

Adafruit I2S Stereo Decoder - UDA1334A

Created by lady ada

https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a

Last updated on 2023-03-29 06:06:09 PM EDT

©Adafruit Industries Page 1 of 42

5

7

11

14

15

22

24

29

31

35

41

Table of Contents

Overview

Pinouts

• Power Pins

• I2S Pins

• Audio Outputs

• Optional Control Pins

Assembly

• Installing Standard Headers

Raspberry Pi Wiring

Raspberry Pi Setup

• Fast Install

• Detailed Install

• Update /etc/modprobe.d (if it exists)

• Disable headphone audio (if it's set)

• Create asound.conf file

• Add Device Tree Overlay

Raspberry Pi Test

• Speaker Tests!

• Simple white noise speaker test

• Simple WAV speaker test

• Simple MP3 speaker test

• Volume adjustment

Pi I2S Tweaks

• Reducing popping

• Step 1

• Add software volume control

Play Audio with PyGame

• Install PyGame

• Run Demo

Arduino Wiring & Test

• Wiring

• Basic Test

• DMA Test

CircuitPython Wiring & Test

• Wiring

• Code Examples

• Tone Generation

• Wave File

• Where's my I2S?

Downloads

• Files

©Adafruit Industries Page 2 of 42

• Schematic & Fabrication Print

©Adafruit Industries Page 3 of 42

©Adafruit Industries Page 4 of 42

Overview

This fully-featured UDA1334A I2S Stereo DAC breakout is a perfect match for any I2S-

output audio interface. It's affordable but sounds great! The NXP UDA1334A is a jack-

of-all-I2S-trades: you can use 3.3V - 5V logic levels (a rarity), and can process multiple

different formats by setting two pins to high or low. The DAC will process data

immediately, and give you a clear, analog, stereo line level output. It's even cool with

MCLK-less I2S interfaces such as the Raspberry Pi (which it's ideal for) - a built in PLL

will generate the proper clock from the incoming signal.

©Adafruit Industries Page 5 of 42

For inputs, you can use classic I2S (the default) or 16-bit, 20-bit or 24-bit left justified

data. You can set it up to take an input system/main clock but we default-set it to just

generate it for you, so you only need to connect Data In, Word Select (Left/Right

Clock) and Bit Clock lines. If you want, there's a mute pin and a de-emphasis filter you

can turn on.

We put in plenty of ferrite beads, a low-dropout regulator, and the recommended

band-pass filter so you get a very nice clean output. With a sine-wave generator we

swept through 20-20KHz and saw no attenuation or distortion. Plug into either the

3.5mm stereo headphone jack or the breadboard-friendly pads. We think you'll be

pleased with this DAC!

©Adafruit Industries Page 6 of 42

Each order comes with one I2S Stereo DAC breakout and some header you can

solder on.

Pinouts

The UDA1334A is an I2S amplifier - it does not use analog inputs, it only has digital

audio input support! Don't confuse I2S with I2C, I2S is a sound protocol whereas I2C

is for small amounts of data.

©Adafruit Industries Page 7 of 42

Power Pins

The UDA1334A requires 3.3V power but

can take 3-5V level logic on nearly all pins.

You can provide 3-5V power on the VIN

pin and GND and the built in regulator will

generate a nice clean 3.3V supplier on

3VOut.

Use the quietest power supply for Vin, we

do filter the power supply, but the quieter

the better!

I2S Pins

Three pins are used for stereo I2S data in.

These pins are required!

These can be 3.3-5V logic

WSEL (Word Select or Left/Right Clock) -

this is the pin that tells the DAC when the

data is for the left channel and when its for

the right channel

DIN (Data In) - This is the pin that has the

actual data coming in, both left and right

data are sent on this pin, the WSEL pin

indicates when left or right is being

transmitted

BCLK (Bit Clock) - This is the pin that tells

the amplifier when to read data on the

data pin.

MCLK is not required to use this DAC, if

you have an MCLK pin on your audio

source, leave it disconnected.

©Adafruit Industries Page 8 of 42

https://learn.adafruit.com//assets/48399
https://learn.adafruit.com//assets/48399
https://learn.adafruit.com//assets/48400
https://learn.adafruit.com//assets/48400

Audio Outputs

The exciting part! This is where your line

level audio comes out. We put big 47uF

blocking capacitors on the output so you

can connect this to any stereo system.

AGND is a clean analog ground signal that

we recommend using as your analog

reference, you'll get a cleaner signal.

