Automotive NR1640 200mA Ultra-low Noise Voltage Regulator

KEY SPECIFICATIONS

- AEC-Q100 grade 1 Under Evaluation
 - Input Voltage Range (Maximum Rating):
- 2.7 V to 5.5 V (6.5 V)
 Operating Temperature Range: −40 °C to 125 °C
- Operating remperature Range: -40°C to 125°C
 Output Voltage Range: 2.5 V to 4.8 V
- Output Volage Hange: 210 V to 4.0 V
- Quiescent Current: Typ.350 µA
- Output Noise Voltage: Typ.6 µVrms (I_{OUT} = 100 mA)
- Ripple Rejection:
 Typ.80 dB (f = 1 kHz)
 - Typ.80 dB (f = 100 kHz)
- Dropout Voltage: Typ.0.13 V
- (I_{OUT} = 200 mA, V_{SET} = 3.3 V)
- Thermal Shutdown Function: Typ.165 °C
- Slope of Output Voltage at Start-up:

55 / 110 / 220 / 440 µs / V Selectable from 4 types

Auto-discharge Function : Selectable by product name

APPLICATIONS

- In-vehicle camera system
- High accuracy sensing systems

OVERVIEW

The NR1640 is a CMOS-based ultra-low noise, high PSRR voltage regulator featuring 200 mA output current and 5.5 V maximum input voltage. With noise characteristics of 6 μ Vrms and high ripple rejection of 80 dB or more @100 kHz, high quality power can be supplied, ideal for high precision sensing systems where noise is an issue. The slope of output voltage at startup can be selected from 4 types.

These options will meet the demand of suppression of inrush current and start-up slope requirement. In addition, the auto discharge function option will contribute to make the output shutdown fast to discharge output capacitance with internal discharge FET.

SOT-23-5-DC 2.9 × 2.8 × 1.1(mm)

TYPICAL APPLICATIONS

PSRR TYPICAL CHARACTERISTICS

PRODUCT NAME INFORMATION

NR1640 aa bbb c dd e

Description of configuration

composition	Item	Description
aa	Package Code	Indicates the package. Refer to the order information.
bbb	Output Voltage	Set Output Voltage (V _{SET}) We have a lineup of major voltages in the range of 2.5 V (250) to 4.8 V (480).
		Indicates Slope of Output Voltage at Start-up and the selection of the auto discharge function.
dd	Packing	Refer to the packing specifications.
е	Grade	Indicates the quality grade.

Version

с	Slope of Output Voltage at Start-up	Auto-discharge Function
А	55 µs / V	Yes
В	110 µs / V	Yes
С	220 µs / V	Yes
D	440 µs / V	Yes
E	55 μs / V	No
F	110 µs / V	No
G	220 µs / V	No
Н	440 µs / V	No

Grade

е	Applications	Operating Temperature Range	Test Temperature
Р	Chassis, Body control and In-vehicle	−40°C to 125°C	25°C, 125°C
Q	Powertrain and Safety driving related	−40°C to 125°C	-40°C, 25°C, 125°C

ORDER INFORMATION

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	Plating Composition	MARKING	WEIGHT (mg)	Quantity per Reel (pcs)
NR1640DCbbbcE1e	SOT-23-5-DC	Yes	Yes	Sn	Reference	13.6	3000

<u>Click</u> here for details. Note: Contact our sales representatives for other voltages.

■ PIN DESCRIPTIONS

SOT-23-5-DC Pin Configuration

Pin No.	Pin Name	I/O	Description
1	VIN	Power	Power Supply Input Pin Connect the input capacitor between the VIN pin and GND.
2	GND	-	Ground Pin
3	EN	I	Enable Pin (Active-high) Can be set the active state with "High" input, the shutdown state with "Low". This pin is pulled down internally.
4	NC	-	No Connection It is recommended to make it open to prevent short circuit with adjacent pins during mounting.
5	VOUT	0	Output Pin Connect the output capacitor (Cout) between VOUT pin and GND.

