ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

3.3 V 16-bit bus transceiver/register; 3-state

Rev. 03 — 12 January 2005

Product data sheet

1. General description

The 74LVT16652A is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V. The device can be used as two 8-bit transceivers or one 16-bit transceiver.

Complimentary output enable (OEAB and \overline{OEBA}) inputs are provided to control the transceiver functions. Select control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A LOW input level selects real-time data, and a HIGH input level selects stored data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data.

Data on the A or B bus, or both, can be stored in the internal flip-flops by LOW-to-HIGH transitions at the appropriate clock (CPAB or CPBA) inputs regardless of the levels on the select control or output enable inputs. When SAB and SBA are in real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high- impedance, each set of bus lines remains at its last level configuration.

2. Features

- 16-bit bus interface
- 3-state buffers
- Output capability: +64 mA and –32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion and extraction permitted
- Power-up reset
- Power-up 3-state
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection:
 - MIL STD 883 method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V

PHILIPS

3.3 V 16-bit bus transceiver/register; 3-state

3. Quick reference data

Table 1: $T_{amb} = 25$	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PLH}	propagation delay nAx to nBx or nBx to nAx	C_{L} = 50 pF; V_{CC} = 3.3 V	-	2.1	-	ns
t _{PHL}	propagation delay nAx to nBx or nBx to nAx	$C_{L} = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	-	2.4	-	ns
CI	input capacitance control pins	$V_{I} = 0 V \text{ or } 3.0 V$	-	3	-	pF
C _{I/O}	I/O pin capacitance	outputs disabled; V _I = 0 V or 3.0 V	-	9	-	pF
I _{CC}	quiescent supply current	outputs disabled; $V_{CC} = 3.6 V$	-	70	-	μA

4. Ordering information

Table 2: O	rdering in	formation
------------	------------	-----------

Type number	Package						
	Temperature range	Name	Description	Version			
74LVT16652ADGG	–40 °C to +85°C	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1			
74LVT16652ADL	–40 °C to +85°C	SSOP56	plastic shrink small outline package; 56 leads; body width 7.5 mm	SOT371-1			

74LVT16652A

3.3 V 16-bit bus transceiver/register; 3-state

5. Functional diagram

Fig 2. IEC Logic symbol

Philips Semiconductors

74LVT16652A

3.3 V 16-bit bus transceiver/register; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3:	Pin description	
Symbol	Pin	Description
10EAB	1	A to B output enable input
1CPAB	2	A to B clock input
1SAB	3	A to B select input
GND	4	ground (0 V)
1A0	5	data input or output (A-side)
1A1	6	data input or output (A-side)
V _{CC}	7	supply voltage
1A2	8	data input or output (A-side)

Table 3:	Pin description	.continued
Symbol	Pin	Description
1A3	9	data input or output (A-side)
1A4	10	data input or output (A-side)
GND	11	ground (0 V)
1A5	12	data input or output (A-side)
1A6	13	data input or output (A-side)
1A7	14	data input or output (A-side)
2A0	15	data input or output (A-side)
2A1	16	data input or output (A-side)
2A2	17	data input or output (A-side)
GND	18	ground (0 V)
2A3	19	data input or output (A-side)
2A4	20	data input or output (A-side)
2A5	21	data input or output (A-side)
V _{CC}	22	positive supply voltage
2A6	23	data input or output (A-side)
2A7	24	data input or output (A-side)
GND	25	ground (0 V)
2SAB	26	A to B select input
2CPAB	27	A to B clock input
20EAB	28	A to B output enable input
20EBA	29	B to A output enable input
2CPBA	30	B to A clock input
2SBA	31	B to A select input
GND	32	ground (0 V)
2B7	33	data input or output (B-side)
2B6	34	data input or output (B-side)
V _{CC}	35	supply voltage
2B5	36	data input or output (B-side)
2B4	37	data input or output (B-side)
2B3	38	data input or output (B-side)
GND	39	ground (0 V)
2B2	40	data input or output (B-side)
2B1	41	data input or output (B-side)
2B0	42	data input or output (B-side)
1B7	43	data input or output (B-side)
1B6	44	data input or output (B-side)
1B5	45	data input or output (B-side)
GND	46	ground (0 V)
1B4	47	data input or output (B-side)
1B3	48	data input or output (B-side)
1B2	49	data input or output (B-side)

