
Qwiic Atmospheric Sensor (BME280) Hookup Guide




Introduction
The new Qwiic Atmospheric Sensor (BME280) is an updated board revision of our Atmospheric Sensor Breakout-
BME280 to make it Qwiic compatible. The Qwiic connector system reduces the hassle of interfacing to the sensor
via I C, by utilizing polarized cables that are simple to use. The BME280 is great for measuring humidity,
temperature, and barometric pressure.

In addition, we now provide a Python library for compatibility with single board computer (SBC) platforms like the
Raspberry Pi boards. The Arduino library is shared from the preexisting hardware. The examples below, will
demonstrate how to use the Qwiic Atmospheric Sensor with a RedBoard Qwiic; and a Raspberry Pi with the Qwiic
pHAT (and additional accessories) utilizing the Qwiic connection system.

Don't forget to check out this great video of Rob playing his sparxophone thanks to the help of the BME280!

2

SparkFun Atmospheric Sensor Breakout - BME280
(Qwiic)
 SEN-15440

Product Showcase: SparkFun Atmospheric Sensor BreakoutProduct Showcase: SparkFun Atmospheric Sensor Breakout

https://www.sparkfun.com/
https://www.sparkfun.com/products/15440
https://www.sparkfun.com/products/13676
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/categories/395
https://www.sparkfun.com/products/15440
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/14643
https://www.sparkfun.com/products/15351
https://www.sparkfun.com/products/15440
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15440
https://www.youtube.com/watch?v=l9xFrEx5S8E
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

Required Materials

The Qwiic Atmospheric Sensor does need a few additional items for you to get started. The RedBoard Qwiic is for
the Arduino examples and the Qwiic pHAT is for the Raspberry Pi example (see note below). You may already
have a few of these items, so feel free to modify your cart based on your needs. Additionally, there are also
alternative parts options that are available as well (click button below to toggle options).

ALTERNATIVE PARTS (TOGGLE)

SparkFun RedBoard Qwiic
 DEV-15123

SparkFun Qwiic Cable Kit
 KIT-15081

SparkFun Qwiic pHAT for Raspberry Pi
 DEV-15351

https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/15351
https://www.sparkfun.com/products/15123
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/15081
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15081
https://www.sparkfun.com/products/15351
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15351

Raspberry Pi Example: If you don't already have them, you will need a Raspberry Pi and standard
peripherals. An example setup is listed below. (This sensor and the Python library have not been tested on
the newly released Raspberry Pi 4 because we don't carry it in out catalog yet.)

Suggested Reading

If you're unfamiliar with jumper pads, I C, Qwiic, or Python be sure to checkout some of these foundational
tutorials. Also included, in this list, are past tutorials involving the BME280 sensor.

Raspberry Pi 3 B+
 DEV-14643

pi-topCEED (Green)
 KIT-14035

Multimedia Wireless Keyboard
 WIG-14271

Raspberry Pi™ - 16GB MicroSD NOOBS Card
 COM-13945

2

Serial Peripheral Interface (SPI)
SPI is commonly used to connect microcontrollers to
peripherals such as sensors, shift registers, and SD
cards.

Logic Levels
Learn the difference between 3.3V and 5V devices and
logic levels.

https://www.sparkfun.com/products/14644
https://www.sparkfun.com/categories/398
https://www.sparkfun.com/products/14643
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14643
https://www.sparkfun.com/products/14035
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14035
https://www.sparkfun.com/products/14271
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14271
https://www.sparkfun.com/products/13945
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13945
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/logic-levels

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

How to Work with Jumper Pads and PCB Traces
Handling PCB jumper pads and traces is an essential
skill. Learn how to cut a PCB trace, add a solder
jumper between pads to reroute connections, and
repair a trace with the green wire method if a trace is
damaged.

Raspberry Pi SPI and I2C Tutorial
Learn how to use serial I2C and SPI buses on your
Raspberry Pi using the wiringPi I/O library for C/C++
and spidev/smbus for Python.

Python Programming Tutorial: Getting Started
with the Raspberry Pi
This guide will show you how to write programs on your
Raspberry Pi using Python to control hardware.

Qwiic pHAT for Raspberry Pi Hookup Guide
Get started interfacing your Qwiic enabled boards with
your Raspberry Pi. This Qwiic connects the I2C bus
(GND, 3.3V, SDA, and SCL) on your Raspberry Pi to
an array of Qwiic connectors.

Qwiic Kit for Raspberry Pi Hookup Guide
Get started with the CCS811, BME280, VCNL4040,
and microOLED via I2C using the Qwiic system and
Python on a Raspberry Pi! Take sensor readings from
the enviroment and display them on the microOLED,
serial terminal, or the cloud with Cayenne!

https://learn.sparkfun.com/tutorials/i2c
https://learn.sparkfun.com/tutorials/how-to-work-with-jumper-pads-and-pcb-traces
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi
https://learn.sparkfun.com/tutorials/qwiic-phat-for-raspberry-pi-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-kit-for-raspberry-pi-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-bme280-breakout-hookup-guide
https://learn.sparkfun.com/tutorials/ccs811bme280-qwiic-environmental-combo-breakout-hookup-guide

The Qwiic Atmospheric Sensor utilizes the Qwiic connect system. We recommend familiarizing yourself with the
Logic Levels and I C tutorials before using it. Click on the banner above to learn more about our Qwiic products.

SparkFun BME280 Breakout Hookup Guide
A guide for connecting the BEM280 sensor to a
microcontroller, and for using the Sparkfun Arduino
library.

CCS811/BME280 (Qwiic) Environmental Combo
Breakout Hookup Guide
Sense various environmental conditions such as
temperature, humidity, barometric pressure, eCO2 and
tVOCs with the CCS811 and BME280 combo breakout
board.

RedBoard Qwiic Hookup Guide
This tutorial covers the basic functionality of the
RedBoard Qwiic. This tutorial also covers how to get
started blinking an LED and using the Qwiic system.

