

To Our Customers

CEL continues to offer industry leading semiconductor products from Japan. We are pleased to add new communication products from THine Electronics to our product portfolio.

THC63LVD824A

Single(112MHz)/Dual(170MHz) Link LVDS Receiver for XGA/SXGA/SXGA+/UXGA

General Description

The THC63LVD824A receiver is designed to support Single Link transmission between Host and Flat Panel Display up to SXGA resolutions and Dual Link transmission between Host and Flat Panel Display up to UXGA resolutions. The THC63LVD824A converts the LVDS data streams back into 48bits of CMOS/TTL data with falling edge or rising edge clock for convenient with a variety of LCD panel controllers.

In Single Link, data transmit clock frequency of 112MHz, 48bits of RGB data are transmitted at an effective rate of 784Mbps per LVDS channel. Using a 112MHz clock, the data throughput is 392Mbytes per second.

In Dual Link, data transmit clock frequency of 85MHz, 48bits of RGB data are transmitted at an effective rate of 595Mbps per LVDS channel. Using a 85MHz clock, the data throughput is 595Mbytes per second.

Features

- Wide dot clock range: 25-170MHz suited for VGA, SVGA, XGA, SXGA, SXGA+ and UXGA
- PLL requires No external components
- Supports Single Link up to 112MHz dot clock for SXGA
- Supports Dual Link up to 170MHz dot clock for UXGA
- 50% output clock duty cycle
- TTL clock edge programmable
- TTL output driverbility selectable for lower EMI
- Power down mode
- Low power single 3.3V CMOS design
- 100pin TQFP
- THC63LVDF84B compatible
- Pin compatible with THC63LVD824

Block Diagram

Pin Out

Pin Description

Pin Name	Pin #	Туре	Description
RA1+, RA1-	78, 77	LVDS IN	
RB1+, RB1-	80, 79	LVDS IN	The let Link The let give lingue data when Deal Link
RC1+, RC1-	83, 82	LVDS IN	The 1st Link. The 1st pixel input data when Dual Link.
RD1+, RD1-	87, 86	LVDS IN	
RCLK1+, RCLK1-	85, 84	LVDS IN	LVDS Clock Input for 1st Link.
RA2+, RA2-	90, 89	LVDS IN	
RB2+, RB2-	92, 91	LVDS IN	The Ord Link These size are disabled when Circle Link
RC2+, RC2-	95, 94	LVDS IN	The 2nd Link. These pins are disabled when Single Link.
RD2+, RD2-	99, 98	LVDS IN	
RCLK2+, RCLK2-	97, 96	LVDS IN	LVDS Clock Input for 2nd Link.
R17 ~ R10	52, 51, 50, 47, 46, 45, 44, 43	OUT	
G17 ~ G10	62, 61, 60, 59, 58, 55, 54, 53	OUT	The 1st Pixel Data Outputs.
B17 ~ B10	72, 71, 68, 67, 66, 65, 64, 63	OUT	
R27 ~ R20	19, 18, 17, 14, 13, 12, 11, 10	OUT	
G27 ~ G20	29, 26, 25, 24, 23, 22, 21, 20	OUT	The 2nd Pixel Data Outputs.
B27 ~ B20	39, 38, 37, 36, 35, 32, 31, 30	OUT	
DE	75	OUT	Data Enable Output.
VSYNC	74	OUT	Vsync Output.
HSYNC	73	OUT	Hsync Output.
CLKOUT	40	OUT	Clock Output.
DRVSEL	9	IN	Output Driverbility Select.DRVSELclockdataH8mA4mAL4mA2mA
R/F	8	IN	Output Clock Triggering Edge Select. H: Rising edge, L: Falling edge.
MODE1, MODE0	6, 5	IN	Mode. MODE1 MODE0 Mode L L Dual Link (Dual-in/Dual-out) L H Single Link(Single-in/Dual-out) other Not Available
/PDWN	4	IN	H: Normal operation, L: Power down (all outputs are pulled to ground)
VCC	15, 27, 33, 41, 48, 56, 69	Power	Power Supply Pins for TTL outputs and digital circuitry.
GND	3, 7, 16, 28, 34, 42, 49, 57, 70	Ground	Ground Pins for TTL outputs and digital circuitry.
LVDS VCC	81,93	Power	Power Supply Pins for LVDS inputs.
LVDS GND	76, 88, 100	Ground	Ground Pins for LVDS inputs.

Copyright©2014 THine Electronics, Inc.