3.3 V 16-bit bus transceiver/register; 3-state

Table 3:	Pin description continued			
Symbol	Pin	Description		
V _{CC}	50	supply voltage		
1B1	51	data input or output (B-side)		
1B0	52	data input or output (B-side)		
GND	53	ground (0 V)		
1SBA	54	B to A select input		
1CPBA	55	B to A clock input		
10EBA	56	B to A output enable input		

Functional description 7.

7.1 Function table

Operating mode	Input						Data I/O	
	nOEAB	nOEBA	nCPAB	nCPBA	nSAB	nSBA	nAx	nBx
Isolation	L	Н	H or L	H or L	Х	Х	input	input
Store A and B data	L	Н	\uparrow	\uparrow	Х	Х	input	input
Store A, hold B	Х	Η	↑	H or L	Х	Х	input	unspecified output ^[2]
Store A in both registers	Η	Η	↑	Ŷ	<u>[3]</u>	Х	input	unspecified output ^[2]
Hold A, store B	L	Х	H or L	Ŷ	Х	Х	unspecified output ^[2]	input
Store B in both registers	L	L	↑	Ŷ	Х	<u>[3]</u>	unspecified output ^[2]	input
Real-time B data to A bus	L	L	Х	Х	Х	L	output	input
Store B data to A bus	L	L	Х	H or L	Х	Н	output	input
Real-time A data to B bus	Н	Н	Х	Х	L	Х	input	output
Store A data to B bus	Н	Н	H or L	Х	Н	Х	input	output
Stored A data to B bus and stored B data to A bus	Н	L	H or L	H or L	Н	Н	output	output

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care:

 \uparrow = LOW-to-HIGH clock transition.

[2] The data output function may be enabled or disabled by various signals at the nOEBA and nOEAB inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock.

If both select controls (nSAB and nSBA) are LOW, then clocks can occur simultaneously. If either select control is HIGH, the clocks must [3] be staggered in order to load both registers.

3.3 V 16-bit bus transceiver/register; 3-state

7.2 Bus management function

Figure 5 demonstrates the four fundamental bus management functions that can be performed with the 74LVT16652A. The select pins determine whether data is stored or transferred through the device in real time. The output enable pins determine the direction of the data flow.

b. Real-time bus transfer bus A to bus B

d. Transfer stored data to bus A or bus B

nOEAB nOEBA nCPAB nCPBA nSAB nSBA X H + X X X L X + + X X L H + X X X D01aac350

c. Storage from bus A only, bus B only, or bus A plus bus B

3.3 V 16-bit bus transceiver/register; 3-state

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

(9.00					
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	DC supply voltage		-0.5	+4.6	V
I _{IK}	DC input diode current	V ₁ < 0 V	-50	-	mA
VI	DC input voltage		[2] -0.5	+7.0	V
I _{OK}	DC output diode current	V _O < 0 V	-50	-	mA
Vo	DC output voltage	output in OFF or HIGH-state	[2] -0.5	+7.0	V
lo	DC output current	output in LOW-state	-	128	mA
		output in HIGH-state	-64	-	mA
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		<u>[1]</u> _	150	°C

[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

[2] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

9. Recommended operating conditions

Table 6:	Recommended operating	g conditions				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		2.7	-	3.6	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-	-	-32	mA
I _{OL}	LOW-level output current		-	-	32	mA
		duty cycle ≤ 50 %; f ≥ 1 kHz	-	-	64	mA
$\Delta t / \Delta V$	input transition rise or fall rate	outputs enabled	-	-	10	ns/V
T _{amb}	ambient temperature		-40	-	+85	°C

3.3 V 16-bit bus transceiver/register; 3-state

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +85 °C <u>[1]</u>					
V _{IK}	input clamp voltage	V_{CC} = 2.7 V; I_{IK} = -18 mA	-	-0.85	-1.2	V
V _{OH}	HIGH-level output voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $I_{OH} = -100 \mu\text{A}$	$V_{CC} - 0.2$	V _{CC}	-	V
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -8 \text{ mA}$	2.4	2.5	-	V
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -32 \text{ mA}$	2.0	2.3	-	V
V _{OL}	LOW-level output voltage	V_{CC} = 2.7 V; I_{OL} = 100 μ A	-	0.07	0.2	V
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{OL} = 24 \text{ mA}$	-	0.3	0.5	V
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 16 \text{ mA}$	-	0.25	0.4	V
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 32 \text{ mA}$	-	0.3	0.5	V
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OL} = 64 \text{ mA}$	-	0.4	0.55	V
V _{RST}	power-up output low voltage	V_{CC} = 3.6 V; I_{O} = 1 mA; V_{I} = GND or V_{CC}	[2] -	0.11	0.55	V
ILI	input leakage current					
	control pins	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND	-	0.1	±1	μA
		$V_{CC} = 0 \text{ V or } 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$	-	0.1	10	μA
	I/O data pins	$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V}$	<u>[3]</u> _	0.1	20	μA
		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC}$	<u>[3]</u> _	0.1	10	μA
		$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 0 \text{ V}$	<u>[3]</u> _	+0.1	-5	μA
I _{OFF}	output off current	V_{CC} = 0 V; V ₁ or V ₀ = 0 V to 4.5 V	-	0.1	±100	μA
I _{HOLD}	bus-hold current A or B	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 0.8 \text{ V}$	^[4] 75	135	-	μA
	outputs	$V_{CC} = 3 \text{ V}; \text{ V}_{I} = 2.0 \text{ V}$	<u>[4]</u> –75	-140	-	μA
		V_{CC} = 0 V to 3.6 V; V _I = 3.6 V	[4] ±500	-	-	μΑ
I _{EX}	current into an output in the HIGH-state when $V_{O} > V_{CC}$	$V_{O} = 5.5 \text{ V}; V_{CC} = 3.0 \text{ V}$	-	45	125	μA
I _{PU} , I _{PD}	power-up or down 3-state output current	$\label{eq:V_CC} \begin{array}{l} V_{CC} \leq 1.2 \ V; \ V_{O} = 0.5 \ V \ to \ V_{CC}; \\ V_{I} = GND \ or \ V_{CC}; \ pins \ nOEAB \\ and \ nOEBA \ are \ don't \ care \end{array}$	[<u>5]</u> _	35	±100	μA
I _{CC}	quiescent supply current	V_{CC} = 3.6 V; V_{I} = GND or V_{CC} and I_{O} = 0 A				
		outputs HIGH	-	0.07	0.12	mA
		outputs LOW	<u>[6]</u>	4.9	6	mA
		outputs disabled	<u>[7]</u> _	0.07	0.12	mA

74LVT16652A

3.3 V 16-bit bus transceiver/register; 3-state

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
ΔI_{CC}	additional supply current per input pin	V_{CC} = 3.3 V \pm 0.3 V; one input at V_{CC} – 0.6 V; other inputs at V_{CC} or GND	<u>[8]</u> _	0.1	0.2	mA		
CI	input capacitance control pins	$V_1 = 0 V \text{ or } 3.0 V$	-	3	-	pF		
C _{I/O}	I/O pin capacitance	outputs disabled; $V_I = 0 V$ or 3.0 V	-	9	-	pF		

Table 7: Static characteristics ... continued

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

[2] For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

Unused pins at V_{CC} or GND. [3]

[4] This is the bus-hold overdrive current required to force the input to the opposite logic state.