Please refer to "TYPICAL APPLICATION CIRCUIT" or "THEORY OF OPERATION" for details.

Internal Equivalent Circuit Diagram of Pin

Internal equivalent circuit diagram of VOUT pin

Internal equivalent circuit diagram of EN pin

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Ratings	Unit
Input Voltage	VIN	-0.3 to 6.5	V
EN Pin Input Voltage	V _{EN}	-0.3 to 6.5	V
Output Voltage	Vout	-0.3 to V _{IN} + 0.3	V
Junction Temperature Range ^{*1}	Tj	-40 to 150	°C
Storage Temperature Range	T _{stg}	−55 to 150	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

¹ Calculate the power consumption of the IC from the operating conditions, and calculate the junction temperature with the thermal resistance.

Please refer to "THERMAL CHARACTERISTICS" for the thermal resistance under our measurement board conditions.

THERMAL CHARACTERISTIC

Item	Measurement Result
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

θja : Junction-to-Ambient Thermal Resistance

wit : Junction-to-Top Thermal Characterization Parameter

■ ELECTROSTATIC DISCHARGE(ESD) PROTECTION VOLTAGE

Item	Conditions	Protection Voltage	
Vнвм	HBM : C = 100 pF, R = 1.5 kΩ	±2000 V	
V _{CDM}	CDM	±1000 V	

ELECTROSTATIC DISCHARGE RATINGS

The electrostatic discharge test is done based on JESD47. In the HBM method, ESD is applied using the power supply pin and GND pin as reference pins.

RECOMMENDED OPERATING CONDITIONS

Item	Symbol	Ratings	Unit
Input Voltage	V _{IN}	2.7 to 5.5	V
Operating Temperature Range	Ta	-40 to 125	°C
Output Current	Ι _{Ουτ}	0 to 200	mA

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

 $V_{\text{IN}} = V_{\text{SET}} + 1 \text{ V} \text{ (Max. 5.5 V)}$, $I_{\text{OUT}} = 1 \text{ mA}$, $C_{\text{IN}} = 1.0 \ \mu\text{F}$, $C_{\text{OUT}} = 1.0 \ \mu\text{F}$ Unless otherwise specified. For parameter that do not describe the temperature condition, the MIN / MAX value under the condition of $-40 \ ^\circ\text{C} \leq T_a \leq 125 \ ^\circ\text{C}$ is described.