Note that this DAC was intended for use

with a separate amplifier and is rated for a

3 KΩ load. However, we've found you can

plug in 32Ω headphones and the output is

current-limited so it won't damage the DAC

but you will get distortions. (Powered

headphones won't have this issue)

Optional Control Pins

There are some extra configuration pins if you want to use them. They are not

required for 99% of usage with an Arduino or Teensy or Raspberry Pi. But you never

know! So they are there for you. PLL and SF0 are 3.3V logic only, the other pins are

3-5V safe.

Most of the pins have to do with changing the setup from audio mode to video mode.

If you happen to want video-mode, for synchronizing with NTSC/PAL, check the

datasheet - we haven't used it for that purpose.

©Adafruit Industries Page 9 of 42

https://learn.adafruit.com//assets/48401
https://learn.adafruit.com//assets/48401

SCLK (Sys Clock) - Optional 27 MHz 'video

mode' ssytem clock input - by default we

generate the sysclock from the WS clock

in 'audio mode' But the UDA can also take

a oscillator input on this pin

Mute - Setting this pin High will mute the

output

De-Emphasis - In audio mode (which is the

default), can be used to add a de-

emphasis filter. In video mode, where the

system clock is generated from an

oscillator, this is the clock output.

PLL - sets the PLL mode, by default pulled

low for Audio. Can be pulled high or set to

~1.6V to set PAL or NTSC video frequency

SF0 and SF1 are used to set the input data

format. By default both are pulled Low for

I2S but you can change them around for

alternate formats.

See the back of the PCB for a quick

reference

©Adafruit Industries Page 10 of 42

https://learn.adafruit.com//assets/48402
https://learn.adafruit.com//assets/48402
https://learn.adafruit.com//assets/48403
https://learn.adafruit.com//assets/48403

Assembly

Installing Standard Headers

 The shield comes with 0.1" standard header.

Break apart the 0.1" header into 6 and 9-

pin long pieces and slip the short ends

into the holes in the board

©Adafruit Industries Page 11 of 42

https://learn.adafruit.com//assets/48642
https://learn.adafruit.com//assets/48642

Make sure that all of the short parts of the

header are sticking through the two sets of

pads on either side of the board

©Adafruit Industries Page 12 of 42

https://learn.adafruit.com//assets/48641
https://learn.adafruit.com//assets/48641

Solder each one of the pins into

the board to make a secure connection

©Adafruit Industries Page 13 of 42

https://learn.adafruit.com//assets/48645
https://learn.adafruit.com//assets/48645
https://learn.adafruit.com//assets/48646
https://learn.adafruit.com//assets/48646
https://learn.adafruit.com//assets/48647
https://learn.adafruit.com//assets/48647
https://learn.adafruit.com//assets/48648
https://learn.adafruit.com//assets/48648

That's it! Move on to next page for wiring

information

Raspberry Pi Wiring

if you have a Raspberry Pi and you want higher quality audio than the headphone jack

can provide, I2S is a good option! You only use 3 pins, and since its a pure-digital

output, there can be less noise and interference.

This board works very well with boards that don't have audio like the Pi Zero and is

the easiest way to get quality audio out

Connect:

Amp Vin to Raspbery Pi 3V or 5V

Amp GND to Raspbery Pi GND

Amp DIN to Raspbery Pi #21

Amp BCLK to Raspbery Pi #18

This technique will work with any Raspberry Pi with the 2x20 connector. Older Pi

1's with a 2x13 connector do not bring out the I2S pins as easily

•

•

•

•

©Adafruit Industries Page 14 of 42

https://learn.adafruit.com//assets/48657
https://learn.adafruit.com//assets/48657
https://learn.adafruit.com//assets/48658
https://learn.adafruit.com//assets/48658

Amp LRCLK to Raspbery Pi #19

Pi + UDA Fritzing

Raspberry Pi Setup

Fast Install

Luckily its quite easy to install support for I2S DACs on Raspbian.

These instructions are totally cribbed from the PhatDAC instructions at the lovely folks

at Pimoroni! ()

Run the following from your Raspberry Pi with Internet connectivity:

curl -sS https://raw.githubusercontent.com/adafruit/Raspberry-Pi-

Installer-Scripts/master/i2samp.sh | bash

•

At this time, Raspbery Pi linux kernel does not support mono audio out of the I2S

interface, you can only play stereo, so any mono audio files may need conversion

to stereo!

2017-11-2 Raspbian PIXEL ('full') has broken something in volume control. I2S

works, but there's no software volume setup, if you need this, try Raspbian Lite -

will try to fix as soon as we figure out why :)

©Adafruit Industries Page 15 of 42

https://cdn-learn.adafruit.com/assets/assets/000/048/415/original/piuda.fzz?1511306914
http://learn.pimoroni.com/tutorial/phat/raspberry-pi-phat-dac-install
http://learn.pimoroni.com/tutorial/phat/raspberry-pi-phat-dac-install

We've added an extra helper systemd script that will play quiet audio when the I2S

peripheral isn't in use. This removes popping when playback starts or stops. It uses a

tiny amount of CPU time (on a Pi Zero, 5%, on a Pi 2 or 3 its negligible). You don't

need this on RetroPie because it never releases the I2S device, but it's great for

Raspbian.

You will need to reboot once installed.

After rebooting, log back in and re-run the script again...It will ask you if you want to

test the speaker. Say yes and listen for audio to come out of your speakers...

You must reboot to enable the speaker hardware!

©Adafruit Industries Page 16 of 42

If it sounds really distorted, it could be the volume is too high. However, in order to

have volume control appear in Raspbian desktop or Retropie you must reboot a

second time after doing the speaker test, with sudo reboot

Once rebooted, try running alsamixer and use arrow keys to lower the volume, 50% is

a good place to start.

If you're still having audio problems, try re-running the script and saying N (disable)

the /dev/zero playback service .

You can then go to the next page on testing and optimizing your setup. Skip the rest

of this page on Detailed Installation if the script worked for you!

Detailed Install

If, for some reason, you can't just run the script and you want to go through the install

by hand - here's all the steps!

Update /etc/modprobe.d (if it exists)

Log into your Pi and get into a serial console (either via a console cable, the TV

console, RXVT, or what have you)

Edit the raspi blacklist with

You must reboot *twice* to enable alsamixer volume (really!)

©Adafruit Industries Page 17 of 42

sudo nano /etc/modprobe.d/raspi-blacklist.conf

If the file is empty, just skip this step

However, if you see the following lines:

blacklist i2c-bcm2708

blacklist snd-soc-pcm512x

blacklist snd-soc-wm8804

Update the lines by putting a # before each line

©Adafruit Industries Page 18 of 42

Save by typing Control-X Y <return>

Disable headphone audio (if it's set)

Edit the raspi modules list with

sudo nano /etc/modules

If the file is empty, just skip this step

However, if you see the following line:

snd_bcm2835

Put a # in front of it

and save with Control-X Y <return>

Create asound.conf file

Edit the raspi modules list with

sudo nano /etc/asound.conf

©Adafruit Industries Page 19 of 42

This file ought to be blank!

Copy and paste the following text into the file

pcm.speakerbonnet {

 type hw card 0

}

pcm.dmixer {

 type dmix

 ipc_key 1024

 ipc_perm 0666

 slave {

 pcm "speakerbonnet"

 period_time 0

 period_size 1024

 buffer_size 8192

 rate 44100

 channels 2

 }

}

ctl.dmixer {

 type hw card 0

}

pcm.softvol {

 type softvol

 slave.pcm "dmixer"

 control.name "PCM"

 control.card 0

}

ctl.softvol {

 type hw card 0

}

pcm.!default {

 type plug

 slave.pcm "softvol"

}

©Adafruit Industries Page 20 of 42

Save the file as usual

Add Device Tree Overlay

 Edit your Pi configuration file with

sudo nano /boot/config.txt

And scroll down to the bottom. If you see a line that says: dtparam=audio=on

Disable it by putting a # in front.

©Adafruit Industries Page 21 of 42

Then add:

dtoverlay=hifiberry-dac

dtoverlay=i2s-mmap

on the next line. Save the file.

Reboot your Pi with sudo reboot

Raspberry Pi Test

Speaker Tests!

OK you can use whatever software you like to play audio but if you'd like to test the

speaker output, here's some quick commands that will let you verify your amp and

speaker are working as they should!

Simple white noise speaker test

Run speaker-test -c2 to generate white noise out of the speaker, alternating left

and right.

If you have a mono output amplifier, the I2S amp merges left and right channels, so

you'll hear continuous white noise

©Adafruit Industries Page 22 of 42

Simple WAV speaker test

Once you've got something coming out, try to play an audio file with speaker-test (for

WAV files, not MP3)

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/

Front_Center.wav

You'll hear audio coming from left and right alternating speakers

Simple MP3 speaker test

If you want to play a stream of music, you can try

sudo apt-get install -y mpg123

mpg123 http://ice1.somafm.com/u80s-128-mp3

If you want to play MP3's on command, check out this tutorial which covers how to set

that up ()

At this time, Jessie Raspbery Pi kernel does not support mono audio out of the I2S

interface, you can only play stereo, so any mono audio files may need conversion to

stereo!

Volume adjustment

Many programs like PyGame and Sonic Pi have volume control within the application.

For other programs you can set the volume using the command line tool called alsami

xer. Just type alsamixer in and then use the up/down arrows to set the volume. Press

Escape once its set

omxplayer does not seem use the I2S interface for audio - only HDMI - so you

won't be able to use it

©Adafruit Industries Page 23 of 42

http://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi
http://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi

In Raspbian PIXEL you can set the volume using the menu item control. If it has an X

through it, try restarting the Pi (you have to restart twice after install to get PIXEL to

recognize the volume control

Pi I2S Tweaks

This page is deprecated, our installer already performs these steps for you, but

we'll keep them here for archival use!

©Adafruit Industries Page 24 of 42

Reducing popping

For people who followed our original installation instructions with the simple alsa

config, they may find that the I2S audio pops when playing new audio.

The workaround is to use a software mixer to output a fixed sample rate to the I2S

device so the bit clock does not change. I use ALSA so I configured dmixer and I no

longer have any pops or clicks. Note that the RaspPi I2S driver does not support dmix

er by default and you must follow these instructions provided () to add it. Continue on

for step-by-step on how to enable it!

Step 1

Start by modify /boot/config.txt to add dtoverlay=i2s-mmap

Run sudo nano /boot/config.txt and add the text to the bottom like so:

Save and exit.

Then change /etc/asound.conf to:

pcm.speakerbonnet {

 type hw card 0

}

pcm.!default {

 type plug

 slave.pcm "dmixer"

}

pcm.dmixer {

 type dmix

 ipc_key 1024

 ipc_perm 0666

 slave {

 pcm "speakerbonnet"

©Adafruit Industries Page 25 of 42

https://support.hifiberry.com/hc/en-us/articles/207397665-Mixing-different-audio-sources

 period_time 0

 period_size 1024

 buffer_size 8192

 rate 44100

 channels 2

 }

}

ctl.dmixer {

 type hw card 0

}

By running sudo nano /etc/asound.conf

This creates a PCM device called speakerbonnet which is connected to the hardware

I2S device. Then we make a new 'dmix' device (type dmix) called pcm.dmixer . We

give it a unique Inter Process Communication key (ipc_key 1024) and permissions

that are world-read-writeable (ipc_perm 0666) The mixer will control the hardware

pcm device speakerbonnet (pcm "speakerbonnet") and has a buffer set up so its nice

and fast. The communication buffer is set up so there's no delays (period_time 0 ,

period_size 1024 and buffer_size 8192 work well). The default mixed rate is

44.1khz stereo (rate 44100 channels 2)

Finally we set up a control interface but it ended up working best to just put in the

hardware device here - ctl.dmixer { type hw card 0 }

Save and exit. Then reboot the Pi to enable the mixer. Also, while it will greatly reduce

popping, you still may get one once in a while - especially when first playing audio!

©Adafruit Industries Page 26 of 42

Add software volume control

The basic I2S chipset used here does not have software control built in. So we have

to 'trick' the Pi into creating a software volume control. Luckily, its not hard once you

know how to do it ().

Create a new audio config file in ~/.asoundrc with nano ~/.asoundrc and inside put

the following text:

pcm.speakerbonnet {

 type hw card 0

}

pcm.dmixer {

 type dmix

 ipc_key 1024

 ipc_perm 0666

 slave {

 pcm "speakerbonnet"

 period_time 0

 period_size 1024

 buffer_size 8192

 rate 44100

 channels 2

 }

}

ctl.dmixer {

 type hw card 0

}

pcm.softvol {

 type softvol

 slave.pcm "dmixer"

 control.name "PCM"

 control.card 0

}

ctl.softvol {

 type hw card 0

}

pcm.!default {

 type plug

 slave.pcm "softvol"

}

This assumes you set up the dmixer for no-popping above!

©Adafruit Industries Page 27 of 42

http://alsa.opensrc.org/How_to_use_softvol_to_control_the_master_volume
http://alsa.opensrc.org/How_to_use_softvol_to_control_the_master_volume

Save and exit

Now, here's the trick, you have to reboot, then play some audio through alsa, then

reboot to get the alsamixer to sync up right:

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/

Front_Center.wav

Then you can type alsamixer to control the volume with the 'classic' alsa mixing

interface

Just press the up and down arrows to set the volume, and ESC to quit

©Adafruit Industries Page 28 of 42

Play Audio with PyGame

You can use mpg123 for basic testing but it's a little clumsy for use where you want to

dynamically change the volume or have an interactive program. For more powerful

audio playback we suggest using PyGame to playback a variety of audio formats (MP3

included!)