This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 3.3 V \pm 0.3 V [5] a transition time of 100 μs is permitted. This parameter is valid for T_{amb} = 25 °C only.

[6] I_{CC} is measured with 16 outputs LOW.

[7] I_{CC} is measured with outputs pulled to V_{CC} or GND.

This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND. [8]

11. Dynamic characteristics

Dynamic characteristics Table 8:

GND = 0 V; $t_r = t_f = 2.5$ ns; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$; test circuit see Figure 12.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
T _{amb} = -40	0 °C to +85 °C <u>[1]</u>						
f _{max}	maximum clock frequency	V_{CC} = 2.7 V or 3.3 V ± 0.3 V; see Figure 6	150	180	-	MHz	
t _{PLH}	propagation delay	see Figure 7					
	nAx to nBx or nBx to nAx	$V_{CC}=3.3~V\pm0.3~V$	0.5	2.1	3.4	ns	
		$V_{CC} = 2.7 V$	-	-	3.9	ns	
	propagation delay nCPAB to nBx or	see Figure 6					
		$V_{CC}=3.3~V\pm0.3~V$	1.5	2.5	4.2	ns	
	nCPBA to nAx	$V_{CC} = 2.7 V$	-	-	4.7	ns	
	propagation delay	see Figure 8					
	nSAB to nBx or	$V_{CC}=3.3~V\pm0.3~V$	1.0	2.3	4.5	ns	
	nSBA to nAx	$V_{CC} = 2.7 V$	-	-	5.4	ns	

74LVT16652A

3.3 V 16-bit bus transceiver/register; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL}	propagation delay nAx to nBx or nBx to nAx	see Figure 7				
		V_{CC} = 3.3 V \pm 0.3 V	0.5	2.4	3.4	ns
		$V_{CC} = 2.7 V$	-	-	3.9	ns
	propagation delay	see Figure 6				
	nCPAB to nBx or nCPBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.7	4.2	ns
		$V_{CC} = 2.7 V$	-	-	4.7	ns
	propagation delay	see Figure 8				
	nSAB to nBx or	$V_{CC}=3.3~V\pm0.3~V$	1.0	2.5	4.5	ns
	nSBA to nAx	$V_{CC} = 2.7 V$	-	-	5.4	ns
PZH	output enable time nOEBA to nAx	see Figure 9				
		$V_{CC}=3.3~V\pm0.3~V$	1.0	2.7	4.3	ns
		$V_{CC} = 2.7 V$	-	-	5.0	ns
	output enable time nOEAB to nBx	see Figure 10				
		$V_{CC}=3.3~V\pm0.3~V$	1.0	2.6	4.2	ns
		$V_{CC} = 2.7 V$	-	-	4.9	ns
PZL	output enable time nOEBA to nAx	see Figure 10				
		$V_{CC}=3.3~V\pm0.3~V$	1.0	3.1	4.3	ns
		$V_{CC} = 2.7 V$	-	-	5.0	ns
	output enable time nOEAB to nBx	see Figure 9				
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.9	4.2	ns
		$V_{CC} = 2.7 V$	-	-	4.9	ns
PHZ	output disable time nOEBA to nAx	see Figure 9				
		$V_{CC}=3.3~V\pm0.3~V$	1.5	3.1	4.9	ns
		$V_{CC} = 2.7 V$	-	-	5.3	ns
	output disable time nOEAB to nBx	see Figure 9				
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	3.4	5.2	ns
		$V_{CC} = 2.7 V$	-	-	5.8	ns
PLZ	output disable time nOEBA to nAx	see Figure 10				
		$V_{CC}=3.3~V\pm0.3~V$	1.5	2.8	4.4	ns
		$V_{CC} = 2.7 V$	-	-	4.6	ns
	output disable time nOEAB to nBx	see Figure 10				
		$V_{CC}=3.3~V\pm0.3~V$	1.5	3.0	4.4	ns
		$V_{CC} = 2.7 V$	-	-	4.6	ns