NR1640DCxxxxE1x

Parameter	Symbol	Cond	litions	MIN	TYP	MAX	Unit
Output \/alta aa		T _a = 25°C		×0.99	-	×1.01	V
Output Voltage	Vout	–40°C ≤ T _a ≤ 125°C	×0.985	-	×1.015	V	
Quiescent Current	lq	V _{IN} = V _{SET} + 1 V (Max. 5 I _{OUT} = 0 mA	5.5 V)	-	350	450	μA
Shutdown Current	Isd	V _{IN} = 5.5 V, V _{EN} = 0 V		-	0.1	2.0	μA
Load Regulation	ΔV _{OUT} / ΔΙ _{ΟUT}	1 mA ≤ I _{OUT} ≤ 200 mA		-	-	20	mV
		$2.5 V \le V_{SET} \le 3.9 V, V_{S}$ $I_{OUT} = 1 mA$ $3.9 V < V_{SET} < 4.5 V, V_{S}$		-	-	0.1	
Line Regulation	ΔV _{OUT} / ΔVin	I _{OUT} = 1 mA 4.5 V ≤ V _{SET} ≤ 4.8 V, Vs		-	-	0.15	%/V
		Ιουτ = 1 mA	2.5 V ≤ V _{SET} < 2.9 V	-	0.15	0.23	
Dropout Voltage	Vdo	Ι _{ΟυΤ} = 200 mA	2.9 V ≤ V _{SET} < 4 V	-	0.13	0.2	V
			$4 \text{ V} \leq \text{V}_{\text{SET}} \leq 4.8 \text{ V}$	-	0.095	0.15	
Dinale Dejection	пп	f = 1 kHz	f = 1 kHz		80	-	dB
Ripple Rejection	RR	f = 100 kHz	-	80	-	dB	
Output Noise Voltage	VNOISE	f = 10 Hz to 100 kHz, Io	-	6	-	μVrms	
UVLO Release Voltage*1	VUVLOREL	V _{IN} = Rising		-	-	2.7	V
UVLO Detection Voltage ^{*1}	VUVLODET	V _{IN} = Falling	V _{IN} = Falling			-	V
Output Current Limit	ILIM	V _{IN} = V _{SET} + 1 V (Max. 5	5.5 V)	200	280	-	mA
Short Current Limit	Isc	V ₀ = 0 V		40	75	100	mA
Limit Current at Start-up	ILIMRISE	V ₀ = 0 V		100	140	180	mA
		NR1640DCxxxA/E		37.5	55	72.5	
Slope of Output Voltage		NR1640DCxxxB/F		75	110	145	110 \ /
at Start-up	Voutss	NR1640DCxxxC/G	150	220	290	µs/V	
		NR1640DCxxxD/H	300	440	580		
EN Pin High Input Voltage	V_{ENH}			1.0	-	-	V
EN Pin Low Input Voltage	VENL		0	-	0.4	V	
EN Pin Current	I _{EN}	$V_{IN} = V_{EN} = 5.5 V$	0.05	0.37	0.6	μA	
Discharge FET On- resistance (ver. A/B/C/D)	Rondis	$V_{IN} = 3.6 \text{ V}, \text{ V}_{EN} = 0 \text{ V}, \text{ V}_{O} = 0.1 \text{ V}$		-	15	30	Ω
Thermal shutdown detection temperature	T _{SDDET}	T _j = Rising		150	165	-	°C
Thermal shutdown release temperature	TSDREL	T _j = Falling		125	135	-	°C

All test parameters listed in Electrical Characteristics are done under the following conditions, except for ripple removal and output noise voltage.

 $\begin{array}{ll} \mathsf{NR1640DCxxxxxP} & \mathsf{T_{j}} \approx \mathsf{T_{a}} = 25^{\circ}\mathsf{C},\ 125^{\circ}\mathsf{C} \\ \mathsf{NR1640DCxxxxxQ} & \mathsf{T_{j}} \approx \mathsf{T_{a}} = -40^{\circ}\mathsf{C},\ 25^{\circ}\mathsf{C},\ 125^{\circ}\mathsf{C} \end{array}$

*1 Due to the circuit configuration, $V_{UVLOF} \ge V_{UVLOR}$ does not hold. The hysteresis is Typ.0.08 V

PRODUCT-SPECIFIC ELECTRICAL	CHARACTERISTICS
-----------------------------	-----------------

	V_{OUT} (T _a = 25°C)			V _{OUT} (-40 ≤ T _a ≤ 125°C)		
PRODUCT NAME	MIN	TYP	MAX	MIN	TYP	MAX
NR1640DC250xxxx	2.475	2.5	2.525	2.462	2.5	2.538
NR1640DC280xxxx	2.772	2.8	2.828	2.758	2.8	2.842
NR1640DC290xxxx	2.871	2.9	2.929	2.856	2.9	2.944
NR1640DC300xxxx	2.970	3.0	3.030	2.955	3.0	3.045
NR1640DC330xxxx	3.267	3.3	3.333	3.250	3.3	3.350
NR1640DC340xxxx	3.366	3.4	3.434	3.349	3.4	3.451
NR1640DC480xxxx	4.752	4.8	4.848	4.728	4.8	4.872

Above parameters are all tested under the following conditions:

 $\begin{array}{ll} \mathsf{NR1640DCxxxxxxP} & \mathsf{T_{j}}\approx\mathsf{T_{a}}=25^\circ\mathsf{C},\ 125^\circ\mathsf{C}\\ \mathsf{NR1640DCxxxxxxQ} & \mathsf{T_{j}}\approx\mathsf{T_{a}}=-40^\circ\mathsf{C},\ 25^\circ\mathsf{C},\ 125^\circ\mathsf{C} \end{array}$

TYPICAL APPLICATION CIRCUIT

NR1640DC Typical Application Circuit

Technical Notes Related to External Components

Ensure the VIN and GND lines are sufficiently robust. If their impedances are too high, noise pickup or unstable operation may result. Connect a 1.0 μ F or more input capacitor (C_{IN}) between the VIN and GND pins with shortest-distance wiring.

It is recommended to use a ceramic capacitor of 6.3 V and more such as the X7R having small temperature dependence to ESR, ESL, and capacitance.

Phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use a ceramic capacitor of 1.0 μ F or more with ESR (Equivalent Series Resistance) of up to 300 m Ω to connect an output capacitor (C_{OUT}) between the VOUT and GND pins with shortest-distance wiring. Besides, set for the output capacitor to ensure the following effective capacitance in consideration of the dependence of temperature, DC bias, and package size.

Set Output Voltage (V _{SET})	Effective Capacity
$2.5 \text{ V} \le \text{V}_{\text{SET}} \le 3.3 \text{ V}$	0.7 µF
$3.3 \text{ V} < \text{V}_{\text{SET}} \le 4.8 \text{ V}$	0.6 µF

In case of using an output capacitor of 1.0 µF or more, place a 1.0 µF ceramic capacitor as close as possible.

When using a capacitor with a large ESR such as a tantalum capacitor, select a component that satisfies the stability of the ESR. When using a capacitor with a large ESR such as a tantalum capacitor, select a component that satisfies the stability of the ESR. It is recommend using a low ESR capacitor that is sufficient for stable operation.

BLOCK DIAGRAMS

NR1640DCxxxA/B/C/D Block Diagram

NR1640DCxxxE/F/G/H Block Diagram

THEORY OF OPERATION

• Enable Function

Forcing above designated "High" voltage to EN pin, the NR1640 becomes active. Forcing below designated "Low" voltage to EN pin shuts down the NR1640. The EN pin is pulled down with a constant current of Typ.0.37 μ A inside the IC. In shutdown condition, all functions are disabled except Auto Discharge function. (Option) With Auto-Discharge option, the MOSFET to discharge the output capacitor turns on and the output is pulled down to GND. Without Auto-Discharge option, the output becomes "Hi-Z". EN pin can accept input range voltage regardless of the input of VIN pin. If Enable function is not necessary, tie EN pin to VIN pin or other designated "High" voltage node at start-up.

• Auto Discharge Function

When turned off, the Vout voltage drops rapidly to near 0V by discharging the charge stored in the output capacitor through the MOSFET connected between the VOUT and GND pins. The auto discharge function is enabled when the EN pin = "low" or the thermal shutdown detection. This function is effective when the input voltage aboves the minimum operating voltage. On-resistance of MOSFET is Typ.15 Ω .

• Thermal Shutdown

When the junction temperature exceeds the thermal shutdown detection temperature (Typ.165°C), this IC cuts off the output and suppresses the self-heating. When the junction temperature falls below the thermal shutdown release temperature (Typ.135°C), this IC will restart with the soft start operation.

• Soft-start / Inrush Current Limit

The soft start function is a function that makes the rise of the output voltage (V_{SET}) a fixed time ($V_{SET} \times V_{OUTSS}$) by starting up the internal reference voltage generated inside the IC with the selected slope of output voltage at start-up (V_{OUTSS}).

By this function, the output voltage at start-up rises up slowly and the inrush current at start-up can be suppressed. NR1640 builts in the Inrush current limit circuit. After the EN pin becomes "High", the inrush current which flows at charging the C_{OUT}, is limited at Typ.140 mA.