2

SparkFun's Qwiic Connect SystemSparkFun's Qwiic Connect System

https://www.sparkfun.com/qwiic
https://learn.sparkfun.com/tutorials/logic-levels
https://learn.sparkfun.com/tutorials/i2c
https://www.sparkfun.com/categories/399
https://learn.sparkfun.com/tutorials/sparkfun-bme280-breakout-hookup-guide
https://learn.sparkfun.com/tutorials/ccs811bme280-qwiic-environmental-combo-breakout-hookup-guide
https://learn.sparkfun.com/tutorials/redboard-qwiic-hookup-guide
https://www.sparkfun.com/qwiic
https://www.youtube.com/watch?v=x0RDEHqFIF8
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

Hardware Overview

Power

There is a power status LED to help make sure that your Qwiic Atmospheric Sensor is getting power. You can
power the board either through the polarized Qwiic connector system or the breakout pins (3.3V and GND)
provided. This Qwiic system is meant to use 3.3V, be sure that you are NOT using another voltage when using the
Qwiic system.

Annotated image of power LED along with VCC and GND connections. (Click to enlarge)

If you want to conserve power, there is an available jumper on the back of the board labeled LED to cut power to
the LED (see Jumpers section below).

BME280 Sensor

The Bosch BME280 is the atmospheric sensor used on this board. It measures three different atmospheric
properties: ambient temperature, (relative) humidity, and barometric pressure.

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_Power_Attempt2.jpg
https://en.wikipedia.org/wiki/Atmospheric_temperature
https://en.wikipedia.org/wiki/Relative_humidity
https://en.wikipedia.org/wiki/Atmospheric_pressure
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_Sensor.jpg

Annotated image of BME280 sesnor. (Click to enlarge)

The BME280 uses three modes of operation: sleep mode, forced mode and normal mode. These modes dictate
how the sensor performs measurement cycles. The BME280 can be interfaced via I C (used with Qwiic
connections) or SPI communication. In the table below, are some of the characteristics of the BME280 sensor from
the datasheet:

Characteristic Description

Operating Voltage (V) 1.71V to 3.6V (Default on Qwiic System: 3.3V)

Operational Modes **Sleep** (**Default**), Normal, and Forced (low power; single measurement)

Data Output 16-bit output from ADC
(*IIR filter and oversampling can increase this to 20-bit; excludes humidity
data.)

Current Consumption
(Typical)

Sleep: 0.3 µA
Standby: 0.5 µA (inactive period of normal mode)
Humidity Measurements: 340 µA (peaks at 85°C)
Pressure Measurements: 714 µA (peaks at -40°C)
Temperature Measurements: 350 µA (peaks at 85°C)

Humidity Parameters Range: 0 to 100 %RH
Absolute Accuracy: ±3 %RH (from 20 - 80 %RH)
Resolution: 0.008 %RH
Forced Mode Current Consumption: 2.8 µA (max)

Pressure Parameters Range: 300 to 1100 hPa (30,000 - 110,000 Pa or approx. 4.35 - 15.95 PSI)
Absolute Accuracy: ±(1 - 1.7) hPa
Resolution: 0.18 Pa
Forced Mode Current Consumption: 4.2 µA (max)

Temperature Parameters Range: 0°C to 65°C (32°F to 149°F)
Absolute Accuracy: ±(0.5 - 1.5)°C
Resolution: 0.01°C
Forced Mode Current Consumption: 1.0 µA (typical)

I C Address 0x77 (Default) or 0x76

Modes of Operation

The BME280 offers three modes of operation:

Sleep mode (Default): No operation, all registers accessible, lowest power, selected after startup.
Forced mode (low power operation): Performs one measurement, store results and return to sleep mode.
Normal mode (active measurements): Perpetual cycling of measurements and inactive periods.

For more details, refer to sections 3.3.2-4 in the datasheet. Additionally, in section 3.5 the are a set of
recommended sensor settings for various applications or operations.

Measurements

2

DD

2

https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf

All measurements can be skipped or enabled. When enabled, there are several oversampling options; with
oversampling, it is possible to reduce the noise.

For more details, refer to sections 3-4 in the datasheet.

Humidity

The resolution of the humidity measurement is fixed at 16-bit ADC output. A graph of the operational range for the
humidity sensor (shaded in grey) is shown below; the sensor will not report and/or operate properly outside of this
range.

Operational range of the humidity sensor. (Click to enlarge)

Pressure and Temperature

For temperature and pressure readings, the resolution of the data will be dependent on if the infinite impulse
response (IIR) filter is enabled and the oversampling setting register setting (osrs):

When the IIR filter is enabled, the measurement resolution is 20-bit.
When the IIR filter is disabled, the measurement resolution is [16 + (osrs–1)]-bit.

e.g. The temperature measurement is 18-bit when osrs_t is set to ‘3’.

(*Note: The temperature value depends on the PCB temperature, sensor element self-heating and ambient
temperature and is typically just above ambient temperature.)

Data Analysis

Below are other important attributes of the sensor. For most users, this information is will either be outside their
scope or trivial. However for those that are interested, these topics have been briefly summarized or quoted
directly from the datasheet. For full details, please refer to the datasheet; additionally, some of the comments in
the library may help.

Infinite Impulse Response Filter

It is recommended that the internal IIR filter be implemented to dampen rapid data fluctuations from external
influences like wind blowing, closing doors, etc.

Noise

The expected noise in the measurement data is dependent on the oversampling setting. For pressure and
temperature readings, it is also dependent on the IIR filter setting used.

Trimming Parameters

https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/humidity_operational_range.PNG
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf

The trimming parameters are programmed into the devices’ non-volatile memory (NVM) during production
and cannot be altered by users. These are used for the calibration/compensation parameters.

Compensation formulas

It is strongly advised (by the manufacturer) to use the API available from Bosch Sensortec to perform
readout and compensation.

Qwiic or I C

I C Address

The BME280 has 2 available I C addresses, which are set by the address pin, ADR. On the Qwiic Atmospheric
sensor, the default slave address of the BME280 is 0x77 (HEX).

Default I C Slave Address: 0x77

I C Registers

The BME280 register (memory) map is detail in section 5.3 of the datasheet.

Address Description

0xD0 ID: The chip identification number.

0xE0
Soft Reset: If the value 0xB6 is written to the register, the device is reset using the complete power-
on-reset procedure

0xF2
ctrl_hum: Sets the humidity data acquisition options of the device. Changes to this register only
become effective after a write operation to ctrl_meas .

0xF3
status: Indicate the status of the device.

Whether a conversion is running or the results have been transferred to the data registers.
Whether NVM data are being copied to image registers.

0xF4
ctrl_meas: Sets the pressure and temperature data acquisition options of the device. The register
needs to be written after changing ctrl_hum for the changes to become effective./td>

0xF5
config: Sets the rate, filter and interface options of the device. Writes to the config register in
normal mode may be ignored. In sleep mode writes are not ignored.

0xF7 to
0xF9

press: The raw pressure measurement data.

0xFA to
0xFC

temp: The raw temperature measurement data.

0xFD to
0xFE

hum: The raw humidity measurement data.

0xE1 to
0xF0

0x88 to
0xA1

Calibration Data: Holds Trimming Parameters.

2

2

2

2

2

https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf

Connections

The simplest way to use the Qwiic ADC is through the Qwiic connect system. The connectors are polarized for the
I C connection and power. (*They are tied to their corresponding breakout pins.)

Annotated image of the Qwiic connectors.

However, the board also provides six labeled breakout pins. You can connect these lines to the I C bus of your
microcontroller and power pins (3.3V and GND), if it doesn't have a Qwiic connector. Otherwise, the breakout pins
can also be used for an SPI connection.

Annotated image of the breakout pins.

Pin
Label

Pin
Function

Input/Output Notes

3.3V Power
Supply

Input 3.3V on Qwiic system (should be stable)

GND Ground Input Ground and Single-Ended Reference Voltage for ADC.

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_Qwiic_Connectors.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_Breakout_Pins.jpg

SDA
I C Data
Signal

Bi-directional
Bi-directional data line. Voltage should not exceed power supply
(e.g. 3.3V).

SCL
I C Clock

Signal
Input

Master-controlled clock signal. Voltage should not exceed power
supply (e.g. 3.3V).

SPI Connection

There are two options for an SPI connection 3-wire or 4-wire. For a 3-wire connection, users will need to cut
the ADR jumper on the board. For a 4-wire connection users can cut the ADR , I2C , and CS jumpers to
remove the load from the SPI lines, but it is not necessary. For more details, check out the notes in the
schematic.

This tutorial will not go into detail about using an SPI connection as the Python library can only be used with
an I C connection. However, for users seeking an SPI setup, they can refer to the hookup guide for the
original BME280 Sensor Breakout board.

Pin
Label

Pin
Function

Input/Output Notes

3.3V
Power
Supply

Input
Supply voltage for sensor. SHould be regulated between 1.8 and
3.6 V

GND Ground Input Ground

SCK
Clock
Signal

Input
Master-controlled clock signal. Voltage should not exceed power
supply (max. 3.6V).

SDI Data In Input
Data incoming to the BME280. Voltage should not exceed power
supply (max. 3.6V).

SDO Data Out Output Data coming from the BME280.

CS

Chip
Select

(or Slave
Select)

Input
Used to select device communication on 4-wire connections (active
low). Voltage should not exceed power supply (max. 3.6V).

Jumpers

Caution: Be careful when cutting traces, as not to unintentionally cut other traces.

There are 4 separate jumpers on the board for various hardware related functions. For more notes, check out the
hardware schematic. Not sure how to modify a jumper? Read here!

2

2

2

https://cdn.sparkfun.com/assets/0/9/6/b/4/Qwiic_BME280_Schematic_attempt2.pdf
https://learn.sparkfun.com/tutorials/sparkfun-bme280-breakout-hookup-guide
https://www.sparkfun.com/products/13676
https://cdn.sparkfun.com/assets/0/9/6/b/4/Qwiic_BME280_Schematic_attempt2.pdf
https://learn.sparkfun.com/tutorials/how-to-work-w-jumper-pads-and-pcb-traces/cutting-a-trace-between-jumper-pads

LED Power

If you want to conserve power, the jumper labeled LED will allow users to isolate power to the power status
indicator LED.

Annotated image of LED jumper. (Click to enlarge)

I C Address

If you want to change the I C address for the sensor, the jumper labeled ADR will allow users to change the I C
address from the default (0x77) to 0x76.

Annotated image of ADR jumper. (Click to enlarge)

Pull-Up Resistors

There are two jumpers (well technically three) for the pull-up resistors attached to specific pins on the sensor.

I C Pull-Ups

The first set of pull-up resistors are tied to the SDA and SCL lines for an I C connection. Cutting the I2C jumper
will remove the 4.7kΩ pull-up resistors from the I C bus. If you have many devices on your I C bus you may want
to remove these jumpers. (When there are multiple devices on the bus with pull-up resistors, the equivalent
parallel resistance may create too strong of a pull-up for the bus to operate correctly.)

2

2 2

2

2

2 2

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_LED_Jumper.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_ADR_Jumper.jpg
https://learn.sparkfun.com/tutorials/resistors#series-and-parallel-resistors

Annotated image of I2C jumper. (Click to enlarge)

CS (and SPI) Pull-Ups

The last pull-up resistor is tied to CS pin for an SPI connection. Cutting the CS jumper will remove the 4.7kΩ pull-
up resistor.

Annotated image of I2C jumper. (Click to enlarge)

Keep in mind that the rest of the SPI pins are shared with other pins (see the note above on the SPI connection or
the schematic). For a 3-wire connection, users will need to cut the ADR jumper for the SDO line. For a 4-wire
connection users can cut the ADR , I2C , and CS jumpers to remove the load from the SPI lines, but it is not
necessary.

Hardware Assembly

Arduino Examples

With the Qwiic connector system, assembling the hardware is simple. All you need to do is connect your Qwiic
Atmospheric Sensor (BME280) to the RedBoard Qwiic with a Qwiic cable. Otherwise, you can use the I C pins of
your microcontroller; just be aware of logic levels.

2

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_I2C_Jumper.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_CS_Jumper.jpg
https://cdn.sparkfun.com/assets/0/9/6/b/4/Qwiic_BME280_Schematic_attempt2.pdf
https://www.sparkfun.com/products/15440
https://www.sparkfun.com/products/15123
https://www.sparkfun.com/products/15081

RedBoard Qwiic connected the Qwiic Atmospheric Sensor with a Qwiic cable.

Note: This tutorial assumes you are familiar with Arduino products and you are using the latest stable version
of the Arduino IDE on your desktop. If this is your first time using the Arduino IDE, please review our tutorial
on installing the Arduino IDE.

Raspberry Pi Example

Note: This sensor and the Python library have not been tested on the newly released Raspberry Pi 4
because we don't carry it in out catalog yet.