Install PyGame

Start by installing pygame support, you'll need to open up a console on your Pi with

network access and run:

sudo apt-get install python3-pygame

Next, download this pygame example zip to your Pi

Click to download PyGame example

code & sample mp3s

On the command line, run

wget https://cdn-learn.adafruit.com/assets/assets/000/041/506/

original/pygame_example.zip ()

unzip pygame_example.zip ()

Run Demo

Inside the zip is an example called pygameMP3.py

This example will playback all MP3's within the script's folder. To demonstrate that you

can also adjust the volume within pygame, the second argument is the volume for

playback. Specify a volume to playback with a command line argument between 0.0

and 1.0

For example here is how to play at 75% volume:

python pygameMP3.py 0.75

©Adafruit Industries Page 29 of 42

https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip?1493840708
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip

Here's the code if you have your own mp3s!

''' pg_midi_sound101.py

play midi music files (also mp3 files) using pygame

tested with Python273/331 and pygame192 by vegaseat

'''

#code modified by James DeVito from here: https://www.daniweb.com/programming/

software-development/code/454835/let-pygame-play-your-midi-or-mp3-files

#!/usr/bin/python

import sys

import pygame as pg

import os

import time

def play_music(music_file):

 '''

 stream music with mixer.music module in blocking manner

 this will stream the sound from disk while playing

 '''

 clock = pg.time.Clock()

 try:

 pg.mixer.music.load(music_file)

 print("Music file {} loaded!".format(music_file))

 except pygame.error:

 print("File {} not found! {}".format(music_file, pg.get_error()))

 return

 pg.mixer.music.play()

 # If you want to fade in the audio...

 # for x in range(0,100):

 # pg.mixer.music.set_volume(float(x)/100.0)

 # time.sleep(.0075)

 # # check if playback has finished

 while pg.mixer.music.get_busy():

 clock.tick(30)

freq = 44100 # audio CD quality

bitsize = -16 # unsigned 16 bit

channels = 2 # 1 is mono, 2 is stereo

buffer = 2048 # number of samples (experiment to get right sound)

pg.mixer.init(freq, bitsize, channels, buffer)

if len(sys.argv) > 1:

 try:

 user_volume = float(sys.argv[1])

 except ValueError:

 print "Volume argument invalid. Please use a float (0.0 - 1.0)"

 pg.mixer.music.fadeout(1000)

 pg.mixer.music.stop()

 raise SystemExit

 print("Playing at volume: " + str(user_volume)+ "\n")

 pg.mixer.music.set_volume(user_volume)

 mp3s = []

 for file in os.listdir("."):

 if file.endswith(".mp3"):

 mp3s.append(file)

 print mp3s

©Adafruit Industries Page 30 of 42

 for x in mp3s:

 try:

 play_music(x)

 time.sleep(.25)

 except KeyboardInterrupt:

 # if user hits Ctrl/C then exit

 # (works only in console mode)

 pg.mixer.music.fadeout(1000)

 pg.mixer.music.stop()

 raise SystemExit

else:

 print("Please specify volume as a float! (0.0 - 1.0)")

Arduino Wiring & Test

The classic ATmega328P-based Arduino's like the UNO and Metro 328 don't have I2S

interfaces, so you can't use this breakout with them

But the newer ATSAMD21-based boards like the Zero, Metro M0, Feather M0 can!

(Note, Gemma M0 & Trinket M0 do not have I2S pins available). And so can the even

newer ATSAMD51-based boards like the Metro M4 and Feather M4.

To use I2S with M0 or M4 boards, you'll need to install the Adafruit Zero I2S library ().

It is available through the Library Manager. You can search for (see below) and then

just click the install button.

Wiring

Wiring connections are the same as those used for CircuitPython. So go to the Circuit

Python Wiring & Test page to see how to wire the breakout for your specific board.

©Adafruit Industries Page 31 of 42

https://github.com/adafruit/Adafruit_ZeroI2S

Basic Test

To test things out, try running the demo below. It comes with the library installation, so

you can find it by going to:

File -> Examples -> Adafruit Zero I2S Library -> basic

Be sure to change this line:

Adafruit_ZeroI2S i2s(0, 1, 9, 2);

to match the pins used for your setup. If you've wired as shown in this guide, then you

can try using the default pins by changing that line to this:

Adafruit_ZeroI2S i2s;

#include <Arduino.h>

#include <Adafruit_ZeroI2S.h>

#include <math.h>

/* max volume for 32 bit data */

#define VOLUME ((1UL << 31) - 1)

/* create a buffer for both the left and right channel data */

#define BUFSIZE 128

int left[BUFSIZE];

int right[BUFSIZE];