If an effective capacitance value of the connected C_{OUT} is larger than 0.14 x V_{OUTSS} , the charging current is limited. So, the output voltage rises more slowly than the selected slope of output voltage at start-up (V_{OUTSS}). If the load current (I_{LOAD}) is smaller than the charging current to the C_{OUT} , the output voltage ramp up time is determined by the inrush current limit value and C_{OUT} value. When the effective capacity value of C_{OUT} is about 0.14 x V_{OUTSS} or more, the output turning on time (ton) can be calculated from the following equation:

If the load current (I_{LOAD}) exists other than the charge current to C_{OUT} during start-up, the start-up time is extended. The load current over $I_{LIMRISE}$ may interfere charging of C_{OUT} and the output does not rise up.

76.2

■ THERMAL CHARACTERISTICS

Thermal characteristics depend on the mounting conditions. The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

ltem	Measurement Conditions			
Measurement status	Mounting on Board (Wind Velocity = 0 m/s)			
Board material	Glass Cloth Epoxy Plastic (Four-Layer Board)			
Board size	76.2 mm × 114.3 mm × 0.8 mm			
Wiring rate	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square			
Through hole	φ 0.3 mm ×7 pcs			

OP 50 OP Image: Solution of the second s

114.3

Measurement Result

Item	Measurement Result
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

 θ ja : Junction-to-Ambient Thermal Resistance

wjt : Junction-to-Top Thermal Characterization Parameter

■ CALCULATION METHOD OF JUNCTION TEMPERATURE

The junction temperature (T_j) can be calculated from the following formula.

 $T_j = T_a + \theta ja \times P$ $T_j = Tc (top) + \psi jt \times P$

 $\begin{array}{l} T_a: \mbox{ Ambient temperature} \\ Tc \ (top) \ : \ \mbox{ Package mark side center temperature} \\ P \ (\mbox{Power consumption under user's conditions}) \ : \ (\mbox{V}_{\text{IN}} \ - \ \mbox{V}_{\text{OUT}}) \ \times \ \mbox{ I}_{\text{OUT}} \end{array}$

MARKING SPECIFICATION

123 : Product Code (Abbreviation)
45 : Lot Number ··· Alphanumeric Serial Number

SOT-23-5-DC Marking

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

ORDER INFORMATION (ALL)

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	Plating Composition	MARKING	WEIGHT (mg)	Quantity per Reel (pcs)
NR1640DC250AE1e				•	A00		
NR1640DC280AE1e					A01		
NR1640DC290AE1e					A06		
NR1640DC300AE1e					A02		
NR1640DC330AE1e					A03		
NR1640DC340AE1e					A04		
NR1640DC480AE1e					A05		
NR1640DC250BE1e					B00		
NR1640DC280BE1e					B01		
NR1640DC290BE1e					B06		
NR1640DC300BE1e					B02		
NR1640DC330BE1e					B03		
NR1640DC340BE1e					B04		
NR1640DC480BE1e					B05		
NR1640DC250CE1e					C00	13.6	3000
NR1640DC280CE1e					C01		
NR1640DC290CE1e					C06		
NR1640DC300CE1e		5-DC Yes			C02		
NR1640DC330CE1e					C03		
NR1640DC340CE1e				Sn	C04		
NR1640DC480CE1e	SOT-23-5-DC		Yes		C05		
NR1640DC250DE1e	00120020				D00		
NR1640DC280DE1e					D01		
NR1640DC290DE1e					D06		
NR1640DC300DE1e					D02		
NR1640DC330DE1e					D03		
NR1640DC340DE1e					D04		
NR1640DC480DE1e					D05		
NR1640DC250EE1e					E00		
NR1640DC280EE1e					E01		
NR1640DC290EE1e					E06		
NR1640DC300EE1e					E02		
NR1640DC330EE1e					E03		
NR1640DC340EE1e					E04		
NR1640DC480EE1e					E05		
NR1640DC250FE1e					F00		
NR1640DC280FE1e					F01		
NR1640DC290FE1e					F06		
NR1640DC300FE1e					F02		
NR1640DC330FE1e					F03		
NR1640DC340FE1e					F04		
NR1640DC480FE1e					F05		<u> </u>

