

Voltage Regulator

Data Sheet

Features

- Output voltage 3.3 V or adjustable
- 1.0 A output current
- Low drop voltage < 1.2 V @ 800 mA
- Short circuit protected
- Overtemperature protected
- Operating range up to 15 V
- Industrial type

Functional Description

The IFX 1117 is a monolithic integrated fixed NPN type voltage regulator that can supply loads up to 1.0 A. The device is housed in the small surface mounted SOT223 package. The IC is equipped with additional protection against overload, short circuit and overtemperature.

The IFX 1117 GSV33 supplies a regulated output voltage of 3.3 V (±2%). The IFX 1117 GSV supplies an output voltage with ±2% precision adjustable via an external voltage divider. The input voltage for the IFX 1117 GSV33 ranges from 4.5 V (= V_Q+V_{DR}) to 15 V for a load current of 800 mA, for the maximum load current of 1.0 A a minimum input voltage of 4.7 V is required. The drop voltage V_{DR} ranges from 1.1 V to 1.4 V depending on the load current level.

The device operates in the temperature range of $T_i = 0$ to 125 °C.

Туре	Ordering Code	Package
IFX 1117 GSV33	Q67006-A9681	P-SOT223-4-6
		P-SOT223-4-4
IFX 1117 GSV	Q67006-A9680	P-SOT223-4-6
		P-SOT223-4-4

Figure 1 Block Diagram for Fixed Output Voltage IFX 1117 GSV33

Figure 2 Pin Configuration IFX 1117 GSV33 (top view)

Table 1Pin Definitions and Functions IFX 1117 GSV33

Pin No.	Symbol	Function
1	GND	Ground
2	Q	Output; Connect output pin to GND via a capacitor $C_Q \ge 10 \ \mu\text{F}$ with ESR $\le 20 \ \Omega$ (see also graph "Region of Stability")
3	I	Input
4 (Heatsink)	Q	Output; Connect to pin 2

Figure 3 Pin Configuration IFX 1117 GSV (top view)

Table 2 Pin Definitions and Functions IFX 1117 GSV

Pin No.	Symbol	Function
1	ADJ	Adjust; defines output voltage level by external voltage divider between Q, ADJ and GND.
2	Q	Output; Connect output pin to GND via a capacitor $C_Q \ge 10 \ \mu\text{F}$ with ESR $\le 20 \ \Omega$ (see also graph "Region of Stability").
3	1	Input
4 (Heatsink)	Q	Output; Connect to pin 2

Parameter	Symbol	Lim	it Values	Unit	Test Condition
		Min.	Max.		
Input - Output Voltag	e Differen	ce (varia	ble device	only)	
Voltage	$V_{\rm I}$ - $V_{\rm Q}$	-0.3	20	V	-
Input Voltage (fixed v	voltage ve	rsion on	ly)		
Voltage	V_{I}	-0.3	20	V	-
Output		·		·	•
Voltage	V _Q	-0.3	20	V	-
Current	IQ	-	-	-	Internally limited
ESD Rating		·			•
Electrostatic discharge voltage	V_{ESD}	-2	2	kV	Human Body Mode
Temperature		•	•	•	
Storage temperature	$T_{\rm stg}$	-50	150	°C	-
Junction temperature	$T_{\rm i}$	-40	150	°C	_

 Table 3
 Absolute Maximum Ratings

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks
		Min.	Max.		
Input Voltage	VI	$V_{\rm Q}$ + $V_{\rm DR}$	15	V	-
Junction temperature	T _i	0	125	°C	-

Table 5Thermal Resistance

Junction ambient	$R_{ m thja}$	_	164	K/W	P-SOT223, no airflow, no heat sink area
		_	81	-	P-SOT223 300 mm ² heat sink area
Junction case	R _{thjc}	_	4	K/W	-

Note: In the operating range, the functions given in the circuit description are fulfilled.

Characteristics 3.3 V Fixed Output Voltage Device IFX 1117 GSV33

0 °C < $T_{\rm j}$ < **125** °C; $V_{\rm l}$ = 5 V, $I_{\rm Q}$ = 10 mA; unless otherwise specified.

Parameter	Symbol	nit Valı	ues Unit		Measuring Conditions	
		min.	typ.	max.		
Output voltage	VQ	3.23 5	3.300	3.36 5	V	$0 \text{ mA} \le I_Q \le 800 \text{ mA}$ 4.7 V $\le V_I \le 10 \text{ V}$
Output voltage	V _Q	-	3.300	-	V	0 mA $\leq I_Q \leq$ 1000 mA; 4.7 V $\leq V_I \leq$ 15V
Line regulation	ΔV_{Q}	_	1	6	mV	$4.7 \text{ V} \le V_1 \le 15 \text{ V}$
Load regulation	ΔV_{Q}	_	1	10	mV	$0 \text{ mA} \le I_Q \le 800 \text{ mA};^{(1)}$
		_	2	_	mV	$0 \text{ mA} \le I_Q \le 1.0 \text{ A}^{1)}$
Drop voltage	V _{DR}	_	1.00	1.10	V	$I_{\rm Q} = 100 {\rm mA}^{2)}$
Drop voltage	V_{DR}	_	1.05	1.15	V	$I_{\rm Q} = 500 \ {\rm mA}^{2)}$
Drop voltage	V_{DR}	_	1.10	1.20	V	$I_{\rm Q} = 800 \ {\rm mA}^{2)}$
Drop voltage	V_{DR}	_	1.30	1.40	V	$I_{\rm Q} = 1.0 \ {\rm A}^{2)}$
$\overline{\text{Current consumption;}} \\ I_{q} = I_{I} - I_{Q}$	Iq	-	5	10	mA	<i>I</i> _Q = 10 mA
Temperature stability	ΔV_{Q}	_	16.5	_	mV	3)
Long Term Stability	_	_	0.3	_	%	3)
Current limit	I _{Qmax}	1100	-	2250	mA	$V_{\rm Q} = 0.5 {\rm V}$
RMS Output Noise	_	-	30	-	ppm	ppm of V_Q , $T_j = 25 \text{ °C}$ 10 Hz $\leq f \leq$ 10 kHz ³)
Power Supply Ripple Rejection	PSRR	60	65	_	dB	$f_{\rm r} = 120 \text{ Hz}, V_{\rm r} = 1 V_{\rm PP}^{3}$

1) Measured at constant junction temperature

2) Drop voltage measured when the output voltage has dropped 100 mV from the nominal value obtained at $V_1 = 5.0$ V.

3) Specified by design; not subject to production test.

Characteristics Adjustable Output Voltage Device IFX 1117 GSV

0 °**C** < T_{i} < **125** °**C**; V_{i} = 5 V, I_{Q} = 10 mA; unless otherwise specified.

Parameter	Symbol	Limit Values			Unit	Measuring Conditions
		min.	typ.	max.		
Reference voltage	V_Q	1.22 5	1.250	1.27 0	V	10 mA $\leq I_Q \leq$ 800 mA; 1.4 V $\leq (V_I - V_Q) \leq$ 10 V
Output voltage	V_Q	-	1.250	-	V	10 mA $\leq I_Q \leq$ 1000 mA; 2.65 V $\leq V_I \leq$ 15 V
Line regulation	ΔV_Q	_	0.035	0.2	% ¹⁾	1.5 V ≤(V _I -V _Q)≤ 13.75 V
Load regulation	ΔV_Q	_	0.2	0.4	% ¹⁾	$10 \text{ mA} \le I_Q \le 800 \text{ mA};^{2)}$
		_	0.25	_	% ¹⁾	$10 \text{ mA} \le I_Q \le 1.0 \text{ A}^{-2}$
Drop voltage	V _{DR}	_	1.00	1.10	V	$I_{\rm Q}$ = 100 mA ³⁾
Drop voltage	V _{DR}	_	1.05	1.15	V	$I_{\rm Q}$ = 500 mA ³⁾
Drop voltage	V _{DR}	_	1.10	1.20	V	$I_{\rm Q}$ = 800 mA ³⁾
Drop voltage	V _{DR}	_	1.30	1.40	V	$I_{\rm Q}$ = 1.0 A ³⁾
Minimum Load Current ⁴⁾	I_q	_	1.7	5.0	mA	V ₁ = 15 V
Adjust Current	I _{ADJ}	_	100	120	μA	$I_{\rm Q}$ = 10 mA
Adjust Current Change	ΔI_{ADJ}	_	2	5	μA	1.4 V ≤($V_{\rm I}$ - $V_{\rm Q}$)≤ 13.6 V; 10 mA ≤ $I_{\rm Q}$ ≤ 800 mA
Temperature stability	ΔV_Q	_	0.5	_	% ¹⁾	5)
Long Term Stability	-	_	0.3	_	% ¹⁾	5)
Current limit	I _{Qmax}	1100	-	2250	mA	$V_{\rm Q} = 0.5 \ {\rm V}$
RMS Output Noise	-	-	30	_	ppm	ppm of $V_{\rm Q}$, $T_{\rm j}$ = 25 °C 10 Hz \leq f \leq 10 kHz ⁵)
Power Supply Ripple Rejection	PSRR	65	70	-	dB	$f_{\rm r}$ = 120 Hz, $V_{\rm r}$ = 1 V _{PP} ⁵⁾

1) Related to V_{Q}

2) Measured at constant junction temperature

3) Drop voltage measured when the output voltage has dropped 100 mV from the nominal value obtained at $V_{\rm I}$ = 5.0 V.

4) Minimum load current required to maintain regulation

5) Specified by design; not subject to production test.

Application Information

Output

The IFX 1117 requires a 10 μ F output capacitor with ESR \leq 20 Ω for the stability of the regulation loop. The use of a tantalum output capacitor is recommended.

For the adjustable device IFX 1117 GSV the output voltage level can be defined by a voltage divider between Q, ADJ and GND.

The output voltage calculates:

$$V_{\rm Q} = V_{\rm REF} \times \left(1 + \frac{R_2}{R_1}\right) + I_{\rm ADJ} \times R_2 \tag{1}$$

At the input of the regulator a capacitor is recommended to compensate line influences. As a minimum a 100 nF ceramic input capacitor should be used. If the regulator is used in an environment with long input lines an input capacitance of 10 μ F is suggested.

Figure 6 Typical Application Circuit IFX 1117 GSV

Output Voltage V_{Q} versus Junction Temperature T_{i}

Ínfineon

Dropout Voltage V_{dr} versus Junction Temperature T_i

Dropout Voltage V_{dr} versus Output Current I_{Q}

Maximum Output Current I_{Q} versus Junction Temperature T_{i}

Typical Performance Characteristics

Adjust Pin Current I_{ADJ} versus Junction Temperature T_i

Power Supply Ripple Rejection PSRR versus Frequency f

Region of Stability Version GSV33

Region of Stability Version GSV

Data Sheet

Typical Performance Characteristics

Load Transient Response Version GSV33

Load Transient Response Version GSV

Line Transient Response Version GSV33

Line Transient Response Version GSV

Package Outlines

Figure 7 P-SOT223-4-6, P-SOT223-4-4 (Plastic Small Outline Transistor)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

SMD = Surface Mounted Device

Dimensions in mm

IFX 1117

Revision History

Version	Date	Changes
Rev. 1.0	2004-06-01	Final Data Sheet
Rev. 1.1	2004-07-20	"Typical Performance Characteristics" graphs added.

Edition 2004-07-20 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.