// Use default pins in board variant

Adafruit_ZeroI2S i2s = Adafruit_ZeroI2S();

void setup()

{

 while (!Serial) delay(10);

 Serial.println("I2S demo");

 for(int i=0; i<BUFSIZE; i++){

 /* create a sine wave on the left channel */

 left[i] = sin((2*PI / (BUFSIZE)) * i) * VOLUME;

 /* create a cosine wave on the right channel */

 right[i] = cos((2*PI / (BUFSIZE)) * i) * VOLUME;

 }

 /* begin I2S on the default pins. 24 bit depth at

 * 44100 samples per second

 */

 i2s.begin(I2S_32_BIT, 44100);

 i2s.enableTx();

}

void loop()

{

 /* write the output buffers

©Adafruit Industries Page 32 of 42

 * note that i2s.write() will block until both channels are written.

 */

 for(int i=0; i<BUFSIZE; i++){

 i2s.write(left[i], right[i]);

 }

}

DMA Test

The basic test above created the output directly by using the i2s.write() function

in a loop. Another approach is to use DMA to generate the output. With this approach,

you do some initial setup to configure the DMA engine for playback. It can then take

care of generating the output in the background allowing you to do other things in

your code.

To take this approach, you will need to install the Zero DMA library (). You can do that

through the Library Manager:

And then you can use the DMA example found in the Zero I2S library:

File -> Examples -> Adafruit Zero I2S Library -> dma

#include <Adafruit_ZeroI2S.h>

#include <Adafruit_ZeroDMA.h>

#include "utility/dma.h"

#include <math.h>

/* max volume for 32 bit data */

#define VOLUME ((1UL << 31) - 1)

/* create a buffer for both the left and right channel data */

#define BUFSIZE 256

int data[BUFSIZE];

Adafruit_ZeroDMA myDMA;

ZeroDMAstatus stat; // DMA status codes returned by some functions

Adafruit_ZeroI2S i2s;

©Adafruit Industries Page 33 of 42

https://github.com/adafruit/Adafruit_ZeroDMA

void dma_callback(Adafruit_ZeroDMA *dma) {

 /* we don't need to do anything here */

}

void setup()

{

 Serial.begin(115200);

 //while(!Serial); // Wait for Serial monitor before continuing

 Serial.println("I2S output via DMA");

 int *ptr = data;

 /*the I2S module will be expecting data interleaved LRLR*/

 for(int i=0; i<BUFSIZE/2; i++){

 /* create a sine wave on the left channel */

 *ptr++ = sin((2*PI / (BUFSIZE/2)) * i) * VOLUME;

 /* create a cosine wave on the right channel */

 *ptr++ = cos((2*PI / (BUFSIZE/2)) * i) * VOLUME;

 }

 Serial.println("Configuring DMA trigger");

 myDMA.setTrigger(I2S_DMAC_ID_TX_0);

 myDMA.setAction(DMA_TRIGGER_ACTON_BEAT);

 Serial.print("Allocating DMA channel...");

 stat = myDMA.allocate();

 myDMA.printStatus(stat);

 Serial.println("Setting up transfer");

 myDMA.addDescriptor(

 data, // move data from here

#if defined(__SAMD51__)

 (void *)(&I2S->TXDATA.reg), // to here (M4)

#else

 (void *)(&I2S->DATA[0].reg), // to here (M0+)

#endif

 BUFSIZE, // this many...

 DMA_BEAT_SIZE_WORD, // bytes/hword/words

 true, // increment source addr?

 false);

 myDMA.loop(true);

 Serial.println("Adding callback");

 myDMA.setCallback(dma_callback);

 /* begin I2S on the default pins. 24 bit depth at

 * 44100 samples per second

 */

 i2s.begin(I2S_32_BIT, 44100);

 i2s.enableTx();

 stat = myDMA.startJob();

}

void loop()

{

 Serial.println("do other things here while your DMA runs in the background.");

 delay(2000);

}

©Adafruit Industries Page 34 of 42

CircuitPython Wiring & Test

CircuitPython 3.0 and higher has I2S built in which means you can use this breakout

super easily with the supported M0 and M4 Express CircuitPython boards! Supported

boards are Feather M0 Express, Feather M4 Express, Metro M0 Express, Metro M4

Express, and ItsyBitsy M0 Express.

Note that Trinket M0, Gemma M0 and ItsyBitsy M4 do not support I2S (the last one is

not a typo!)

The M0 boards have multiple I2S pin combinations available. We're going to

demonstrate a single pin combination for each board.

Wiring

The following wiring diagrams show how to connect the UDA1334 breakout to your

CircuitPython board. You'll be using voltage in, ground, bit clock, word select and data

pins.

