
 

Analog Devices ADXL343 Breakout

Learning Guide
Created by Liz Clark

 

https://learn.adafruit.com/adxl343-breakout-learning-guide

Last updated on 2022-12-01 03:28:30 PM EST

©Adafruit Industries Page 1 of 38



5

8

10

14

15

21

28

28

35

35

Table of Contents

Overview

• Technical Characteristics

Pinout

• Power Pins

• I2C Pins

• Other Pins

• LED Jumper

Assembly

• Prepare the header strip:

• Add the breakout board:

• And Solder!

Special HW Features

• Freefall Detection

• Activity/Inactivity Detection

• Tap/Double-Tap Detection

Arduino

• Wiring

• Installation

• Load Example

• Setting the Range

HW Interrupts

• Interrupt Events

• Mapping Interrupts to INT1/INT2

• Enabling Interrupts

• Connecting ADXL343 INT pins to the MCU

• Complete Example

• Single Tap Example

Arduino API

Python and CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• Library Installation

• Python Installation of the ADXL34x Library

• CircuitPython & Python Usage

• Full Example Code

• Motion, Tap and Freefall

Python Docs

Downloads

• Drivers

• Design Files

• Datasheet

• Apps Notes

©Adafruit Industries Page 2 of 38



• Schematic and Fab Print STEMMA QT Version

• Schematic and Fab Print Original Version

©Adafruit Industries Page 3 of 38



©Adafruit Industries Page 4 of 38



Overview 

Analog Devices has followed up on their popular classic, the ADXL345, with this near-

drop-in-replacement, the ADXL343. Like the original, this is a triple-axis accelerometer

with digital I2C and SPI interface breakout.

It has a wide sensitivity range and high resolution, operating with an 10 or 13-bit

internal ADC. Built-in motion detection features make tap, double-tap, activity,

inactivity, and free-fall detection trivial. There's two interrupt pins, and you can map

any of the interrupts independently to either of them

The ADXL343 is nearly identical in specifications to the ADXL345, and code written

for the '345 will likely work on the '343 as-is. This new accelerometer has some nice

price improvements to stay within your budget.

The sensor has three axes of measurements, X Y Z, and pins that can be used either

as I2C or SPI digital interfacing. You can set the sensitivity level to either +-2g, +-4g,

+-8g or +-16g. The lower range gives more resolution for slow movements, the higher

range is good for high speed tracking. The ADXL343 is the latest and greatest from

Analog Devices, known for their exceptional quality MEMS devices.

 

©Adafruit Industries Page 5 of 38



As if that weren't enough, we've also added SparkFun qwiic () compatible STEMMA

QT () connectors for the I2C bus so you don't even need to solder. Just wire up to

your favorite micro with a plug-and-play cable to get accelerometer data ASAP. For a

no-solder experience, just wire up to your favorite micro () using a STEMMA QT

adapter cable. () The Stemma QT connectors also mean the ADXL can be used with

our various associated accessories. () QT Cable is not included, but we have a variety

in the shop ()

We added an on-board 3.3V regulator and logic-level shifting circuitry, making it a

perfect choice for interfacing with any 3V or 5V microcontroller or computer such as

 

 

©Adafruit Industries Page 6 of 38

https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/621
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=stemma%20qt%20cable
https://www.adafruit.com/?q=JST%20SH%204
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch
https://www.adafruit.com/?q=stemma+qt+cable&sort=BestMatch


Arduino or Raspberry Pi. We even have library and example code for both Arduino/C+

+ and CircuitPython, so you can get started super fast with any platform!

Each order comes with a fully tested and assembled breakout and some header for

soldering to a PCB or breadboard. Comes with 9 pin 0.1" standard header in case you

want to use it with a breadboard or perfboard. Two 2.5mm (0.1") mounting holes for

easy attachment.You'll be up and running in under 5 minutes!

Thanks to Digi-Key () and Analog Devices () for sponsoring the development of this

breakout board - we've made the PCB "Digi-Key red ()" in their honor!

Technical Characteristics

3-axis MEMs digital accelerometer

Input voltage: 2.0-3.6 V

User-selectable output resolution: 

+/- 2 g (10-bit data, or +/- 512)

+/- 4 g (11-bit data, or +/- 1024)

+/- 8g (12-bit data, or +/- 2048)

+/- 16 g (13-bit data, or +/- 4096)

User-selectable data rate (0.1 .. 3200 Hz)

Hardware support for free-fall detection, tap detection, and activity/inactivity

HW support for both I2C and SPI, although I2C is recommended for ease of use.

 

• 

• 

• 

◦ 

◦ 

◦ 

◦ 

• 

• 

• 

©Adafruit Industries Page 7 of 38

https://www.digikey.com/
https://www.analog.com/en/index.html
https://www.digikey.com/


Pinout 

The ADXL343 breakout has the following pinout:

There are two versions of this board - the STEMMA QT version shown above, and 

the original header-only version shown below. Code works the same on both! 

 

 

 

©Adafruit Industries Page 8 of 38



Power Pins

This breakout board can be run on 3.3V and 5V systems, although only the SCL and S

DA lines are 5V safe (other pins like INT will need to be manually level-shifted by you).