Pin Name	Pin #	Туре	Description
PLL VCC	2	Power	Power Supply Pin for PLL circuitry.
PLL GND	1	Ground	Ground Pin for PLL circuitry.

Absolute Maximum Ratings ¹

Supply Voltage (V _{CC})	-0.3V ~ +4.0V
CMOS/TTL Input Voltage	$-0.3V \sim (V_{CC} + 0.3V) ~(\leq 4.0V)$
CMOS/TTL Output Voltage	$-0.3V \sim (V_{CC} + 0.3V) ~(\leq 4.0V)$
LVDS Receiver Input Voltage	$-0.3V \sim (V_{CC} + 0.3V) ~(\leq 4.0V)$
Output Current	-15mA ~ 15mA
Junction Temperature	+125°C
Storage Temperature Range	-55°C ~+125°C
Maximum Power Dissipation @+25 °C	1.7W

Electrical Characteristics

CMOS/TTL DC Specifications

	$V_{CC} = 3.0V \sim 3.6V, Ta = -10^{\circ}C \sim$						
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
V _{IH}	High Level Input Voltage		2.0		V _{CC}	V	
V _{IL}	Low Level Input Voltage		GND		0.8	V	
V _{OH} H	High Level Output Voltage	I _{OH} = -2mA, -4mA (data)	2.4			V	
	High Level Output voltage	I_{OH} = -4mA, -8mA (clock)	2.4				
V	Land Land Output Valtage	I_{OL} = 2mA, 4mA (data)			0.4	V	
V _{OL}	Low Level Output Voltage	I_{OL} = 4mA, 8mA (clock)			0.4	v	
I _{INC}	Input Current	$0V \le V_{IN} \le V_{CC}$			±10	μΑ	

LVDS Receiver DC Specifications

$V_{CC} = 3.0V \sim 3.6V, Ta = -10^{\circ}C \sim +70^{\circ}C$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{TH}	Differential Input High Threshold	V _{IC} = 1.2V			100	mV
V _{TL}	Differential Input Low Threshold	V _{IC} = 1.2V	-100			mV
I	Innut Cumont	$V_{IN} = 2.4 V / 0 V$			±20	μΑ
I _{INL}	Input Current	V _{CC} = 3.6V				

^{1. &}quot;Absolute Maximum Ratings" are those valued beyond which the safety of the device can not be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Supply Current

 $V_{CC} = 3.0V \sim 3.6V, Ta = -10^{\circ}C \sim +70^{\circ}C$

Symbol	Parameter	Condition(*)			Max.	Units
	Receiver Supply		MODE<1:0>=LL			
I _{RCCW}	Current	$f_{CLKOUT} = 85MHz$	CL=8pF,		225	mA
	(Worst Case Pattern)					
I _{RCCS}	Receiver Power Down Supply Current	/PDWN = L			10	μΑ

Switching Characteristics

			Y	$V_{\rm CC} = 3.0 \rm V \sim 3.0$	5V, Ta = -10°C	~ +70°C
Symbol	Par	ameter	Min.	Тур.	Max.	Units
t	CLKOUT Period	Dual-in / Dual-out	11.76	t _{RCIP}	40.0	ns
t _{RCP}	CLKOUT Period	Single-in / Dual-out	17.85	2t _{RCIP}	80.0	ns
t _{RCH}	CLKOUT High Ti	me		$\frac{t_{RCP}}{2}$		ns
t _{RCL}	CKLOUT Low Tin	ne		$\frac{t_{RCP}}{2}$		ns
t _{RS}	TTL Data Setup to	CLKOUT	0.3t _{RCP} -0.5			ns
t _{RH}	TTL Data Hold from	om CKLOUT	0.3t _{RCP} -0.5			ns
t _{TLH}	TTL Low to High	Transition Time		2.5	4.0	ns
t _{THL}	TTL High to Low	Transition Time		2.5	4.0	ns
t _{SK}	Receiver Skew	CLKIN=85MHz	-0.40		40.0 80.0	ns
SK	Margin	CLKIN=112MHz	-0.25		+0.25	ns
t _{RIP1}	Input Data Position	10	-t _{SK}	0.0	+t _{SK}	ns
t _{RIP0}	Input Data Position	11	$\frac{t_{RCIP}}{7} - t_{SK}$	$\frac{t_{RCIP}}{7}$	$\frac{t_{RCIP}}{7} + t_{SK}$	ns
t _{RIP6}	Input Data Position	n2	$2\frac{t_{RCIP}}{7} - t_{SK}$	$2\frac{t_{RCIP}}{7}$	$2\frac{t_{RCIP}}{7} + t_{SK}$	ns
t _{RIP5}	Input Data Position	13	$3\frac{t_{RCIP}}{7} - t_{SK}$	$3\frac{t_{\rm RCIP}}{7}$	$3\frac{t_{RCIP}}{7} + t_{SK}$	ns
t _{RIP4}	Input Data Position	14	$4\frac{t_{\rm RCIP}}{7} - t_{\rm SK}$	$4\frac{t_{RCIP}}{7}$	$4\frac{t_{RCIP}}{7} + t_{SK}$	ns
t _{RIP3}	Input Data Position	15	$5\frac{t_{RCIP}}{7} - t_{SK}$	$5\frac{t_{RCIP}}{7}$	$5\frac{t_{RCIP}}{7} + t_{SK}$	ns
t _{RIP2}	Input Data Position6		$6\frac{t_{RCIP}}{7} - t_{SK}$	$6\frac{t_{RCIP}}{7}$	$6\frac{t_{RCIP}}{7} + t_{SK}$	ns
t _{RPLL}	Phase Lock Loop S	Set			10.0	ms
t _{RCIP}	CLKIN Period		8.92		40.0	ns
t _{CK12}	Skew Time betwee RCLK2	en RCLK1 and			$\pm 0.3 t_{RCIP}$	ns