With the Qwiic connector system, assembling the hardware is simple. In addition to the Qwiic Atmospheric Sensor
(BME280), you will need: a Qwiic cable, a SparkFun Qwiic pHAT for Raspberry Pi, and a Raspberry Pi setup with
the Raspbian OS, monitor, and standard peripherals. (*If you are unfamiliar with the Qwiic pHAT, you can find the
Hookup Guide here.)

Raspberry Pi 3B+ connected the Qwiic Atmospheric Sensor with a Qwiic pHAT and Qwiic cable.
(*A 4-40 screw and nut were used to mount the senor to the pHAT.)

Alternatively, you can also use a Raspberry Pi 3 and the Qwiic HAT instead.

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/Assembly_RedBoard.jpg
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://www.sparkfun.com/products/15440
https://www.sparkfun.com/products/15081
https://www.sparkfun.com/products/15351
https://www.sparkfun.com/products/14643
https://www.sparkfun.com/products/13945
https://www.sparkfun.com/categories/398
https://learn.sparkfun.com/tutorials/qwiic-phat-for-raspberry-pi-hookup-guide
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/Assembly_Raspberry_Pi.jpg
https://www.sparkfun.com/products/10453
https://www.sparkfun.com/products/10454
https://www.sparkfun.com/products/13825
https://www.sparkfun.com/products/14459

Raspberry Pi 3 connected the Qwiic Atmospheric Sensor with a Qwiic HAT and Qwiic cable.

Note: This tutorial assumes you are familiar with using a Raspberry Pi and you have the latest (full... with
recommended software) version of Raspbian OS your Raspberry Pi. You can download the latest version of
the Raspbian OS from the Raspberry Pi Foundation website. As of Feb. 13th 2019, we recommend the
Raspbian Stretch with desktop and recommended software option.

If this is your first time using a Raspberry Pi, please head over to the Raspberry Pi Foundation website to use
their quickstart guides. We have listed a few of them here:

1. Setting up your Raspberry Pi
2. Using your Raspberry Pi
3. Documentation:

Setup Documentation
Installation Documentation
Raspbian Documentation
SD card Documentation

Arduino Library Overview

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE. If you have not
previously installed an Arduino library, please check out our installation guide.

We've written a library to easily get setup and take readings from the Qwiic Atmospheric Sensor. However, before
we jump into getting data from the sensor, let's take a closer look at the available functions in the library. You can
install this library through the Arduino Library Manager. Search for SparkFun BME280 Arduino Library and you
should be able to install the latest version. If you prefer manually downloading the libraries from the GitHub
repository, you can grab them here:

DOWNLOAD THE SPARKFUN BME280 LIBRARY (ZIP)

Let's get started by looking at the functions that set up the Qwiic Atmospheric Sensor:

Class

In the global scope, construct your sensor object (such as mySensor or pressureSensorA) without arguments.

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/Assembly_Raspberry_Pi_alt.jpg
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/help/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://projects.raspberrypi.org/en/projects/raspberry-pi-using
https://www.raspberrypi.org/documentation/setup/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/raspbian/
https://www.raspberrypi.org/documentation/installation/sd-cards.md
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://github.com/sparkfun/SparkFun_BME280_Arduino_Library
https://github.com/sparkfun/SparkFun_BME280_Arduino_Library/archive/master.zip

BME280 mySensor;

Object Parameters and setup()

Rather that passing a bunch of data to the constructor, configuration is accomplished by setting the values of the
BME280 type in the setup() function. They are exposed by being public: so use the myName.aVariable =
someValue; syntax.

Settable variables of the class BME280:

//Main Interface and mode settings
uint8_t commInterface;
uint8_t I2CAddress;
uint8_t chipSelectPin;

uint8_t runMode;
uint8_t tStandby;
uint8_t filter;
uint8_t tempOverSample;
uint8_t pressOverSample;
uint8_t humidOverSample;

Functions

.begin();

Initialize the operation of the BME280 module with the following steps:

Starts up the wiring library for I C by default
Checks/Validates BME280 chip ID
Reads compensation data
Sets default settings from table
Sets operational mode to Normal Mode

Output: uint8_t
Returns the BME280 chip ID stored in the ID register.

.begin() Needs to be run once during the setup, or after any settings have been modified. In order to let
the sensor's configuration take place, the BME280 requires a minimum time of about 2 ms in the sketch
before you take data.

.beginSPI(uint8_t csPin);

Begins communication with the BME280 over an SPI connection.

Input: uint8_t
csPin: Digital pin used for the CS.

Output: Boolean
True: Connected to sensor.
False: Unable to establish connection.

.beginI2C(TwoWire &wirePort); or .beginI2C(SoftwareWire &wirePort);
Begins communication with the BME280 over an I C connection. If #ifdef SoftwareWire_h is defined, then a
software I C connection is used.

2

2

2

Input: &wirePort
&wirePort: Port for the I C connection.

Output: Boolean
True: Connected to sensor.
False: Unable to establish connection.

.setMode(uint8_t mode);

Sets the operational mode of the sensor. (For more details, see section 3.3 of the datasheet.)

Input: uint8_t
0: Sleep Mode
1: Forced Mode
2: Normal Mode

.getMode();

Returns the operational mode of the sensor.

Output: uint8_t
0: Sleep Mode
1: Forced Mode
2: Normal Mode

.setStandbyTime(uint8_t timeSetting);

Sets the standby time of the cycle time. (For more details, see section 3.3 and Table 27 of the datasheet.)

Input: uint8_t
0: 0.5ms
1: 62.5ms
2: 125ms
3: 250ms
4: 500ms
5: 1000ms
6: 10ms
7: 20ms

.setFilter(uint8_t filterSetting)

Sets the time constant of the IIR filter, which slows down the response time of the sensor inputs based on the
number of samples required. (For more details, see section 3.4.4, Table 6, and Figure 7 of the datasheet.)

Input: uint8_t
0: filter off
1: coefficient of 2
2: coefficient of 4
3: coefficient of 8
4: coefficient of 16

.setTempOverSample(uint8_t overSampleAmount);

Sets the oversampling option (osrs_t) for the temperature measurements. (Directly influences the noise and
resolution of the data.)