VIN - This is the input to the 3.3V voltage regulator, which makes it possible to

use the 3.3V sensor on 5V systems. It also determines the logic level of the SCL

and SDA pins. Connect this to 3.3V on the MCU for 3.3V boards (Adafruit

Feathers), or 5.0V for 5V Arduinos (Arduino Uno, etc.).

3V3 - This is the OUTPUT of the 3.3V regulator, and can be used to provide 3.3V

power to other parts of your project if required (<100mA).

GND - Connect this to the GND pin on your development board to make sure

they are sharing a common GND connection, or the electrons won't have

anywhere to flow!

I2C Pins

SCL - The clock line on the I2C bus. This pin has an internal pullup resistor on

the PCB, which is required as part of the I2C spec, meaning you don't need to

add one externally yourself. This also functions as SCK in SPI mode.

SDA - The data line on the I2C bus. This pin has an internal pullup resistor on

the PCB, which is required as part of the I2C spec, meaning you don't need to

add one externally yourself. This also functions as MOSI in SPI mode.

STEMMA QT () - These connectors allow you to connect to development boards

with STEMMA QT connectors, or to other things, with various associated

accessories (). 

Other Pins

SDO/ALT ADDR - This pin can be used as MISO in SPI mode, but is more

commonly used as an optional bit in the I2C bus address.  By default this pin is

• 

• 

• 

NOTE: Only CS, SCL and SDA are 5V safe on this board. Using any other pins on 

a 5V system will require manual level shifting of the pins used (INT, etc.) 

• 

• 

• 

The available pins are identical for both versions of the boards. However, on the 

STEMMA QT version, pins I2 (INT2), SDO, and CS are located at the top of the 

board. 

• 

©Adafruit Industries Page 9 of 38

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.adafruit.com/category/619
https://www.adafruit.com/category/619
https://www.adafruit.com/category/619
https://www.adafruit.com/category/619


pulled down, meaning it has a value of 0 at startup, which will results in an I2C

address of 0x53. If you set this pin high (to 3.3V), and reset, the I2C address will

be updated to 0x1D.

CS: This dual purpose pin can be used as the chip select line in SPI mode, but

also determines whether the board will boot up into I2C or SPI mode. The

default of logic high sets the board up for I2C, and manually setting this pin low

and resetting will cause the device to enter SPI mode. Please note that SPI

mode is not actively support and the SPI pins are not all 5V safe and level

shifted, so care will be required when using it!

INT1 and INT2: There are two optional interrupt output pins on this sensor, which

can be configured to change their state when one or more 'events' occur. For

details on how to use these interrupts, see the Arduino/HW Interrupts page later

in this guide.

LED Jumper 

LED jumper - This jumper is located on the back of the board. Cut the trace on

this jumper to cut power to the "on" LED. 

Assembly 

• 

• 

• 

 

©Adafruit Industries Page 10 of 38



 

 

 

Prepare the header strip:
Cut the strip to length if necessary. It will

be easier to solder if you insert it into a

breadboard - long pins down

©Adafruit Industries Page 11 of 38

https://learn.adafruit.com//assets/73322
https://learn.adafruit.com//assets/73322
https://learn.adafruit.com//assets/73323
https://learn.adafruit.com//assets/73323
https://learn.adafruit.com//assets/73347
https://learn.adafruit.com//assets/73347


 

Add the breakout board:
Place the breakout board over the pins so

that the short pins poke through the

breakout pads

©Adafruit Industries Page 12 of 38

https://learn.adafruit.com//assets/73351
https://learn.adafruit.com//assets/73351


 

 

 

And Solder!
Be sure to solder all 9 pins for reliable

electrical contact.

(For tips on soldering, be sure to check out

our Guide to Excellent Soldering ()).

 

©Adafruit Industries Page 13 of 38

https://learn.adafruit.com//assets/73330
https://learn.adafruit.com//assets/73330
https://learn.adafruit.com//assets/73332
https://learn.adafruit.com//assets/73332
https://learn.adafruit.com//assets/73334
https://learn.adafruit.com//assets/73334
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/73336
https://learn.adafruit.com//assets/73336


 

You're done! Check your solder joints

visually and continue onto the next steps

Special HW Features 

While the ADXL343 shares some things in common with most other general-purpose

3-axis accelerometers, it has the following additional features to make it easier to use

in certain situations. Because these are implemented in HW inside the sensor, there is

a lot less heavy lifting to do on the MCU side.

Freefall Detection

You can use this accelerometer to detect a freefall condition (device falling off a desk,

etc.) with user-defined thresholds, and one or the two INT pins can be setup to fire

when a freefall condition is detected, allowing you to shut any motors or moving parts

off, or indicate in a logging system that the data may not be valid (such as a plant

sensor in a pot that likely got knocked over by the wind).

Activity/Inactivity Detection

Rather that constantly polling an accelerometer to see if movement is detected, you

can configure the ADXL343 to let you know when their is (one or both of) activity or

inactivity on the device, with user-adjustable thresholds. This can be configure to fire

an INT pin, which you could use to wakeup your device, for example, or put it to sleep

after a certain amount of inactivity.

Tap/Double-Tap Detection

Rather than having to do complex tap and double-tap detection of the device by

anaylzing the magnitude of acceleration changes over time, you can detect a 'tap' or

©Adafruit Industries Page 14 of 38

https://learn.adafruit.com//assets/73344
https://learn.adafruit.com//assets/73344


'double-tap' of your device in HW, and fire one of the INT pins when the event is

detected, significantly reducing the code and data parsing on the MCU side.

See the HW Interrupts page later in this guide for details on how to use these

features in practice!

Arduino 

Wiring

Hooking up the ADXL343 to your Arduino is easy:

For Arduino Metro and other 5V microcontrollers, use 5V for Vin. For Feather and 

other 3V microcontrollers, use 3.3V 

©Adafruit Industries Page 15 of 38



 

 

 

Connect SCL on the Metro to SCL (yellow

wire) on the ADXL343

Connect SDA on the Metro to SDA (blue

wire) in the ADXL343

Connect GND on the Metro to GND (black

wire) on the ADXL343

For 3.3V LOGIC boards: connect 3.3V on

the Arduino/Metro to VIN (red wire) on the

ADXL343

For 5.0V LOGIC boards: Connect 5V on

the Arduino/Metro to VIN (red wire) on the

ADXL343

The final results should resemble the illustration above, showing an Adafruit Metro

development board.

Only the SCL and SDA pins on the ADXL343 are level shifted and safe to use on 

5V systems like the Arduino Uno. If you are using other pins on the breakout 

(INT, etc.) on a 5V system, you will need to level shift these yourself. We have 

some tutorials on how to do this in the learning system, simply search for 'level 

shifting'! 

©Adafruit Industries Page 16 of 38

https://learn.adafruit.com//assets/110009
https://learn.adafruit.com//assets/110009
https://learn.adafruit.com//assets/110010
https://learn.adafruit.com//assets/110010
https://learn.adafruit.com//assets/110012
https://learn.adafruit.com//assets/110012


Installation

The Adafruit_ADXL345 library can be installed using the Arduino Library Manager,

accessible through the Manage Libraries ... menu item.

Click the Manage Libraries ... menu item, search for Adafruit ADXL343, and select

the Adafruit ADXL343 library:

Load Example

To make sure that everything is wired up correctly, you can run the sensorttest

example available in the Adafruit_ADXL343 examples folder, loadable via the File ->

Examples -> Adafruit ADXL343 -> sensortest menu item.

Upload the sketch to your board and open up the Serial Monitor (Tools->Serial

Monitor). You should see some acceleration data for for X/Y/Z.

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_ADXL343.h>

#define ADXL343_SCK 13

#define ADXL343_MISO 12

#define ADXL343_MOSI 11

#define ADXL343_CS 10

/* Assign a unique ID to this sensor at the same time */

 

 

©Adafruit Industries Page 17 of 38



/* Uncomment following line for default Wire bus      */

Adafruit_ADXL343 accel = Adafruit_ADXL343(12345);

/* NeoTrellis M4, etc.                    */

/* Uncomment following line for Wire1 bus */

//Adafruit_ADXL343 accel = Adafruit_ADXL343(12345, &Wire1);

/* Uncomment for software SPI */

//Adafruit_ADXL343 accel = Adafruit_ADXL343(ADXL343_SCK, ADXL343_MISO, 

ADXL343_MOSI, ADXL343_CS, 12345);

/* Uncomment for hardware SPI */

//Adafruit_ADXL343 accel = Adafruit_ADXL343(ADXL343_CS, &SPI, 12345);

void displayDataRate(void)

{

  Serial.print  ("Data Rate:    ");

  switch(accel.getDataRate())

  {

    case ADXL343_DATARATE_3200_HZ:

      Serial.print  ("3200 ");

      break;

    case ADXL343_DATARATE_1600_HZ:

      Serial.print  ("1600 ");

      break;

    case ADXL343_DATARATE_800_HZ:

      Serial.print  ("800 ");

      break;

    case ADXL343_DATARATE_400_HZ:

      Serial.print  ("400 ");

      break;

    case ADXL343_DATARATE_200_HZ:

      Serial.print  ("200 ");

      break;

    case ADXL343_DATARATE_100_HZ:

      Serial.print  ("100 ");

      break;

    case ADXL343_DATARATE_50_HZ:

      Serial.print  ("50 ");

      break;

    case ADXL343_DATARATE_25_HZ:

      Serial.print  ("25 ");

      break;

    case ADXL343_DATARATE_12_5_HZ:

      Serial.print  ("12.5 ");

      break;

    case ADXL343_DATARATE_6_25HZ:

      Serial.print  ("6.25 ");

      break;

    case ADXL343_DATARATE_3_13_HZ:

      Serial.print  ("3.13 ");

      break;

    case ADXL343_DATARATE_1_56_HZ:

      Serial.print  ("1.56 ");

      break;

    case ADXL343_DATARATE_0_78_HZ:

      Serial.print  ("0.78 ");

      break;

    case ADXL343_DATARATE_0_39_HZ:

      Serial.print  ("0.39 ");

      break;

    case ADXL343_DATARATE_0_20_HZ:

      Serial.print  ("0.20 ");

      break;

    case ADXL343_DATARATE_0_10_HZ:

©Adafruit Industries Page 18 of 38



      Serial.print  ("0.10 ");

      break;

    default:

      Serial.print  ("???? ");

      break;

  }

  Serial.println(" Hz");

}

void displayRange(void)

{

  Serial.print  ("Range:         +/- ");

  switch(accel.getRange())

  {

    case ADXL343_RANGE_16_G:

      Serial.print  ("16 ");

      break;

    case ADXL343_RANGE_8_G:

      Serial.print  ("8 ");

      break;

    case ADXL343_RANGE_4_G:

      Serial.print  ("4 ");

      break;

    case ADXL343_RANGE_2_G:

      Serial.print  ("2 ");

      break;

    default:

      Serial.print  ("?? ");

      break;

  }

  Serial.println(" g");

}

void setup(void)

{

  Serial.begin(115200);

  while (!Serial);

  Serial.println("Accelerometer Test"); Serial.println("");

  /* Initialise the sensor */

  if(!accel.begin())

  {

    /* There was a problem detecting the ADXL343 ... check your connections */

    Serial.println("Ooops, no ADXL343 detected ... Check your wiring!");

    while(1);

  }

  /* Set the range to whatever is appropriate for your project */

  accel.setRange(ADXL343_RANGE_16_G);

  // accel.setRange(ADXL343_RANGE_8_G);

  // accel.setRange(ADXL343_RANGE_4_G);

  // accel.setRange(ADXL343_RANGE_2_G);

  /* Display some basic information on this sensor */

  accel.printSensorDetails();

  displayDataRate();

  displayRange();

  Serial.println("");

}

void loop(void)

{

  /* Get a new sensor event */

  sensors_event_t event;

  accel.getEvent(&event);

©Adafruit Industries Page 19 of 38



  /* Display the results (acceleration is measured in m/s^2) */

  Serial.print("X: "); Serial.print(event.acceleration.x); Serial.print("  ");

  Serial.print("Y: "); Serial.print(event.acceleration.y); Serial.print("  ");

  Serial.print("Z: "); Serial.print(event.acceleration.z); Serial.print("  

");Serial.println("m/s^2 ");

  delay(500);

}

You should get something resembling the following output when you open the Serial

Monitor at 115200 baud:

Setting the Range

You can adjust the response range of the accelerometer by setting an appropriate

value in your setup loop, using one of the lines in the code shown below:

/* Set the range to whatever is appropriate for your project */

accel.setRange(ADXL343_RANGE_16_G);

// accel.setRange(ADXL343_RANGE_8_G);

// accel.setRange(ADXL343_RANGE_4_G);

// accel.setRange(ADXL343_RANGE_2_G);

By default, the sensor will be set to the maximum range of +/- 16g.

 

©Adafruit Industries Page 20 of 38



HW Interrupts 

Interrupt Events

The ADXL343 includes two configurable HW interrupt pins, where one or more of the

following events can be 'mapped' to one of the interrupt pins:

Overrun: The overrun bit is set when new data replaces unread data. This can

be useful in situations where it's important to know if any data samples were

'skipped', such as in sensor fusion algorithms that depend on a specific sample

rate for the best possible results.

Watermark: This can be used with register 0x38 (FIFO_CTL) to trigger an

interrupt when a user-specified number of samples are available in the internal

FIFO buffer.

Freefall: The FREE_FALL bit is set when acceleration of less than the value

stored in the THRESH_FF register (Address 0x28) is experienced for more time

than is specified in the TIME_FF register (Address 0x29) on all axes (logical

AND). The FREE_FALL interrupt differs from the inactivity interrupt as follows: all

axes always participate and are logically AND’ed, the timer period is much

smaller (1.28 sec maximum), and the mode of operation is always dc-coupled.

Inactivity: The inactivity bit is set when acceleration of less than the value stored

in the THRESH_INACT register (Address 0x25) is experienced for more time

than is specified in the TIME_INACT register (Address 0x26) on all participating

axes, as set by the ACT_INACT_CTL register (Address 0x27). The maximum

value for TIME_INACT is 255 sec.

Activity: The activity bit is set when acceleration greater than the value stored in

the THRESH_ACT register (Address 0x24) is experienced on any participating

axis, set by the ACT_INACT_CTL register (Address 0x27).

Double Tap: The DOUBLE_TAP bit is set when two acceleration events that are

greater than the value in the THRESH_TAP register (Address 0x1D) occur for

less time than is specified in the DUR register (Address 0x21), with the second

tap starting after the time specified by the latent register (Address 0x22) but

within the time specified in the window register (Address 0x23). See the Tap

Detection section for more details.

Single Tap: The SINGLE_TAP bit is set when a single acceleration event that is

greater than the value in the THRESH_TAP register (Address 0x1D) occurs for

less time than is specified in the DUR register (Address 0x21).

Data Ready: The DATA_READY bit is set when new data is available and is

cleared when no new data is available.

• 

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 21 of 38



Mapping Interrupts to INT1/INT2

The first step to enable interrupts in your sketch is to 'map' one or more interrupt

functions to either the INT1 or INT2 pins. This can be accomplished with the following

function in Adafruit_ADXL343:

bool mapInterrupts(int_config cfg);

`cfg` is an 8-bit bit-field where setting the individual interrupt bit to 1 will cause the

interrupt to be mapped to INT2, and setting the interrupt bit to 0 will map if to INT1.