Table 8: Dynamic characteristics ... continued

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

3.3 V 16-bit bus transceiver/register; 3-state

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +85 °C <u>[1]</u>					
t _{su(H)}	set-up time HIGH nAx to nCPAB or nBx to nCPBA	see Figure 11				
		$V_{CC}=3.3~V\pm0.3~V$	1.0	0.6	-	ns
		$V_{CC} = 2.7 V$	1.1	-	-	ns
t _{su(L)}	set-up time LOW nAx to nCPAB or nBx to nCPBA	see Figure 11				
		$V_{CC}=3.3~V\pm0.3~V$	1.9	0.5	-	ns
		$V_{CC} = 2.7 V$	2.4	-	-	ns
t _{h(H)}	hold time HIGH nAx to nCPAB or nBx to nCPBA	see Figure 11				
		$V_{CC}=3.3~V\pm0.3~V$	1.0	0.4	-	ns
		$V_{CC} = 2.7 V$	1.0	-	-	ns
^t h(L)	hold time LOW nAx to nCPAB or nBx to nCPBA	see Figure 11				
		$V_{CC}=3.3~V\pm0.3~V$	1.0	0.5	-	ns
		$V_{CC} = 2.7 V$	1.0	-	-	ns
t _{W(H)}	pulse width HIGH nCPAB or nCPBA	see Figure 6				
		$V_{CC}=3.3~V\pm0.3~V$	2.6	2.2	-	ns
		$V_{CC} = 2.7 V$	2.6	-	-	ns
t _{W(L)}	pulse width LOW nCPAB or nCPBA	see Figure 6				
		$V_{CC}=3.3~V\pm0.3~V$	2.8	2.4	-	ns
		$V_{CC} = 2.7 V$	2.8	-	-	ns

Table 9: Dynamic characteristics setup requirements GND = 0 V; $t_r = t_f = 2.5 ns$; $C_l = 50 pF$; $R_l = 500 \Omega$.

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

12. Waveforms

74LVT16652A

Table 10:Test data

Input			Load V _{EXT}					
VI	Repetition rate	tw	t _r , t _f	CL	RL	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}
2.7 V	\leq 10 MHz	500 ns	\leq 2.5 ns	50 pF	500 Ω	GND	6 V	open

74LVT16652A

3.3 V 16-bit bus transceiver/register; 3-state

13. Package outline

Fig 13. Package outline SOT364-1 (TSSOP56)

3.3 V 16-bit bus transceiver/register; 3-state

Fig 14. Package outline SOT371-1 (SSOP56)

3.3 V 16-bit bus transceiver/register; 3-state

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74LVT16652A_3	20050112	Product data sheet	-	9397 750 14402	74LVT16652A_2
Modifications:	information Product titl Section 2 ' Section 3 '	t of this data sheet has b n standard of Philips Sen le modified <u>'Features"</u> : modified JED <u>'Quick reference data"</u> : m <u>"Dynamic characteristic</u>	niconductors. EC Std 17 into JES nodified values for t _F	D78 PLH and t _{PHL}	v presentation and
74LVT16652A 2	19980219	Product specification	-	9397 750 03561	74LVT16652A_1
1 IEV 1 10002/ (2					

3.3 V 16-bit bus transceiver/register; 3-state

15. Data sheet status

Level	Data sheet status [1]	Product status ^[2] ^[3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

74LVT16652A

3.3 V 16-bit bus transceiver/register; 3-state

19. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 5
6.1 6.2	Pinning
7	Functional description7
7.1	Function table
7.2	Bus management function 8
8	Limiting values 9
9	Recommended operating conditions9
10	Static characteristics 10
11	Dynamic characteristics 11
12	Waveforms 13
13	Package outline 17
14	Revision history 19
15	Data sheet status
16	Definitions 20
17	Disclaimers 20
18	Contact information 20

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 12 January 2005 Document number: 9397 750 14402

Published in The Netherlands