Input: uint8_t

2

https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf

0: turns off temperature sensing
1: oversampling ×1
2: oversampling ×2
4: oversampling ×4
8: oversampling ×8
16: oversampling ×16
Other: Bad Entry, sets to oversampling ×1 by default.

Note: Yes, we do know there is a spelling error in the name of the method. It will get corrected in the next
library update.

.setPressureOverSample(uint8_t overSampleAmount);

Sets the oversampling option (osrs_p) for the pressure measurements. (Directly influences the noise and
resolution of the data.)

Input: uint8_t
0: turns off pressure sensing
1: oversampling ×1
2: oversampling ×2
4: oversampling ×4
8: oversampling ×8
16: oversampling ×16
Other: Bad Entry, sets to oversampling ×1 by default.

.setHumidityOverSample(uint8_t overSampleAmount);

Sets the oversampling option (osrs_h) for the humidity measurements. (Directly influences the noise of the data.)

Input: uint8_t
0: turns off humidity sensing
1: oversampling ×1
2: oversampling ×2
4: oversampling ×4
8: oversampling ×8
16: oversampling ×16
Other: Bad Entry, sets to oversampling ×1 by default.

.setI2CAddress(uint8_t address);

Changes the I C address stored in the library to access the sensor.

Input: uint8_t
address: The new I C address.

.isMeasuring();

Checks the measuring bit of the status register for if the device is taking measurement.

Output: Boolean
True: A conversion is running.
False: The results have been transferred to the data registers.

.reset();

Soft resets the sensor. (If called, the begin function must be called before using the sensor again.)

2

2

.readFloatPressure();

Reads raw pressure data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns pressure in kPa.

.readFloatHumidity();

Reads raw humidity data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns humidity in %RH.

.readTempC();

Reads raw temperature data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns temperature in Celsius.

.readTempF();

Reads raw temperature data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns temperature in Fahrenheit.

Arduino Example Code
The examples can be found in the the drop-down menu (File > Examples > SparkFun BME280 > ...) of the
Arduino IDE. They can also be downloaded from the GitHub repositoryand then ran on their own. These are just a
few samples of the available selection of examples.

Below are a sample readouts from the Serial Monitor for each of the examples. The baud rate for all of the
examples default to 9600 baud.

Example 1: Basic Readings

This basic example configures an BME280 on the I2C bus and reports out the data.

https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://github.com/sparkfun/SparkFun_BME280_Arduino_Library/tree/master/examples
https://learn.sparkfun.com/tutorials/terminal-basics

Expected readout from Example 1, where the basic readings are displayed

Example 3: CSV Output

If you want to use the BME280 to record data as a function of time, this example is for you! It outputs text as CSV
(comma separated vales) that can be copy-pasted into a textfile or spreadsheet app for graphing.

A note on accuracy: This sketch use "delay(50);" to wait 50ms between reads. The units of the 'sample' column
are in (50ms + time-to-read) periods.

Expected readout from Example 3, where the first few lines show the generated CSV.

Example 5: Read All Registers

Here's an example that prints out the registers as well as the internally concatenated calibration words. It can be
used to check the state of the BME280 after a particular configuration or can be implanted in your own sketch
where you need to debug.

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_arduino_exp1.gif
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_arduino_exp3.gif

Expected readout from Example 5, where the full contents of memory are shown and a calculated pressure
altitude.

Example 6: Low Power

Here is an example with a low power operation, utilizing the sleep mode functionality. This is similar to Example 1,
except the sensor is in sleep mode and data is taken at specific intervals.

Expected readout from Example 6.

Python Library Overview

Note: This sensor and the Python library have not been tested on the newly released Raspberry Pi 4
because we don't carry it in out catalog yet.

Note: This example assumes you are using the latest version of Python (2 or 3). If this is your first time using
Python or I C hardware on a Raspberry Pi, please checkout our tutorial on Python Programming with the
Raspberry Pi and the Raspberry Pi SPI and I2C Tutorial.

2

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_arduino_exp5.gif
https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_arduino_exp6.gif
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi
https://learn.sparkfun.com/tutorials/raspberry-pi-spi-and-i2c-tutorial

We've written a library to easily get setup and take readings from the Qwiic Atmospheric Sensor. However, before
we jump into getting data from the sensor, let's take a closer look at the available functions in the library. You can
install the sparkfun-qwiic-bme280 library package hosted by PyPi. However, if you prefer to manually download
and build the libraries from the GitHub repository, you can grab them here (*Please be aware of any package
dependencies. You can also check out the repository documentation page, hosted on Read the Docs.):

DOWNLOAD THE SPARKFUN BME280 LIBRARY (ZIP)

Installation

Note: Don't forget to double check that the hardware I C connection is enabled on your Raspberry Pi or other
single board computer.

PyPi Installation

This repository is hosted on PyPi as the sparkfun-qwiic-bme280 package . On systems that support PyPi
installation via pip (use pip3 for Python 3) is simple, using the following commands:

For all users (note: the user must have sudo privileges):

sudo pip install sparkfun-qwiic-bme280

For the current user:

pip install sparkfun-qwiic-bme280

Local Installation

To install, make sure the setuptools package is installed on the system.

Direct installation at the command line:

python setup.py install

To build a package for use with pip:

python setup.py sdist

A package file is built and placed in a subdirectory called dist. This package file can be installed using pip.

cd dist
pip install sparkfun_qwiic_bme280-<version>.tar.gz

Library Operation

Below is a description of the basic functionality of the Python library. This includes the library organization, built-in
methods, and their inputs and/or outputs. For more details on how the library works, check out the source code
and the sensor datasheet.

Dependencies

2

https://github.com/sparkfun/Qwiic_BME280_Py
https://qwiic-bme280-py.readthedocs.io/
https://github.com/sparkfun/Qwiic_BME280_Py/archive/master.zip
https://en.wikipedia.org/wiki/Sudo
https://github.com/sparkfun/Qwiic_BME280_Py/blob/master/qwiic_bme280.py
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf

This library has a very few dependencies in the code, listed below:

from __future__ import print_function
import math
import qwiic_i2c

Default Variables

The default variables, in the code, for this library are listed below:

#The name of this device
_DEFAULT_NAME = "Qwiic BME280"

_AVAILABLE_I2C_ADDRESS = [0x77, 0x76]

#Default Setting Values
_settings = {"runMode" : 3, \
 "tStandby" : 0, \
 "filter" : 0, \
 "tempOverSample" : 1, \
 "pressOverSample" : 1, \
 "humidOverSample" : 1, \
 "tempCorrection" : 0.0}

#define our valid chip IDs
_validChipIDs = [0x58, 0x60]

Class

QwiicBme280() or QwiicBme280(i2caddr)
This library operates as a class object, allowing new instances of that type to be made. An __init__()
constructor is used that creates a connection to an I C device over the I C bus using the default or specified I C
address.