The following code shows how this works in practice (based on the ` g_int_config_m

ap ` variable in the interrupts.ino example sketch):

/* Map specific interrupts to one of the two INT pins. */

g_int_config_map.bits.overrun    = ADXL343_INT1;

g_int_config_map.bits.watermark  = ADXL343_INT1;

g_int_config_map.bits.freefall   = ADXL343_INT1;

g_int_config_map.bits.inactivity = ADXL343_INT1;

g_int_config_map.bits.activity   = ADXL343_INT1;

g_int_config_map.bits.double_tap = ADXL343_INT1;

g_int_config_map.bits.single_tap = ADXL343_INT1;

g_int_config_map.bits.data_ready = ADXL343_INT2;

accel.mapInterrupts(g_int_config_map);

Enabling Interrupts

After mapping specific interrupt events to either INT1 or INT2, you need to 'enable'

the interrupt via a second function:

bool enableInterrupts(int_config cfg);

An example of enabling the OVERRUN and DATA READY interrupts is shown below:

/* Enable interrupts on the accelerometer. */

g_int_config_enabled.bits.overrun    = true;    /* Set the INT1 */

g_int_config_enabled.bits.watermark  = false;

g_int_config_enabled.bits.freefall   = false;

g_int_config_enabled.bits.inactivity = false;

g_int_config_enabled.bits.activity   = false;

g_int_config_enabled.bits.double_tap = false;

g_int_config_enabled.bits.single_tap = false;

g_int_config_enabled.bits.data_ready = true;    /* Set to INT2 */

accel.enableInterrupts(g_int_config_enabled);

©Adafruit Industries Page 22 of 38



Connecting ADXL343 INT pins to the MCU

In order to 'detect' the interrupt generated by the ADXL, you also need to connect the

INT1 and/or INT2 pins on the ADXL to an appropriate interrupt-enabled input pin on

your MCU.

The interrupt input on the MCU needs to have the following pin characteristics:

Must have support for interrupt mode (if you want to automatically fire an

interrupt service routine when the ADXL's INT pins are triggered)

Must be configured as an input

Must be 'attached' to an interrupt service routine, which is the function that will

be called when a RISING edge is detected on the MCU's interrupt input.

You will also need a pull down resistor on the interrupt pins

Some sample code of setting these pins up properly is shown below (assumed an Ad

afruit Feather M0 Basic, see the documentation for pin selection on other boards):

/** The input pins to enable the interrupt on, connected to INT1 and INT2 on the 

ADXL. */

#define INPUT_PIN_INT1   (5) // Uno = (2)

#define INPUT_PIN_INT2   (6) // Uno = (3)

...

/** Interrupt service routine for INT1 events. */

void int1_isr(void)

{

   /* TODO: Do something! */

}

/** Interrupt service routine for INT2 events. */

void int2_isr(void)

{

   /* TODO: Do something! */

}

...

/* Attach interrupt inputs on the MCU. */

pinMode(LED_BUILTIN, OUTPUT);

pinMode(INPUT_PIN_INT1, INPUT);

pinMode(INPUT_PIN_INT2, INPUT);

attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT1), int1_isr, RISING);

attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT2), int2_isr, RISING);

• 

• 

• 

• 

©Adafruit Industries Page 23 of 38



Complete Example

To see how all of these pieces fit together, you can see the code for the interrupts

example that is part of the standard Adafruit driver, shown below for convenience

sake.

This examples enables two interrupt events on two different pins, and tracks the

number of times those interrupt handlers are fired. The main loop of the program

continually checks if a new interrupt event was detected, and display some details on

the interrupt source when an event it detected.

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_ADXL343.h>

/* Assign a unique ID to this sensor at the same time */

Adafruit_ADXL343 accel = Adafruit_ADXL343(12345);

/** The input pins to enable the interrupt on, connected to INT1 and INT2 on the 

ADXL. */

#define INPUT_PIN_INT1   (5) // Uno = (2)

#define INPUT_PIN_INT2   (6) // Uno = (3)

/**

 * This struct is used to count the number of times that specific interrutps

 * have been fired by the ADXL and detected on the MCU. They will increment

 * by one for each event associated with the specified interrupt 'bit'.

 */

struct adxl_int_stats {

    uint32_t data_ready;

    uint32_t single_tap;

    uint32_t double_tap;

    uint32_t activity;

    uint32_t inactivity;

    uint32_t freefall;

    uint32_t watermark;

    uint32_t overrun;

    uint32_t total;

};

/** Global stats block, incremented inside the interrupt handler(s). */

struct adxl_int_stats g_int_stats = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };

/** Global counter to track the numbers of unused interrupts fired. */

uint32_t g_ints_fired = 0;

/** Global variable to determine which interrupt(s) are enabled on the ADXL343. */

int_config g_int_config_enabled = { 0 };

/** Global variables to determine which INT pin interrupt(s) are mapped to on the 

ADXL343. */

int_config g_int_config_map = { 0 };

/** Interrupt service routine for INT1 events. */

void int1_isr(void)

{

    /* By default, this sketch routes the OVERRUN interrupt to INT1. */

    g_int_stats.overrun++;

    g_int_stats.total++;

    g_ints_fired++;

©Adafruit Industries Page 24 of 38



    /* TODO: Toggle an LED! */

}

/** Interrupt service routine for INT2 events. */

void int2_isr(void)

{

    /* By default, this sketch routes the DATA_READY interrupt to INT2. */

    g_int_stats.data_ready++;

    g_int_stats.total++;

    g_ints_fired++;

    /* TODO: Toggle an LED! */

}

/** Configures the HW interrupts on the ADXL343 and the target MCU. */

void config_interrupts(void)

{

  /* NOTE: Once an interrupt fires on the ADXL you can read a register

   *  to know the source of the interrupt, but since this would likely

   *  happen in the 'interrupt context' performing an I2C read is a bad

   *  idea since it will block the device from handling other interrupts

   *  in a timely manner.