VIN is the red wire.

GND is the black wire.

BCLK is the blue wire.

WSEL is the yellow wire.

DIN is the green wire.

•

•

•

•

•

©Adafruit Industries Page 35 of 42

For Feather M0 Express, ItsyBitsy M0

Express and Metro M0 Express:

Connect VIN on the breakout to 3V/3.3 on

the board.

Connect GND on the breakout to G/GND

on the board.

Connect BCLK on the breakout to D1/TX

on the board.

Connect WSEL on the breakout to D0/RX

on the board.

Connect DIN on the breakout to D9 on the

board.

©Adafruit Industries Page 36 of 42

https://learn.adafruit.com//assets/57717
https://learn.adafruit.com//assets/57717
https://learn.adafruit.com//assets/57719
https://learn.adafruit.com//assets/57719
https://learn.adafruit.com//assets/57720
https://learn.adafruit.com//assets/57720

For Feather M4 Express:

Connect VIN on the breakout to 3V on the

board.

Connect GND on the breakout to Gnd on

the board.

Connect BCLK on the breakout to TX on

the board.

Connect WSEL on the breakout to D10 on

the board.

Connect DIN on the breakout to D11 on the

board.

For Metro M4 Express:

Connect VIN on the breakout to 3.3 on the

board.

Connect GND on the breakout to GND on

the board.

Connect BCLK on the breakout to D3 on

the board.

Connect WSEL on the breakout to D9 on

the board.

Connect DIN on the breakout to D8 on the

board.

Code Examples

We have two CircuitPython code examples. The first plays a generated tone through

the audio jack on the breakout. The second plays a wave file. Let's take a look!

Tone Generation

The first example generates one period of a sine wave and then loops it to generate a

tone. You can change the volume and the Hz of the tone by changing the associated

variables. Inside the loop, we play the tone for one second and stop it for one second.

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

The default volume of the audio in the following code is very high. Do not put on

plugged in headpones before first running the code to check the volume.

©Adafruit Industries Page 37 of 42

https://learn.adafruit.com//assets/103773
https://learn.adafruit.com//assets/103773
https://learn.adafruit.com//assets/57722
https://learn.adafruit.com//assets/57722

SPDX-License-Identifier: MIT

import time

import array

import math

import audiocore

import board

import audiobusio

tone_volume = 0.1 # Increase this to increase the volume of the tone.

frequency = 440 # Set this to the Hz of the tone you want to generate.

length = 8000 // frequency

sine_wave = array.array("h", [0] * length)

for i in range(length):

 sine_wave[i] = int((math.sin(math.pi * 2 * i / length)) * tone_volume * (2 ** 15

-1))

For Feather M0 Express, ItsyBitsy M0 Express, Metro M0 Express

audio = audiobusio.I2SOut(board.D1, board.D0, board.D9)

For Feather M4 Express

audio = audiobusio.I2SOut(board.D1, board.D10, board.D11)

For Metro M4 Express

audio = audiobusio.I2SOut(board.D3, board.D9, board.D8)

sine_wave_sample = audiocore.RawSample(sine_wave)

while True:

 audio.play(sine_wave_sample, loop=True)

 time.sleep(1)

 audio.stop()

 time.sleep(1)

For Feather M0 Express, ItsyBitsy M0 Express and Metro M0 Express, no changes are

needed for the code to work.

For Feather M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D1, board.D10, board.D11) .

For Metro M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D3, board.D3, board.D8) .

Now you'll hear one second of a 440Hz tone, and one second of silence. Remember,

listen for it without headphones on your ears first as the volume is quite high.

You can try changing the Hz of the tone to produce different tones. Try changing the

number of seconds in time.sleep() to produce longer or shorter tones.

Wave File

The second example plays a wave file. We open the file in a readable format. Then

inside the loop, we play the file and tell the code to continue playing the file until it's

©Adafruit Industries Page 38 of 42

completed. You can use any supported wave file (). We've included the wave file used

in the code.

StreetChicken.wav

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import audiocore

import board

import audiobusio

wave_file = open("StreetChicken.wav", "rb")

wave = audiocore.WaveFile(wave_file)

For Feather M0 Express, ItsyBitsy M0 Express, Metro M0 Express

audio = audiobusio.I2SOut(board.D1, board.D0, board.D9)

For Feather M4 Express

audio = audiobusio.I2SOut(board.D1, board.D10, board.D11)

For Metro M4 Express

audio = audiobusio.I2SOut(board.D3, board.D9, board.D8)

while True:

 audio.play(wave)

 while audio.playing:

 pass

The object setup in the code is the same as above.