The Constructor

A constructor is a special kind of method used to initialize (assign values to) the data members needed by the
object when it is created.

__init__(address=None, i2c_driver=None):

Input: value
The value of the device address. If not defined, the library will use the default I C address (0x77) stored
under _AVAILABLE_I2C_ADDRESS variable. The other available address is 0x76 (set by the jumper on
the bottom side of the board).

Input: i2c_driver
Loads the specified I C driver; by default the Qwiic I C driver is used: qwiic_i2c.getI2CDriver() .
Users should use the default I C driver and leave this field blank.

Output: Boolean
True: Connected to I C device on the default (or specified) address.
False: No device found or connected.

Functions

2 2 2

2

2 2

2

2

https://github.com/sparkfun/Qwiic_I2C_Py

A function that is an attribute of the class, which defines a method for instances of that class. In simple terms, they
are objects for the operations (or methods) of the class.

.is_connected()

Determines if the BME280 device is connected to the system.

Output: Boolean
True: Connected to I C device on the default (or specified) address.
False: No device found or connected.

.begin()

Initialize the operation of the BME280 module with the following steps:

Checks/Validates BME280 chip ID
Reads compensation data
Sets default settings from table
Sets operational mode to Normal Mode

Output: Boolean
True: The initialization was successful.
False: Invalid chip ID.

.set_mode(mode)

Sets the operational mode of the sensor. .mode is also a property that can be set with the instance variables:
MODE_SLEEP , MODE_FORCED , or MODE_NORMAL . (For more details, see section 3.3 of the datasheet.)

Input: value
0: Sleep Mode
1: Forced Mode
2: Normal Mode

.get_mode()

Returns the operational mode of the sensor.

Output: integer
0: Sleep Mode
1: Forced Mode
2: Normal Mode

.set_standby_time(timeSetting)

Sets the standby time of the cycle time. (For more details, see section 3.3 and Table 27 of the datasheet.)

Input: value
0: 0.5ms
1: 62.5ms
2: 125ms
3: 250ms
4: 500ms
5: 1000ms
6: 10ms
7: 20ms

.set_filter(filterSetting)

Sets the time constant of the IIR filter, which slows down the response time of the sensor inputs based on the
number of samples required. (For more details, see section 3.4.4, Table 6, and Figure 7 of the datasheet.)

2

https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf

Input: value
0: filter off
1: coefficient of 2
2: coefficient of 4
3: coefficient of 8
4: coefficient of 16

.set_tempature_oversample(overSampleAmount)

Sets the oversampling option (osrs_t) for the temperature measurements. (Directly influences the noise and
resolution of the data.)

Input: value
0: turns off temperature sensing
1: oversampling ×1
2: oversampling ×2
4: oversampling ×4
8: oversampling ×8
16: oversampling ×16
Other: Bad Entry, sets to oversampling ×1 by default.

Note: Yes, we do know there is a spelling error in the name of the method. It will get corrected in the next
library update.

.set_pressure_oversample(overSampleAmount)

Sets the oversampling option (osrs_p) for the pressure measurements. (Directly influences the noise and
resolution of the data.)

Input: value
0: turns off pressure sensing
1: oversampling ×1
2: oversampling ×2
4: oversampling ×4
8: oversampling ×8
16: oversampling ×16
Other: Bad Entry, sets to oversampling ×1 by default.

.set_humidity_oversample(overSampleAmount)

Sets the oversampling option (osrs_h) for the humidity measurements. (Directly influences the noise of the data.)

Input: value
0: turns off humidity sensing
1: oversampling ×1
2: oversampling ×2
4: oversampling ×4
8: oversampling ×8
16: oversampling ×16
Other: Bad Entry, sets to oversampling ×1 by default.

.is_measuring()

Checks the measuring bit of the status register for if the device is taking measurement.

Output: Boolean
True: A conversion is running.
False: The results have been transferred to the data registers.

.reset()

Soft resets the sensor. (If called, the begin method must be called before using the sensor again.)

.read_pressure()

Reads raw pressure data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns pressure in Pa.

.read_humidity()

Reads raw humidity data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns humidity in %RH.

.get_temperature_celsius()

Reads raw temperature data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns temperature in Celsius.

.get_temperature_fahrenheit()

Reads raw temperature data stored in register and applies output compensation (For more details on the data
compensation, see section 4.2 of the datasheet.)

Output: float
Returns temperature in Fahrenheit.

Python Example Code
The following examples are available in the GitHub repository. To run the examples, simple download or copy the
code into a file. Then, open/save the example file (if needed) and execute the code in your favorite Python IDE.

For example, with the default Python IDLE click Run > Run Module or use the F5 key. To terminate the example
use the Ctrl + C key combination.

Note: Yes, there is an altitude_feet function in the library that is available. However, that content is
omitted from the Library Overview section due to the amount of confusion that was generated with the
previous hookup guide. Some users were misinterpreting the reported "altitude" from the function as an exact
value; when it actually is calculated from the (barometric) pressure measurement to report the equivalent
pressure altitude based on an atmospheric model. If you want more details on this subject, look into how an
altimeter works.

Example 1

https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://github.com/sparkfun/Qwiic_BME280_Py/tree/master/examples
https://www.sparkfun.com/news/2706
https://learn.sparkfun.com/tutorials/sparkfun-bme280-breakout-hookup-guide
https://en.wikipedia.org/wiki/Pressure_altitude
https://en.wikipedia.org/wiki/Reference_atmospheric_model
https://en.wikipedia.org/wiki/Altimeter

This example uses the default configuration settings for the sensor. The temperature (°F), humidity (%RH),
pressure (Pa), and calculated pressure altitude (ft.) are reported repeatedly.