   *

   *  The best approach is to try to make use of only two interrupts on

   *  two different interrupt pins, so that when an interrupt fires, based

   *  on the 'isr' function that is called, you already know the int source.

   */

  /* Attach interrupt inputs on the MCU. */

  pinMode(LED_BUILTIN, OUTPUT);

  pinMode(INPUT_PIN_INT1, INPUT);

  pinMode(INPUT_PIN_INT2, INPUT);

  attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT1), int1_isr, RISING);

  attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT2), int2_isr, RISING);

  /* Enable interrupts on the accelerometer. */

  g_int_config_enabled.bits.overrun    = true;    /* Set the INT1 */

  g_int_config_enabled.bits.watermark  = false;

  g_int_config_enabled.bits.freefall   = false;

  g_int_config_enabled.bits.inactivity = false;

  g_int_config_enabled.bits.activity   = false;

  g_int_config_enabled.bits.double_tap = false;

  g_int_config_enabled.bits.single_tap = false;

  g_int_config_enabled.bits.data_ready = true;    /* Set to INT2 */

  accel.enableInterrupts(g_int_config_enabled);

  /* Map specific interrupts to one of the two INT pins. */

  g_int_config_map.bits.overrun    = ADXL343_INT1;

  g_int_config_map.bits.watermark  = ADXL343_INT1;

  g_int_config_map.bits.freefall   = ADXL343_INT1;

  g_int_config_map.bits.inactivity = ADXL343_INT1;

  g_int_config_map.bits.activity   = ADXL343_INT1;

  g_int_config_map.bits.double_tap = ADXL343_INT1;

  g_int_config_map.bits.single_tap = ADXL343_INT1;

  g_int_config_map.bits.data_ready = ADXL343_INT2;

  accel.mapInterrupts(g_int_config_map);

}

void setup(void)

{

  Serial.begin(9600);

  while (!Serial);

  Serial.println("ADXL343 Interrupt Tester"); Serial.println("");

  /* Initialise the sensor */

  if(!accel.begin())

  {

    /* There was a problem detecting the ADXL343 ... check your connections */

©Adafruit Industries Page 25 of 38



    Serial.println("Ooops, no ADXL343 detected ... Check your wiring!");

    while(1);

  }

  /* Set the range to whatever is appropriate for your project */

  accel.setRange(ADXL343_RANGE_16_G);

  // displaySetRange(ADXL343_RANGE_8_G);

  // displaySetRange(ADXL343_RANGE_4_G);

  // displaySetRange(ADXL343_RANGE_2_G);

  /* Configure the HW interrupts. */

  config_interrupts();

  Serial.println("ADXL343 init complete. Waiting for INT activity.");

}

void loop(void)

{

  /* Get a new sensor event */

  sensors_event_t event;

  accel.getEvent(&event);

  delay(10);

  while (g_ints_fired) {

      Serial.println("INT detected!");

      Serial.print("\tOVERRUN Count:    "); Serial.println(g_int_stats.overrun, 

DEC);

      Serial.print("\tDATA_READY Count: "); Serial.println(g_int_stats.data_ready, 

DEC);

      /* Decrement the unhandled int counter. */

      g_ints_fired--;

  }

}

Single Tap Example

A slightly simplified example that detects single taps is shown below as well:

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_ADXL343.h>

/* Assign a unique ID to this sensor at the same time */

Adafruit_ADXL343 accel = Adafruit_ADXL343(12345);

/** The input pin to enable the interrupt on, connected to INT1 on the ADXL. */

#define INPUT_PIN_INT1   (5) // SAMD21/SAMD51 = 5 for interrupt pin

uint32_t g_tap_count = 0;

int_config g_int_config_enabled = { 0 };

int_config g_int_config_map = { 0 };

/** Interrupt service routine for INT1 events. This will be called when a single 

tap is detected. */

void int1_isr(void)

{

    g_tap_count++;

}

void setup(void)

{

©Adafruit Industries Page 26 of 38



  Serial.begin(9600);

  while (!Serial);

  Serial.println("ADXL343 Single Tap INT Tester"); Serial.println("");

  /* Initialise the sensor */

  if(!accel.begin())

  {

    /* There was a problem detecting the ADXL343 ... check your connections */

    Serial.println("Ooops, no ADXL343 detected ... Check your wiring!");

    while(1);

  }

  /* Set the range to whatever is appropriate for your project */

  accel.setRange(ADXL343_RANGE_16_G);

  /* Configure the HW interrupts. */

  pinMode(INPUT_PIN_INT1, INPUT);

  attachInterrupt(digitalPinToInterrupt(INPUT_PIN_INT1), int1_isr, RISING);

  /* Enable single tap interrupts on the accelerometer. */

  g_int_config_enabled.bits.single_tap = true;

  accel.enableInterrupts(g_int_config_enabled);

  /* Map single tap interrupts to INT1 pin. */

  g_int_config_map.bits.single_tap = ADXL343_INT1;

  accel.mapInterrupts(g_int_config_map);

  /* Reset tap counter. */

  g_tap_count = 0;

  Serial.println("ADXL343 init complete. Waiting for single tap INT activity.");