Automotive NR1640 series

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	Plating Composition	MARKING	WEIGHT (mg)	Quantity per Reel (pcs)												
NR1640DC250GE1e		DC Yes Yes			G00														
NR1640DC280GE1e					G01														
NR1640DC290GE1e					G06														
NR1640DC300GE1e					G02														
NR1640DC330GE1e							G03												
NR1640DC340GE1e					G04														
NR1640DC480GE1e			C	G05	10.0	2000													
NR1640DC250HE1e	SOT-23-5-DC		Yes Yes	Yes Sn -	H00	13.6	3000												
NR1640DC280HE1e					H01														
NR1640DC290HE1e					H06														
NR1640DC300HE1e				H02															
NR1640DC330HE1e]				H03														
NR1640DC340HE1e]				H04														
NR1640DC480HE1e										1								H05	

APPLICATION NOTES

Phase Compensation

Phase compensation is provided to secure stable operation even when the load current is varied by utilizing capacity of the output ceramic capacitor and Equivalent Series Resistance (ESR). For this purpose, use a capacitor for Cout with the capacity of equal or more than 1.0 μ F. Depending on the ESR, the output may oscillate, so evaluate carefully including the temperature characteristics and frequency characteristics. Connect a capacitor (CIN) of 1.0 μ F or more between the VDD and GND pins, and keep the wiring as short as possible.

Thermal Shutdown Function

The thermal shutdown function prevents the IC from fuming and ignition but does not ensure the IC's reliability or keep the IC below the absolute maximum ratings.

The thermal shutdown function does not operate on the heat generated by other than the normal IC operation such as latchup and overvoltage application.

The thermal shutdown function operates in a state over the absolute maximum ratings, therefore the thermal shutdown function should not be used for a system design.

Evaluation Board / PCB Layout

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

2) Quiescent Current vs Temperature V_{IN} = V_{SET} + 1 V (Max = 5.5 V), C_{IN} = C_{OUT} = 1.0 μF NR1640DC250x

NR1640DC480x

3) Dropout Voltage vs Output Current $C_{IN} = C_{OUT} = 1.0 \ \mu F$ NR1640DC330x

NR1640DC480x

6) Output Voltage vs Input Voltage $V_{IN} = V_{SET} + 1 V (Max = 5.5 V) \text{ to } 0 V, C_{IN} = C_{OUT} = 1.0 \ \mu\text{F}, T_a = 25^{\circ}\text{C}$ NR1640DC250x, (V_{IN} =2.5V to 3.5V) NR1640DC250x, (V_{IN} =2.3V to 2.8V)

Output Current IOUT [mA]

NR1640DC330x, (V_{IN}=2.5V to 4.3V)

NR1640DC480x, (V_{IN}=2.5V to 5.5V)

NR1640DC330x, (V_{IN}=3.1V to 3.7V) 3.5 I_{OUT} = 1mA $I_{OUT} = 100 \text{mA}$ Output Voltage V_{OUT} [V] 3.3 3.5 3.5 I_{OUT} = 200mA 3.3 3.2 3.1 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Input Voltage V_{IN} [V]

NR1640DC480x, (VIN=4.6V to 5.5V)

7) Quiescent Current vs Input Voltage V_{IN} = V_{SET} + 1 V (Max = 5.5 V) to 0 V, C_{IN} = C_{OUT} = 1.0 μ F, T_a = 25°C NR1640DC250x NR1640DC330x

8) EN "High / Low" Input Voltage vs Temperature V_{IN} = V_{SET} + 1 V (Max = 5.5 V), C_{IN} = C_{OUT} = 1.0 μ F NR1640DCxxxx, EN = "High"

