
Vishay Siliconix

HALOGEN

FREE

Power MOSFET

PRODUCT SUMMA	RY	
V _{DS} (V)	60	
$R_{DS(on)}(\Omega)$	$V_{GS} = 5.0 \text{ V}$	0.20
Q _g max. (nC)	8.4	
Q _{gs} (nC)	3.5	
Q _{gd} (nC)	6.0	
Configuration	Sing	le

N-Channel MOSFET

FEATURES

- Surface mount
- · Available in tape and reel
- Dynamic dV/dt rating
- · Logic-level gate drive
- R_{DS(on)} specified at V_{GS} = 4 V and 5 V
- Fast switching
- Ease of paralleling
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

Third generation power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The SOT-223 package is designed for surface-mounting using vapor phase, infrared, or wave soldering techniques. Its unique package design allows for easy automatic pick-and-place as with other SOT or SOIC packages but has the added advantage of improved thermal performance due to an enlarged tab for heatsinking. Power dissipation of greater than 1.25 W is possible in a typical surface mount application.

ORDERING INFORMATION	
Package	SOT-223
Lead (Pb)-free and Halogen-free	SiHLL014TR-GE3
Lead (Pb)-free	IRLL014TRPbF a

Note

a. See device orientation.

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)			
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-Source Voltage		V _{DS}	60	V		
Gate-Source Voltage		V_{GS}	± 10	v		
Continuous Drain Current	V _{GS} at 10 V	$T_{\rm C} = 25 ^{\circ}{\rm C}$ $T_{\rm C} = 100 ^{\circ}{\rm C}$	_	2.7		
Continuous Drain Current	Indust Drain Current V_{GS} at 10 V $T_C = 100 ^{\circ}C$		I _D	1.7	Α	
Pulsed Drain Current ^a			I _{DM}	22		
Linear Derating Factor				0.025	W/°C	
Linear Derating Factor (PCB mount) e	unt) e 0.017					
Single Pulse Avalanche Energy ^b			E _{AS}	100	mJ	
Repetitive Avalanche Current ^a			I _{AR}	2.7	Α	
Repetitive Avalanche Energy ^a		E _{AR}	0.31	mJ		
Maximum Power Dissipation	T _C = 25 °C		Б	3.1	w	
Maximum Power Dissipation (PCB mount) e	T _A =	25 °C	P_D	2.0	v	
Peak Diode Recovery dV/dt ^c		dV/dt	4.5	V/ns		
Operating Junction and Storage Temperature Rang	е		T _J , T _{stg}	-55 to +150		
Soldering Recommendations (Peak temperature) d	dering Recommendations (Peak temperature) d for 10 s			300		

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. V_{DD} = 25 V, starting T_J = 25 °C, L = 16 mH, R_g = 25 Ω , I_{AS} = 2.7 A (see fig. 12).
- c. $I_{SD} \leq$ 10 A, $dI/dt \leq$ 90 A/µs, $V_{DD} \leq V_{DS}$, $T_{J} \leq$ 150 °C.
- d. 1.6 mm from case.
- e. When mounted on 1" square PCB (FR-4 or G-10 material).

Vishay Siliconix

THERMAL RESISTANCE RAT	INGS				
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient (PCB mount) ^a	R _{thJA}	-	-	60	°C/W
Maximum Junction-to-Case (Drain)	R _{thJC}	-	-	40	