}

void loop(void)

{

  /* Get a new sensor event */

  /* Reading data clears the interrupts. */

  sensors_event_t event;

  accel.getEvent(&event);

  delay(10);

  while (g_tap_count) {

      Serial.println("Single tap detected!");

      /* Clear the interrupt as a side-effect of reading the interrupt source 

register.. */

      accel.checkInterrupts();

      /* Decrement the local interrupt counter. */

      g_tap_count--;

  }

}

Running this singletap demo and tapping the device gently should give the following

output:

©Adafruit Industries Page 27 of 38



Arduino API 

Arduino API () 

Python and CircuitPython 

It's easy to use the ADXL343 or the ADXL345 with Python and CircuitPython, and the 

Adafruit CircuitPython ADXL34x () module. This module allows you to easily write

Python code that reads the acceleration, taps, motion and more from the breakout.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First, wire up the breakout exactly as shown in the previous pages. Here is an

example of wiring the ADXL343 to a Feather M0:

 

The pinouts on the ADXL343 and the ADXL345 are slightly different, but the 

chips are essentially identical. This page includes different wiring diagrams for 

each. Other than initialising the proper chip, the code will be the same for both! 

©Adafruit Industries Page 28 of 38

https://adafruit.github.io/Adafruit_ADXL343/html/class_adafruit___a_d_x_l343.html
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


 

 

 

 

Connect SCL (yellow wire in STEMMA QT

version) on the Feather to SCL on the

ADXL343

Connect SDA (blue wire in STEMMA QT

version) on the Feather to SDA in the

ADXL343

Connect GND (black wire in STEMMA QT

version) on the Feather to GND on the

ADXL343

Connect 3.3V (red wire in STEMMA QT

version) on the Feather to VIN on the

ADXL343

Here's an example of wiring the ADXL345 to a Feather M0:

©Adafruit Industries Page 29 of 38

https://learn.adafruit.com//assets/110015
https://learn.adafruit.com//assets/110015
https://learn.adafruit.com//assets/110016
https://learn.adafruit.com//assets/110016
https://learn.adafruit.com//assets/110017
https://learn.adafruit.com//assets/110017


 

 

 

Connect SCL (blue wire) on the Feather to 

SCL on the ADXL345

Connect SDA (yellow wire) on the Feather

to SDA in the ADXL345

Connect GND (black wire) on the Feather

to GND on the ADXL345

Connect 3.3V (red wire) on the Feather to 

VIN on the ADXL345

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (). 

The following shows a Raspberry Pi connected to the ADXL343:

©Adafruit Industries Page 30 of 38

https://learn.adafruit.com//assets/110179
https://learn.adafruit.com//assets/110179
https://learn.adafruit.com//assets/110180
https://learn.adafruit.com//assets/110180
https://learn.adafruit.com//assets/110182
https://learn.adafruit.com//assets/110182
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


 

 

 

Connect SCL (yellow wire in STEMMA QT

version) on the RPi to SCL on the ADXL343

Connect SDA (blue wire in STEMMA QT

version) on the Rpi to SDA in the ADXL343

Connect GND (black wire in STEMMA QT

version) on the Rpi to GND on the

ADXL343

Connect 3.3V (red wire in STEMMA QT

version) on the Rpi to VIN on the ADXL343

The following shows a Raspberry Pi connected to the ADXL345:

©Adafruit Industries Page 31 of 38

https://learn.adafruit.com//assets/110018
https://learn.adafruit.com//assets/110018
https://learn.adafruit.com//assets/110019
https://learn.adafruit.com//assets/110019
https://learn.adafruit.com//assets/110020
https://learn.adafruit.com//assets/110020


 

 

 

Connect SCL (blue wire) on the RPi to SCL

on the ADXL345

Connect SDA (yellow wire) on the RPi to 

SDA in the ADXL345

Connect GND (black wire) on the RPi to 

GND on the ADXL345

Connect 3.3V (red wire) on the RPi to VIN

on the ADXL345

Library Installation

You'll need to install the Adafruit CircuitPython ADXL34x () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

©Adafruit Industries Page 32 of 38

https://learn.adafruit.com//assets/110183
https://learn.adafruit.com//assets/110183
https://learn.adafruit.com//assets/110184
https://learn.adafruit.com//assets/110184
https://learn.adafruit.com//assets/110185
https://learn.adafruit.com//assets/110185
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython


Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle 

().  Our CircuitPython starter guide has a great page on how to install the library

bundle ().

For non-express boards like the Trinket M0 or Gemma M0, you'll need to manually

install the necessary libraries from the bundle:

adafruit_adxl34x.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_adxl34x.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL  ()so you are at the CircuitPython >>> prompt.

Python Installation of the ADXL34x Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-adxl34x

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the breakout we'll initialize it and read the acceleration

and more from the board's Python REPL.

