _{RWM} = 5 V, I/O Pin to GND | | | 1 | μΑ | | Clamping Voltage
(Note 1) | V _C | IEC61000-4-2, ±8 kV Contact | See Figures 3 and 4 | | | | | Clamping Voltage TLP
(Note 2) | V _C | I _{PP} = 8 A
I _{PP} = 16 A
I _{PP} = -8 A
I _{PP} = -16 A | | 25
30
–5.5
–10.8 | | V | | Junction Capacitance
Match | ΔCJ | J VR = 0 V, f = 1 MHz between Pin1 to GND and Pin4 to GND | | 5 | 10 | % | | Junction Capacitance | CJ | VR = 0 V, f = 1 MHz between I/O Pins 0.2 | | 0.4 | pF | | | Junction Capacitance | CJ | VR = 0 V, f = 1 MHz between I/O Pins and GND | | 0.3 | 0.5 | pF | | 3dB Bandwidth | f_{BW} | R _L = 50 Ω | | 5 | | GHz | - 1. For test procedure see Figures 5 and 6 and application note AND8307/D. - 2. ANSI/ESD STM5.5.1 Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model. TLP conditions: $Z_0 = 50 \Omega$, $t_p = 100 \text{ ns}$, $t_r = 4 \text{ ns}$, averaging window; $t_1 = 30 \text{ ns}$ to $t_2 = 60 \text{ ns}$. Figure 3. IEC61000-4-2 +8 kV Contact ESD Clamping Voltage Figure 4. IEC61000-4-2 -8 kV Contact ESD Clamping Voltage #### IEC 61000-4-2 Spec. | Level | Test Volt-
age (kV) | First Peak
Current
(A) | Current at
30 ns (A) | Current at
60 ns (A) | |-------|------------------------|------------------------------|-------------------------|-------------------------| | 1 | 2 | 7.5 | 4 | 2 | | 2 | 4 | 15 | 8 | 4 | | 3 | 6 | 22.5 | 12 | 6 | | 4 | 8 | 30 | 16 | 8 | Figure 5. IEC61000-4-2 Spec Figure 6. Diagram of ESD Clamping Voltage Test Setup The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices. #### **ESD Voltage Clamping** For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D. Figure 7. Positive TLP IV Curve Figure 8. Negative TLP IV Curve NOTE: TLP parameter: $Z_0 = 50 \Omega$, $t_p = 100 \text{ ns}$, $t_r = 300 \text{ ps}$, averaging window: $t_1 = 30 \text{ ns}$ to $t_2 = 60 \text{ ns}$. #### **Transmission Line Pulse (TLP) Measurement** Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 9. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 10 where an 8 kV IEC 61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP I–V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels. Figure 9. Simplified Schematic of a Typical TLP System Figure 10. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms Figure 11. USB3.0 Eye Diagram with and without ESD1L001 at 5 Gb/s Figure 12. Typical Insertion Loss #### PACKAGE DIMENSIONS #### SC-88/SC70-6/SOT-363 CASE 419B-02 #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. - DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS 6 AND 6 APPLY TO THE FLAT SECTION OF THE - LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION 5 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 5 AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|------------|-----------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | | - | 1.10 | | | 0.043 | | A1 | 0.00 | | 0.10 | 0.000 | | 0.004 | | A2 | 0.70 | 0.90 | 1.00 | 0.027 | 0.035 | 0.039 | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | С | 0.08 | 0.15 | 0.22 | 0.003 | 0.006 | 0.009 | | D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 | | E | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 | | E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 | | е | 0.65 BSC | | | 0.026 BSC | | | | L | 0.26 | 0.36 | 0.46 | 0.010 | 0.014 | 0.018 | | L2 | 0.15 BSC | | | 0.006 BSC | | | | aaa | 0.15 | | | 0.006 | | | | bbb | 0.30 | | | 0.012 | | | | ccc | 0.10 | | | 0.004 | | | | ddd | | 0.10 | 0.10 0.004 | | | | #### RECOMMENDED SOLDERING FOOTPRINT* *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. coverage may be accessed at www.onsemi.com/site/pat/ratent-warring.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative