

KXTE9 Series Accelerometers and Inclinometers

FEATURES

Ultra-Small Package - 3x3x0.9mm LGA Activity-monitoring Algorithm (Active/Inactive) Device Orientation Detection Algorithm Digital I²C Communication Interface Very Low Power Consumption (30µA full operation) Lead-free Solderability Excellent Temperature Performance High Shock Survivability User-selectable Output Data Rate Factory Programmable Offset and Sensitivity Self-test Function

MARKETS

APPLICATIONS

Mobile Phones and Mobile Internet Devices

Screen Rotation Gesture Recognition User Interface Power Management Activity Monitoring

Game Controllers and Computer Peripherals

Inclination and Tilt Sensing User Interface Power Management Activity Monitoring

Sports Diagnostic Equipment

Static and Dynamic Acceleration Activity Monitoring

PROPRIETARY TECHNOLOGY

These high-performance silicon micromachined linear accelerometers and inclinometers consist of a sensor element and an ASIC packaged in a 3x3x0.9mm Land Grid Array (LGA). The sensor element is fabricated from single-crystal silicon with proprietary Deep Reactive Ion Etching (DRIE) processes, and is protected from the environment by a hermetically-sealed silicon cap at the wafer level.

The KXTE9's advanced, orientation-detection feature reports changes in landscape, portrait, face-up, and face-down conditions. This sophisticated, embedded algorithm eliminates the need for continuous data collection and complex calculations by a microprocessor. With a few adjustable parameters, the screen-rotation algorithm can be optimized for an intuitive user experience. In addition to orientation detection, the KXTE9 features an activity-monitoring function. This function reports changes in a device's motion state, either moving (active) or not moving (inactive). A highly-manufacturable product with consistent product performance across use conditions, the KXTE9 operates across a supply voltage of 1.8V to 3.6V DC.

The sensor element functions on the principle of differential capacitance. Acceleration causes displacement of a silicon structure resulting in a change in capacitance. An ASIC, using a standard CMOS manufacturing process, detects and transforms changes in capacitance into an analog output voltage, which is proportional to acceleration. The sense element design utilizes common mode cancellation to decrease errors from process variation and environmental stress. The voltage is digitized by an on-board A/D converter and is accessed via an inter-interated circuit (I²C).

36 Thornwood Dr. - Ithaca, NY 14850 USA tel: 607-257-1080 - fax: 607-257-1146 - www.kionix.com - info@kionix.com

"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. Information provided in this document is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for its use or distribution. No license is granted by implication or otherwise under any patent or other rights of Kionix. Kionix reserves the right to change product specifications or discontinue this product at any time without prior notice.

KXTE9 Series

Accelerometers and Inclinometers

PERFORMANCE SPECIFICATIONS

The performance parameters below are programmed and tested for ± 2.0 g, 6-bit operation at 3.3 volts and 25°C. However, the device can be factory programmed to accept supply voltages from 1.8V to 3.6V. Performance parameters will change with supply voltage variations.

	PERFORM	IANCE SPECIFICATIONS		
PARAMETERS	UNITS	KXTE9-2050	CONDITION	
Range	g	±2.0	Factory programmable	
Sensitivity	counts/g	16 typical		
Sensitivity vs. Temp	%/°C	±0.01 (X, Y) ±0.03 (Z) typical		
0g Offset	counts	32 typical		
0g Offset vs. Temp.	mg/°C	±0.6 typical		
Non-Linearity	% of FS	0.1 typical	% of full scale output	
Cross-axis Sensitivity	%	2.0 typical		
I ² C Communication Rate	KHz	400 max		
Power Supply	V	3.3 typical	Factory programmable	
	μΑ	30 typical	Operating	
Current Consumption	μA	0.1 typical	Standby	
	ENVIRON	IENTAL SPECIFICATIONS		
PARAMETERS	UNITS	KXTE9-2050	CONDITION	
Operating Temperature	°C	-40 to 85	Powered	
Storage Temperature	°C	-55 to 150	Un-powered	
M I I I I I I I		5000, 0.5 msec	Powered or un-powered	
Mechanical Shock	g	10,000, 0.2 msec	halversine	
ESD	V	2000	Human body model	

ORDERING GUIDE

Product	Axis(es) of Sensitivity	Range (g)	Sensitivity (counts/g)	Offset (counts)	Operating Voltage (V)	Temperature (°C)	Package
KXTE9-1026	XYZ	2	16	32	2.6	-40 to +85	3x3x0.9mm LGA
KXTE9-1050	XYZ	2	16	32	2.8	-40 to +85	3x3x0.9mm LGA
KXTE9-2050	XYZ	2	16	32	3.3	-40 to +85	3x3x0.9mm LGA
KXTE9-4100	XYZ	2	16	32	1.8	-40 to +85	3x3x0.9mm LGA