For Feather M0 Express, ItsyBitsy M0 Express and Metro M0 Express, no changes are

needed for the code to work.

For Feather M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D1, board.D10, board.D11) .

For Metro M4 Express, comment out audio = audiobusio.I2SOut(board.D1,

board.D0, board.D9) and uncomment # audio =

audiobusio.I2SOut(board.D3, board.D3, board.D8) .

Now you'll hear the wave file play through and loop. Remember, listen for it without

headphones on your ears first as the volume is quite high.

There's plenty you can do with this example. Try playing a different wave file, or,

instead of including while audio.playing: pass , include a time.sleep() to

have it play for a specified number of seconds. Check out the Audio Out page in the

CircuitPython Essentials guide () for pause and resume features.

©Adafruit Industries Page 39 of 42

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file
https://cdn-learn.adafruit.com/assets/assets/000/057/743/original/StreetChicken.wav?1532017169
https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out
https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out

Where's my I2S?

We mentioned earlier that the supported M0 boards have multiple I2S pin

combinations available to you. The M4 boards have one option. Either way, if you'd

like to know what options are available to you, copy the following code into your code

.py, connect to the serial console, and check out the output.

These are the results from the ItsyBitsy M0 Express.

SPDX-FileCopyrightText: 2018 Kattni Rembor for Adafruit Industries

#

SPDX-License-Identifier: MIT

import board

import audiobusio

from microcontroller import Pin

def is_hardware_i2s(bit_clock, word_select, data):

 try:

 p = audiobusio.I2SOut(bit_clock, word_select, data)

 p.deinit()

 return True

 except ValueError:

 return False

def get_unique_pins():

 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']

 pins = [pin for pin in [

 getattr(board, p) for p in dir(board) if p not in exclude]

 if isinstance(pin, Pin)]

 unique = []

 for p in pins:

 if p not in unique:

 unique.append(p)

 return unique

For more information about I2SOut, check out https://

circuitpython.readthedocs.io/en/latest/shared-bindings/audiobusio/I2SOut.html

©Adafruit Industries Page 40 of 42

https://circuitpython.readthedocs.io/en/latest/shared-bindings/audiobusio/I2SOut.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/audiobusio/I2SOut.html

for bit_clock_pin in get_unique_pins():

 for word_select_pin in get_unique_pins():

 for data_pin in get_unique_pins():

 if bit_clock_pin is word_select_pin or bit_clock_pin is data_pin or

word_select_pin\

 is data_pin:

 continue

 if is_hardware_i2s(bit_clock_pin, word_select_pin, data_pin):

 print("Bit clock pin:", bit_clock_pin, "\t Word select pin:",

word_select_pin,

 "\t Data pin:", data_pin)

 else:

 pass

Downloads

Files

EagleCAD PCB Files ()

Fritzing object in Adafruit Fritzing library ()

UDA1334A Datasheet ()

Schematic & Fabrication Print

•

•

•

©Adafruit Industries Page 41 of 42

https://github.com/adafruit/Adafruit-UDA1334A-I2S-Stereo-DAC-PCB
https://github.com/adafruit/Fritzing-Library
https://cdn-shop.adafruit.com/product-files/3678/UDA1334ATS.pdf

©Adafruit Industries Page 42 of 42

	Adafruit I2S Stereo Decoder - UDA1334A
	Table of Contents
	Overview
	Pinouts
	Assembly
	Raspberry Pi Wiring
	Raspberry Pi Setup
	Raspberry Pi Test
	Pi I2S Tweaks
	Play Audio with PyGame
	Arduino Wiring & Test
	CircuitPython Wiring & Test
	Downloads

	Overview
	Pinouts
	Power Pins
	I2S Pins
	Audio Outputs
	Optional Control Pins
	Assembly
	Installing Standard Headers
	Raspberry Pi Wiring
	Raspberry Pi Setup
	Fast Install
	Detailed Install
	Update /etc/modprobe.d (if it exists)
	Disable headphone audio (if it's set)
	Create asound.conf file
	Add Device Tree Overlay

	Raspberry Pi Test
	Speaker Tests!
	Simple white noise speaker test
	Simple WAV speaker test
	Simple MP3 speaker test

	Volume adjustment
	Pi I2S Tweaks
	Reducing popping
	Step 1

	Add software volume control
	Play Audio with PyGame
	Install PyGame
	Run Demo
	Arduino Wiring & Test
	Wiring
	Basic Test
	DMA Test

	CircuitPython Wiring & Test
	Wiring
	Code Examples
	Tone Generation
	Wave File
	Where's my I2S?

	Downloads
	Files
	Schematic & Fabrication Print