9) Ripple Rejection vs Frequency $V_{IN} = V_{SET} + 1 V$ (Max = 5.5 V), Vripple = 0.2 Vp-p, C_{OUT} = 1.0 µF, T_a = 25°C NR1640DC250x NR1640DC290x

10) Ripple Rejection vs Input Voltage $V_{IN} = V_{SET}$ to 5.5 V (Min = 2.7 V), Vripple = 0.2 Vp-p, C_{OUT} = 1.0 µF, T_a = 25°C NR1640DC250x, I_{OUT} = 1 mA NR1640DC250x, I_{OUT} = 10 mA

NR1640DC290x, Iout = 1 mA

NR1640DC290x, I_{OUT} = 50 mA

NR1640DC330x, Iout = 1 mA

NR1640DC290x, I_{OUT} = 100 mA

NR1640DC290x, Iout = 10 mA

4.5

Input Voltage V_{IN} [V]

5.0

5.5

NSSHNBO

Ripple Rejection RR [dB]

3.0

3.5

4.0

f=100Hz

f=1kHz

f=10kHz

f=100kHz

5.5

5.0

NR1640DC330x, Iout = 50 mA

NR1640DC480x, I_{OUT} = 1 mA

NR1640DC480x, Iout = 50 mA

100

90

80

70

60

50 40

30

20

10

0

4.7

4.8

4.9

Ripple Rejection RR [dB]

NR1640DC330x, Iout = 100 mA

100

90

80

70

f=100Hz

f=1kHz

f=10kHz

f=100kHz

5.0 5.1 5.2 5.3 5.4 5.5

Input Voltage V_{IN} [V]

100

11) Output Noise Spectral Density vs Frequency

13) Load Transient Response

V_{IN} = V_{SET} + 1 V (Max = 5.5 V), tr = tf = 0.5 μs, C_{IN} = 1.0 μF, T_a = 25°C NR1640DC250x Cout =1.0 µF, Iout = 1 mA⇔100 mA 300 **Output Current** 200 Output Current I_{ouT} [mA] Σ 100 Output Voltage V_{0U1} I/ 5.25 7.20 7.48 7.48 0 **Output Voltage** 2.46 2.46 2.44 2.44 20 40 60 80 100 120 140 160 180 0 0 Time t [µs]

Cout =1.0 µF, Iout = 1 mA⇔200 mA

NR1640DC290x Cout =1.0 µF, Iout = 1 mA⇔100 mA

Cout =10 µF, Iout = 1 mA⇔100 mA

Cout =10 µF, lout = 1 mA⇔200 mA

Cout =10 µF, lout = 1 mA⇔100 mA

 C_{OUT} =1.0 μ F, I_{OUT} = 1 mA \Leftrightarrow 200 mA

Dutput Current Output Current 2.94 2.92 2.90 2.88 2.86 2.84 0 20 40 60 80 100 120 140 160 180 Time t [µs]

NR1640DC330x Cout = 1.0 µF, Iout = 1 mA⇔100 mA

Cout = 1.0 µF, Iout = 1 mA⇔200 mA

 C_{OUT} =10 μ F, I_{OUT} = 1 mA \Leftrightarrow 200 mA

Cout =10 μ F, Iout = 1 mA \Leftrightarrow 100 mA

Cout = 10 µF, lout = 1 mA⇔200 mA

300

200

100

0

Output Current Iour [mA]

Automotive NR1640 series

NR1640DC480x

Cout = 1.0 µF, Iout = 1 mA⇔200 mA

 $C_{OUT} = 10 \ \mu F$, $I_{OUT} = 1 \ mA \Leftrightarrow 200 \ mA$

0

C_{OUT} = 10 µF, I_{OUT} = 1 mA⇔100 mA

Σ

4.76

4.74

Output Current

Output Voltage

20 40 60 80 100 120 140 160 180

Time t [µs]