Copyright©2014 THine Electronics, Inc.

AC Timing Diagrams

TTL Outputs

Pixel Map Table for Single/Dual Link

1st Pixel Data				2nd Pixel Data			
824A TTLOutputPin	TF	[Panel]	Data	824A TTLOutputPin	TFT Panel I		Data
824A TILOutputFill		24Bit	18Bit	824A TTLOutputFill		24Bit	18Bit
R10	LSB	R10	-	R20	LSB	R20	-
R11		R11	-	R21		R21	-
R12		R12	R10	R22		R22	R20
R13		R13	R11	R23		R23	R21
R14		R14	R12	R24		R24	R22
R15		R15	R13	R25		R25	R23
R16		R16	R14	R26		R26	R24
R17	MSB	R17	R15	R27	MSB	R27	R25
G10	LSB	G10	-	G20	LSB	G20	-
G11		G11	-	G21		G21	-
G12		G12	G10	G22		G22	G20
G13		G13	G11	G23		G23	G21
G14		G14	G12	G24		G24	G22
G15		G15	G13	G25		G25	G23
G16		G16	G14	G26		G26	G24
G17	MSB	G17	G15	G27	MSB	G27	G25
B10	LSB	B10	-	B20	LSB	B20	-
B11		B11	-	B21		B21	-
B12		B12	B10	B22		B22	B20
B13		B13	B11	B23		B23	B21
B14		B14	B12	B24		B24	B22
B15		B15	B13	B25		B25	B23
B16		B16	B14	B26		B26	B24
B17	MSB	B17	B15	B27	MSB	B27	B25

TFT Panel (1280 x 1024)

824A TTL Data Output Timing for Single/Dual Link Example : SXGA(1280 x 1024)

THine[®]

Note: $V_{diff} = (Ryx+) - (Ryx-), (RCLKx+) - (RCLKx-)$

LVDS Data Inputs Timing Diagrams in Single Link

LVDS Data Inputs Timing Diagrams in Dual Link

Note

1)Power On Sequence

Power on LVDS-Tx after THC63LVD824A. If it is not avoidable, please contact to

mspsupport@thine.co.jp (for FAE mailing list)

2)Cable Connection and Disconnection

Don't connect and disconnect the LVDS cable , when the power is supplied to the system.

3) GND Connection

Connect the each GND of the PCB which LVDS-Tx and THC63LVD824A on it. It is better for EMI reduction to place GND cable as close to LVDS cable as possible.

4)Multi Drop Connection

Multi drop connection is not recommended.

5)Asynchronous use

Asynchronous use such as following systems are not recommended. If it is not avoidable, please contact to

mspsupport@thine.co.jp (for FAE mailing list)

Package

UNITS:mm

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- 3. This material contains our copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. This product is presumed to be used for general electric equipment, not for the applications which require very high reliability (including medical equipment directly concerning people's life, aerospace equipment, or nuclear control equipment). Also, when using this product for the equipment concerned with the control and safety of the transportation means, the traffic signal equipment, or various Types of safety equipment, please do it after applying appropriate measures to the product.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.

THine Electronics, Inc. E-mail : sales@thine.co.jp