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static				•			
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 250 μA	60	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA	-	0.073	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	· V _{GS} , I _D = 250 μA	1.0	-	2.0	V
Gate-Source Leakage	I _{GSS}	,	V _{GS} = ± 10 V	-	-	± 100	nA
Zava Cata Valtaga Dvain Cuwant		V _{DS} :	V _{DS} = 60 V, V _{GS} = 0 V		-	25	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 48 \text{ V}$	$V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$	-	-	250	μA
Drain-Source On-State Resistance	В	V _{GS} = 5.0 V	I _D = 1.6 A ^b	-	-	0.20	0
Drain-Source On-State nesistance	R _{DS(on)}	V _{GS} = 4.0 V	I _D = 1.4 A ^b	-	-	0.28	Ω
Forward Transconductance	9 _{fs}	V _{DS} :	= 25 V, I _D = 1.6 A	3.2	-	-	S
Dynamic							
Input Capacitance	C _{iss}	$V_{cc} = 0 \text{ V}$		-	400	-	
Output Capacitance	C _{oss}		$V_{DS} = 25 \text{ V},$	-	170	-	pF
Reverse Transfer Capacitance	C_{rss}	$V_{GS} = 0 \text{ V}, \\ V_{DS} = 25 \text{ V}, \\ f = 1.0 \text{ MHz, see fig. 5} \\ V_{GS} = 5.0 \text{ V} \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ \text{see fig. 6 and } 13 \text{ b} \\ \hline \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ V}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS} = 48 \text{ A}, \\ I_D = 10 \text{ A}, V_{DS$		-			
Total Gate Charge	Qg		10.4.1/ 40.1/	-	-	8.4	
Gate-Source Charge	Q _{gs}	$V_{GS} = 5.0 \text{ V}$		-	-	3.5	nC
Gate-Drain Charge	Q_{gd}		oco ng. o ana ro	-	-	6.0	
Turn-On Delay Time	t _{d(on)}			-	9.3	-	
Rise Time	t _r	V _{DD} :	= 30 V, I _D = 10 A,	-	110	-	no
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = 30 \text{ V, } I_D = 10 \text{ A,}$ $R_g = 12 \Omega, R_D = 2.8 \Omega, \text{ see fig. } 10 \text{ b}$ $ -$		-	ns		
Fall Time	t _f			-	26	-	
Internal Drain Inductance	L _D	Between lead, - 4.0 - 6 mm (0.25") from		-			
Internal Source Inductance	L _S	package and die contact	center of	-	6.0	-	nH
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	MOSFET symbol showing the		-	2.7	_
Pulsed Diode Forward Current ^a	I _{SM}	integral revers p - n junction		-	-	22	A
Body Diode Voltage	V_{SD}	$T_J = 25 ^{\circ}\text{C}, I_S = 2.7 \text{A}, V_{GS} = 0 \text{V}^{ \text{b}}$		-	-	1.6	V
Body Diode Reverse Recovery Time	t _{rr}	T 05 00 1	40.4 - 11/-14 - 400.4 / - h	-	65	130	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_J = 25 \text{ °C, I}_F$	= 10 A, dl/dt = 100 A/µs ^b	-	0.33	0.65	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	rn-on time is negligible (turn	-on is dor	ninated b	y L _S and	L _D)

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width \leq 300 µs; duty cycle \leq 2 %.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