14) Turn on Speed with EN Pin $V_{IN} = V_{SET} + 1 V$ (Max = 5.5 V), $C_{IN} = C_{OUT} = 1.0 \mu$ F, $T_a = 25^{\circ}$ C NR1640DC250A/E NR1640DC330A/E

NR1640DC480D/H

15) Inrush Current vs Ouput Capacitor $V_{IN} = V_{SET} + 1 V (Max = 5.5 V), C_{IN} = C_{OUT} = 1.0 \mu F, T_a = 25^{\circ}C$ NR1640DC250A/E NR1640DC330A/E

Automotive NR1640 series

16) Turn off Speed with EN Pin V_{IN} = V_{SET} + 1 V (Max = 5.5 V), C_{IN} = C_{OUT} = 1.0 μ F, T_a = 25°C NR1640DC250A/E NR1640I

NR1640DC480D/H

17) Soft start time $V_{IN} = V_{SET} + 1 V (Max = 5.5 V), C_{IN} = C_{OUT} = 1.0 \mu F, T_a = 25^{\circ}C$ NR1640DC250x NR1640DC330x

NR1640DC480x

Automotive NR1640 series

∎TEST CIRCUIT

NR1640DC Test Circuit

[Components list for our evaluation]

Symbol	Measurement Item		Parts Number	
CIN	All Items	1 µF	GCM155C71A105K	
Соит	All Items	1 µF	GCM155C71A105K	
	No.12,15	10 µF	CGA4J1X7S1C106K	
	No.15	22 µF	GCM32ER71A226KE12L	
	No.15	100 µF	GRM32EE70J107ME15L	

SOT-23-5-DC

PACKAGE DIMENSIONS

 $\begin{array}{c|c}
2.9 \pm 0.2 \\
\hline
1.9 \pm 0.2 \\
\hline
0.4 \pm 0.1 \\
\hline
0.4 \pm 0$

0~0.1

0.2min

 $0.\,\,15^{\,+0.\,\,1}_{\,-0.\,\,08}$

■ EXAMPLE OF SOLDER PADS DIMENSIONS

PI-SOT-23-5-DC-E-D

UNIT: mm

SOT-23-5-DC

PACKING SPEC

(1) Taping dimensions / Insert direction

(2) Taping state

NSSHNBO

UNIT: mm

SOT-23-5-DC

(3) Reel dimensions

(4) Peeling strength

Peeling strength of cover tape

• Peeling angle165 to 180° degrees to the taped surface.• Peeling speed300mm/min• Peeling strength0.1 to 1.0N

PI-SOT-23-5-DC-E-D

SOT-23-5-DC

PI-SOT-23-5-DC-E-D

HEAT-RESISTANCE PROFILES

Revision History

Date	Version	Contents of Changes				
Jan. 7. 2022	1.0	Initial release				
Apr. 28. 2022	1.1	Add NR1640DC290x to the lineup ELECTROSTATIC DISCHARGE(ESD) PROTECTION VOLTAGE " Symbol " → " Item "				
Aug. 18. 2022	1.2	 •WEIGHT (mg) 15 → 13.6 •「The following measurement conditions are based on JEDEC STD. 51-7.」 → 「The following measurement conditions are based on JEDEC STD. 51.] •BLOCK DIAGRAMS → THEORY OF OPERATION •ELECTRICAL CHARACTERISTICS → PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS 				
Jan. 6. 2023	1.3	 •Moved "Marking Specification" from "SOT-23-5-DC Package Information" to previous page of "Order Information". •Updated "SOT-23-5-DC Package Information" to the latest version. (PI-SOT-23-5-DC-E-A → PI-SOT-23-5-DC-E-C) 				
Apr. 7. 2023	1.4 • Updated "SOT-23-5-DC Package Information" to the latest version. (PI-SOT-23-5-DC-E- $C \rightarrow$ PI-SOT-23-5-DC-E-D)					

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for automotive applications. Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.

- 8-3. Remedies after Quality Warranty Period With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/