#!/usr/bin/env python
#---
qwiic_env_bme280_ex1.py
#
Simple Example for the Qwiic BME280 Device
#--
#
Written by SparkFun Electronics, May 2019

This python library supports the SparkFun Electroncis qwiic
qwiic sensor/board ecosystem on a Raspberry Pi (and compatable) single
board computers.
#
More information on qwiic is at https://www.sparkfun.com/qwiic
#
Do you like this library? Help support SparkFun. Buy a board!
#
#==
Copyright (c) 2019 SparkFun Electronics
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#==
Example 1

from __future__ import print_function
import qwiic_bme280
import time
import sys

def runExample():

 print("\nSparkFun BME280 Sensor Example 1\n")
 mySensor = qwiic_bme280.QwiicBme280()

 if mySensor.connected == False:
 print("The Qwiic BME280 device isn't connected to the system. Please check your connecti

on", \
 file=sys.stderr)
 return

 mySensor.begin()

 while True:
 print("Humidity:\t%.3f" % mySensor.humidity)

 print("Pressure:\t%.3f" % mySensor.pressure)

 print("Altitude:\t%.3f" % mySensor.altitude_feet)

 print("Temperature:\t%.2f" % mySensor.temperature_fahrenheit)

 print("")

 time.sleep(1)

if __name__ == '__main__':
 try:
 runExample()
 except (KeyboardInterrupt, SystemExit) as exErr:
 print("\nEnding Example 1")
sys.exit(0)

Expected readout from Example 1.

Experiment 4

This example configures the settings for the sensor before the temperature (°F), humidity (%RH), pressure (Pa),
and calculated pressure altitude (ft.) are reported repeatedly.

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_exp1.gif

#!/usr/bin/env python
#---
qwiic_env_bme280_ex4.py
#
Simple Example for the Qwiic BME280 Device
#--
#
Written by SparkFun Electronics, May 2019

This python library supports the SparkFun Electroncis qwiic
qwiic sensor/board ecosystem on a Raspberry Pi (and compatable) single
board computers.
#
More information on qwiic is at https:# www.sparkfun.com/qwiic
#
Do you like this library? Help support SparkFun. Buy a board!
#
#==
Copyright (c) 2019 SparkFun Electronics
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#==
Example 4 - port of the Arduino example 4

from __future__ import print_function
import qwiic_bme280
import time
import sys

def runExample():

 print("\nSparkFun BME280 Sensor Example 4\n")
 mySensor = qwiic_bme280.QwiicBme280()

 if mySensor.connected == False:
 print("The Qwiic BME280 device isn't connected to the system. Please check your connecti
on" \

on , \
 file=sys.stderr)
 return

 mySensor.begin()

 # setup the sensor
 mySensor.filter = 1 # 0 to 4 is valid. Filter coefficient. See 3.4.4
 mySensor.standby_time = 0 # 0 to 7 valid. Time between readings. See table 27.

 mySensor.over_sample = 1 # 0 to 16 are valid. 0 disables temp sensing. See table
 24.
 mySensor.pressure_oversample = 1 # 0 to 16 are valid. 0 disables pressure sensing. See ta
ble 23.
 mySensor.humidity_oversample = 1 # 0 to 16 are valid. 0 disables humidity sensing. See ta
ble 19.
 mySensor.mode = mySensor.MODE_NORMAL # MODE_SLEEP, MODE_FORCED, MODE_NORMAL is valid. See 3.
3

 while True:
 print("Humidity:\t%.3f" % mySensor.humidity)

 print("Pressure:\t%.3f" % mySensor.pressure)

 print("Altitude:\t%.3f" % mySensor.altitude_feet)

 print("Temperature:\t%.2f\n" % mySensor.temperature_fahrenheit)

 time.sleep(1)

if __name__ == '__main__':
 try:
 runExample()

 except (KeyboardInterrupt, SystemExit) as exErr:
 print("\nEnding Example 4")
sys.exit(0)

Expected readout from Example 4.

Experiment 5

This last example reports configuration the settings and calibration values from the memory map. Then, the
temperature (°F), humidity (%RH), pressure (Pa), and calculated pressure altitude (ft.) are reported repeatedly.

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_exp4.gif

#!/usr/bin/env python
#---
qwiic_env_bme280_ex5.py
#
Simple Example for the Qwiic BME280 Device
#--
#
Written by SparkFun Electronics, May 2019

This python library supports the SparkFun Electroncis qwiic
qwiic sensor/board ecosystem on a Raspberry Pi (and compatable) single
board computers.
#
More information on qwiic is at https:# www.sparkfun.com/qwiic
#
Do you like this library? Help support SparkFun. Buy a board!
#
#==
Copyright (c) 2019 SparkFun Electronics
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
#==
Example 5 - port of the Arduino example 5

from __future__ import print_function
import qwiic_bme280
import time
import sys

def runExample():

 print("\nSparkFun BME280 Sensor Example 5\n")
 mySensor = qwiic_bme280.QwiicBme280()

 if mySensor.connected == False:
 print("The Qwiic BME280 device isn't connected to the system. Please check your connecti

on", \
 file=sys.stderr)
 return

 mySensor.begin()

 print("ID(0xD0): 0x%.2x" % mySensor._i2c.readByte(mySensor.address, mySensor.BME280_CHIP_ID_
REG))
 print("Reset register(0xE0): 0x%.2x" % mySensor._i2c.readByte(mySensor.address, mySensor.BME
280_RST_REG))
 print("ctrl_meas(0xF4): 0x%.2x" % mySensor._i2c.readByte(mySensor.address, mySensor.BME280_C
TRL_MEAS_REG))
 print("ctrl_hum(0xF2): 0x%.2x\n" % mySensor._i2c.readByte(mySensor.address, mySensor.BME280_
CTRL_HUMIDITY_REG))

 print("Displaying all regs:")
 memCounter = 0x80
 for row in range(8,16):
 print("0x%.2x 0:" % row, end='')
 for column in range(0,16):
 tempReadData = mySensor._i2c.readByte(mySensor.address, memCounter)
 print("0x%.2x " % tempReadData, end='')

 memCounter += 1
 print("")