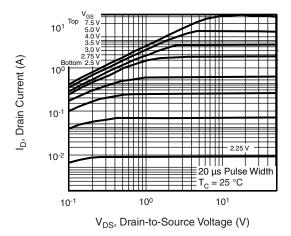


Fig. 1 - Typical Output Characteristics, T_C = 25 °C

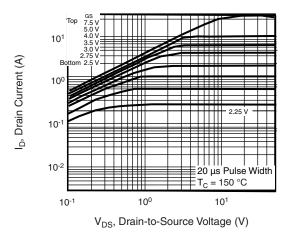


Fig. 2 - Typical Output Characteristics, $T_C = 150$ °C

Fig. 3 - Typical Transfer Characteristics

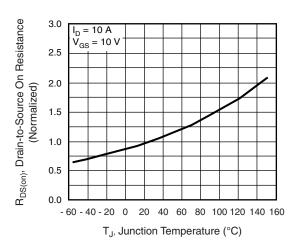


Fig. 4 - Normalized On-Resistance vs. Temperature

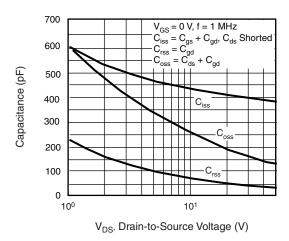


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

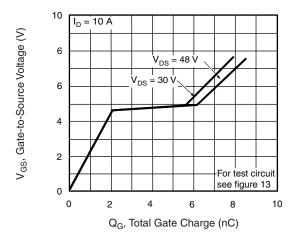


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

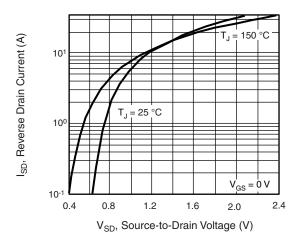


Fig. 7 - Typical Source-Drain Diode Forward Voltage

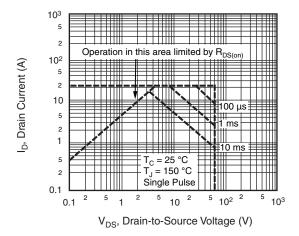


Fig. 8 - Maximum Safe Operating Area

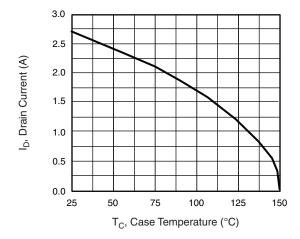


Fig. 9 - Maximum Drain Current vs. Case Temperature

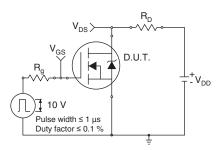


Fig. 10a - Switching Time Test Circuit

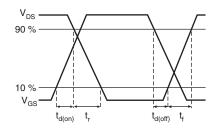


Fig. 10b - Switching Time Waveforms

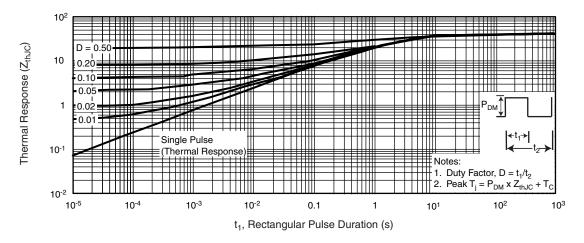


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

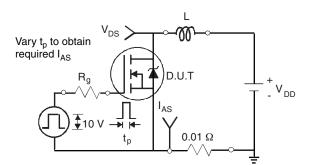


Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

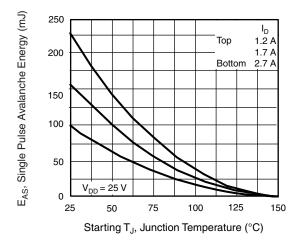
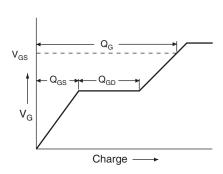



Fig. 12c - Maximum Avalanche Energy vs. Drain Current

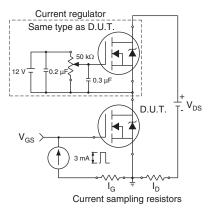
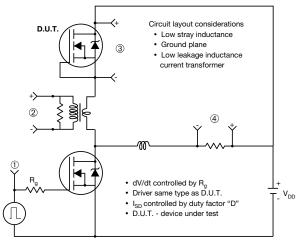
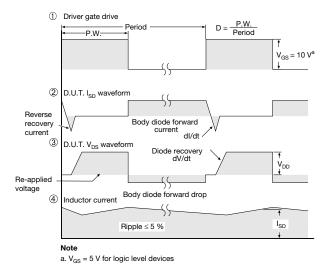
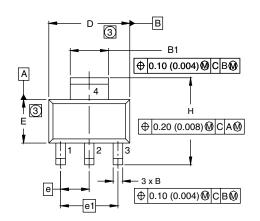
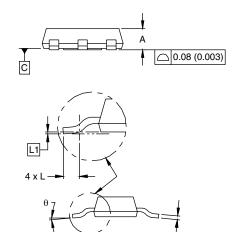



Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit




Fig. 14 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91319.

Vishay Siliconix

SOT-223 (HIGH VOLTAGE)

DIM.	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.	
Α	1.55	1.80	0.061	0.071	
В	0.65	0.85	0.026	0.033	
B1	2.95	3.15	0.116	0.124	
С	0.25	0.35	0.010	0.014	
D	6.30	6.70	0.248	0.264	
E	3.30	3.70	0.130	0.146	
е	2.30	BSC	0.0905 BSC		
e1	4.60	BSC	0.181	BSC	
Н	6.71	7.29	0.264	0.287	
L	0.91	-	0.036	-	
L1	0.06	0.061 BSC		BSC	
θ	-	10'	-	10'	

ECN: S-82109-Rev. A, 15-Sep-08

DWG: 5969

Notes

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Dimensions are shown in millimeters (inches).
- 3. Dimension do not include mold flash.
- 4. Outline conforms to JEDEC outline TO-261AA.

Document Number: 91363 www.vishay.com Revision: 15-Sep-08

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.