Run the following code to import the necessary modules and create the I2C object:

import time

import board

import adafruit_adxl34x

• 

• 

• 

©Adafruit Industries Page 33 of 38

https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux


i2c = board.I2C()

If you're using the ADXL343, run the following to initialise the I2C connection with the

breakout:

accelerometer = adafruit_adxl34x.ADXL343(i2c)

If you're using the ADXL345, run the following to initialise the I2C connection with the

breakout:

accelerometer = adafruit_adxl34x.ADXL345(i2c)

Now you're ready to read values from and enable features of the breakout using any

of the following:

acceleration - The acceleration values on the x, y and z axes

enable_motion_detection - Enables motion detection. Allows for setting

threshold. Threshold defaults to 18.

enable_tap_detection - Enables tap detection. Allows for single or double-tap

detection.

enable_freefall_detection - Enables freefall detection. Allows for setting

threshold and time. Threshold defaults to 10, time defaults to 25.

events - Used to read the events when motion detection, tap detection and

freefall detection are enables. Requires specifying which event you are trying to

read.

To print the acceleration values:

while True:

    print(accelerometer.acceleration)

    time.sleep(0.2)

That's all there is to reading acceleration values from the ADXL343 and ADXL345

using CircuitPython!

• 

• 

• 

• 

• 

 

©Adafruit Industries Page 34 of 38



Full Example Code

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

import time

import board

import adafruit_adxl34x

i2c = board.I2C()  # uses board.SCL and board.SDA

# i2c = board.STEMMA_I2C()  # For using the built-in STEMMA QT connector on a 

microcontroller

# For ADXL343

accelerometer = adafruit_adxl34x.ADXL343(i2c)

# For ADXL345

# accelerometer = adafruit_adxl34x.ADXL345(i2c)

while True:

    print("%f %f %f" % accelerometer.acceleration)

    time.sleep(0.2)

Motion, Tap and Freefall

There are examples for enabling and using motion, tap and freefall available on

GitHub:

Motion detection on the ADXL343 and ADXL345 () 

Tap detection on the ADXL343 and ADXL345 () 

Freefall detection on the ADXL343 and ADXL345 () 

Save any of the files as code.py on your CircuitPython board, or run them from the

Python REPL on your Linux computer, to try them out.

Python Docs 

Python Docs () 

Downloads 

Drivers

CircuitPython: Adafruit_CircuitPython_ADXL34x () 

Arduino: Adafruit_ADXL343 () 

• 

• 

• 

• 

• 

©Adafruit Industries Page 35 of 38

https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_motion_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_tap_detection_test.py
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x/blob/master/examples/adxl34x_freefall_detection_test.py
https://circuitpython.readthedocs.io/projects/adxl34x/en/latest/
https://github.com/adafruit/Adafruit_CircuitPython_ADXL34x
https://github.com/adafruit/Adafruit_ADXL343


Design Files

The latest PCB design files (for Autodesk Eagle) can be found on Github at:

Adafruit_ADXL343_PCB () 

3D models on GitHub () 

If you use Fritzing, the Fritzing object for this breakout is also available on Github at:

Adafruit ADXL343 Fritzing Object Original Version () 

Adafruit ADXL343 Fritzing Object STEMMA QT Version () 

Datasheet

You can download the datasheet for the ADXL343 via the button below:

ADXL343 Datasheet

Apps Notes

Full-Features Pedometer Design (Analog Devices)

If you're interested in going one step further with the ADXL34x device family, you may

find the following app-note from Analog Devices useful for ideas of technical tips:

Full-Featured Pedometer Design

Realized with 3-Axis Digital

Accelerometer

This app note details a method of performing 'step detection' with an algorithm using

threshold crossing and timing intervals, and may be a useful introduction to

correlating sensor data with a specific behaviour model.

• 

• 

• 

• 

©Adafruit Industries Page 36 of 38

https://github.com/adafruit/Adafruit_ADXL343_PCB
https://github.com/adafruit/Adafruit_CAD_Parts/tree/main/4097%20ADXL343%20Accelerometer
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20ADXL343.fzpz
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20ADXL343%20STEMMA%20QT.fzpz
https://cdn-learn.adafruit.com/assets/assets/000/070/556/original/adxl343.pdf?1549287964
https://cdn-learn.adafruit.com/assets/assets/000/070/557/original/pedometer-design-3-axis-digital-acceler.pdf?1549288142


Schematic and Fab Print STEMMA QT

Version 

 

 

©Adafruit Industries Page 37 of 38



Schematic and Fab Print Original Version 

 

All measurements below are in inches! 

 

©Adafruit Industries Page 38 of 38


	Analog Devices ADXL343 Breakout Learning Guide
	Table of Contents
	Overview
	Pinout
	Assembly
	Special HW Features
	Arduino
	HW Interrupts
	Arduino API
	Python and CircuitPython
	Python Docs
	Downloads


	Overview
	Technical Characteristics
	Pinout
	Power Pins
	I2C Pins
	Other Pins
	LED Jumper
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Special HW Features
	Freefall Detection
	Activity/Inactivity Detection
	Tap/Double-Tap Detection

	Arduino
	Wiring
	Installation
	Load Example
	Setting the Range
	HW Interrupts
	Interrupt Events
	Mapping Interrupts to INT1/INT2
	Enabling Interrupts
	Connecting ADXL343 INT pins to the MCU
	Complete Example

	Single Tap Example
	Arduino API
	Python and CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	Library Installation
	Python Installation of the ADXL34x Library
	CircuitPython & Python Usage
	Full Example Code
	Motion, Tap and Freefall

	Python Docs
	Downloads
	Drivers
	Design Files
	Datasheet
	Apps Notes
	Full-Features Pedometer Design (Analog Devices)

	Schematic and Fab Print STEMMA QT Version
	Schematic and Fab Print Original Version