 print("Displaying concatenated calibration words:")
 print("dig_T1, uint16: %d" % mySensor.calibration["dig_T1"])
 print("dig_T2, int16: %d" % mySensor.calibration["dig_T2"])
 print("dig_T3, int16: %d" % mySensor.calibration["dig_T3"])
 print("dig_P1, uint16: %d" % mySensor.calibration["dig_P1"])
 print("dig_P2, int16: %d" % mySensor.calibration["dig_P2"])
 print("dig_P3, int16: %d" % mySensor.calibration["dig_P3"])
 print("dig_P4, int16: %d" % mySensor.calibration["dig_P4"])
 print("dig_P5, int16: %d" % mySensor.calibration["dig_P5"])
 print("dig_P6, int16: %d" % mySensor.calibration["dig_P6"])
 print("dig_P7, int16: %d" % mySensor.calibration["dig_P7"])
 print("dig_P8, int16: %d" % mySensor.calibration["dig_P8"])
 print("dig_P9, int16: %d" % mySensor.calibration["dig_P9"])
 print("dig_H1, uint8: %d" % mySensor.calibration["dig_H1"])
 print("dig_H2, int16: %d" % mySensor.calibration["dig_H2"])
 print("dig_H3, uint8: %d" % mySensor.calibration["dig_H3"])
 print("dig_H4, int16: %d" % mySensor.calibration["dig_H5"])
 print("dig_H6, int8: %d" % mySensor.calibration["dig_H6"])
 while True:

 print("Humidity:\t%.3f" % mySensor.humidity)

 print("Pressure:\t%.3f" % mySensor.pressure)

 print("Altitude:\t%.3f" % mySensor.altitude_feet)

 print("Temperature:\t%.2f\n" % mySensor.temperature_fahrenheit)

 time.sleep(1)

if __name__ == '__main__':
 try:
 runExample()
 except (KeyboardInterrupt, SystemExit) as exErr:
 print("\nEnding Example 5")
sys.exit(0)

Expected readout from Example 5.

Troubleshooting Tips
Here are a few tips for troubleshooting this device.

Power

If you are not using the Qwiic system, make sure your supply voltage is within the electrical specifications of the
BME280.

No Available Devices

Double check your connections. On a Raspberry Pi, you may get this is indicated with an OSError: [Errno 121]
Remote I/O error readout.

On a Raspberry Pi, also make sure that the I C hardware is enabled. This is usually indicated with an Error:
Failed to connect to I2C bus 1. readout.

SPI Setup

As mentioned earlier, this tutorial does not go into detail about using an SPI connection as the Python library can
only be used with an I C connection. However, for users seeking an SPI setup, they can refer to the hookup guide
for the original BME280 Sensor Breakout board.

If you still have questions or issues with this product, please create a post on our forum under the
Qwiic Atmospheric Sensor (SEN-15440): Questions and Issues topic.

2

2

https://cdn.sparkfun.com/assets/learn_tutorials/9/2/9/BME280_exp5.gif
https://learn.sparkfun.com/tutorials/sparkfun-bme280-breakout-hookup-guide
https://www.sparkfun.com/products/13676
https://forum.sparkfun.com/index.php
https://forum.sparkfun.com/viewtopic.php?f=74&t=50691

Resources and Going Further
For more product information, check out the resources below:

Schematic (PDF)
Eagle Files (ZIP)
BME280 Datasheet
SparkFun BME280 Arduino Library
SparkFun BME280 Python Library
GitHub Product Repo
Product Video

Need some inspiration for your next project? Check out some of these other Qwiic product tutorials:

Need some inspiration for your next project? Check out some of these other weather related tutorials:

SparkFun LoRa Gateway 1-Channel Hookup
Guide
How to setup and use the LoRa Gateway 1-Channel in
Arduino.

RedBoard Turbo Hookup Guide
An introduction to the RedBoard Turbo. Level up your
Arduino-skills with the powerful SAMD21 ARM Cortex
M0+ processor!

Qwiic Proximity Sensor (VCNL4040) Hookup
Guide
The SparkFun Qwiic Proximity Sensor is a great,
qualitative proximity (up to 20 cm) and light sensor.
This hookup guide covers a few examples to retrieve
basic sensor readings.

SparkFun 9DoF IMU (ICM-20948) Breakout
Hookup Guide
How to use the SparkFun 9DoF ICM-20948 breakout
board for your motion sensing projects. This breakout
is ideal for wearable sensors and IoT applications.

https://cdn.sparkfun.com/assets/0/9/6/b/4/Qwiic_BME280_Schematic_attempt2.pdf
https://cdn.sparkfun.com/assets/7/e/6/e/c/Qwiic_Atmospheric_Sensor__BME280_.zip
https://cdn.sparkfun.com/assets/e/7/3/b/1/BME280_Datasheet.pdf
https://github.com/sparkfun/SparkFun_BME280_Arduino_Library
https://github.com/sparkfun/Qwiic_BME280_Py
https://github.com/sparkfun/Qwiic_Atmospheric_Sensor_Breakout_BME280
https://youtu.be/l9xFrEx5S8E
https://learn.sparkfun.com/tutorials/sparkfun-lora-gateway-1-channel-hookup-guide
https://learn.sparkfun.com/tutorials/redboard-turbo-hookup-guide
https://learn.sparkfun.com/tutorials/qwiic-proximity-sensor-vcnl4040-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-9dof-imu-icm-20948-breakout-hookup-guide
https://learn.sparkfun.com/tutorials/t5403-barometric-pressure-sensor-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-for-photon-experiment-guide

T5403 Barometric Pressure Sensor Hookup
Guide
T5403 Barometric Pressure Sensor Hookup Guide

SparkFun Inventor's Kit for Photon Experiment
Guide
Dive into the world of the Internet of Things with the
SparkFun Inventor's Kit for Photon.

Photon Weather Shield Hookup Guide V11
Create Internet-connected weather projects with the
SparkFun Weather Shield for the Photon.

Spectral Triad (AS7265x) Hookup Guide
Learn how to wield the power of 18 channels of UV to
NIR spectroscopy with AS72651 (UV), AS72652 (VIS),
and AS72653 (NIR) sensors!

Want more Python?
We are working on more tutorials, blogs, and product releases around the Python programming
language.

Would you like to be notified when new content is available?

Email*

Would you also like to subscribe to SparkFun's weekly newsletter?

https://learn.sparkfun.com/tutorials/t5403-barometric-pressure-sensor-hookup-guide
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-for-photon-experiment-guide
https://learn.sparkfun.com/tutorials/photon-weather-shield-hookup-guide-v11
https://learn.sparkfun.com/tutorials/spectral-triad-as7265x-hookup-guide

Yes, sign me up!

