

RP105x Series

Low Voltage 400 mA LDO Regulator

No. EA-179-221027

OUTLINE

The RP105x is a 400 mA output type CMOS-based voltage regulator with capability of low input voltage (Min. 0.9 V) and low output voltage (Min. 0.6 V). This device is remarkably improved the performance at low input voltage compared with conventional low voltage LDOs, and two power supply voltage type. (Another power source, V_{BIAS} pin voltage must be Min. 2.4 V). The device consists of a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit to avoid the destruction, a UVLO circuit with monitoring input voltage, and so on.

The RP105x has the ultra-low on resistance output driver, the on resistance is Typ. 0.4 Ω (V_{OUT} = 0.8 V, I_{OUT} = 300 mA). The built-in driver is Nch MOSFET, thus the load transient response is excellent, (under the condition of the current between 1 mA and 400 mA, tr = 0.5 μ s, the undershoot level is approximately 50 mV). The output voltage of this device is fixed with high accuracy. Since the packages for the device are DFN(PL)1212-6, DFN1212-5, SOT-23-5 and SC-88A therefore high density mounting of the IC on boards is possible.

FEATURES

Supply Current	Тур. 28 μА
Standby Current	Τур. 0.1 μA
Ripple Rejection	Typ. 80 dB (f = 1 kHz, V _{IN} Ripple)
	Typ. 50 dB (f = 1 kHz, V _{BIAS} Ripple)
Output Voltage Range	0.6 V to 1.5 V (0.1 V step)
	For other voltages, refer to MARKING SPECIFICATION
Input Voltage Range (VBIAS)	2.4 V to 5.25 V (Vout < 0.8 V)
	Set Vou⊤ + 1.6 V to 5.25 V (Vou⊤ ≥ 0.8 V)
Input Voltage Range (V _{IN})	RP105xxxxB/D: 0.9 V to V _{BIAS} (V _{OUT} < 0.8 V)
	Set V _{OUT} + 0.1 V to V _{BIAS} (V _{OUT} \ge 0.8 V
	RP105xxxxE/F: 0.9 V to V _{BIAS}
Output Voltage Accuracy	Typ. ±15 mV (Ta = 25°C)
Temperature-Drift Coefficient of Output Vo	oltageTyp. ±50 ppm/°C
Dropout Voltage	DFN1212-5: Typ. 105 mV
	(I _{OUT} = 400 mA, V _{OUT} = 1.5 V, V _{BIAS} = 3.6 V)
Line Regulation	Typ. 0.02%/V
Packages	DFN(PL)1212-6, SC-88A, SOT-23-5, DFN1212-5
Built-in Fold Back Protection Circuit	Typ. 120 mA (Current at short mode)
	$C_{\text{BIAS}} = C_{\text{IN}} = 1.0 \ \mu\text{F}$ or more, $C_{\text{OUT}} = 2.2 \ \mu\text{F}$ or more

APPLICATIONS

- Power source for battery-powered equipment.
- Power source for electrical appliances such as cameras, VCRs and camcorders.
- Power source for portable communication equipment.

SELECTION GUIDE

The output voltage, the UVLO circuit, the auto-discharge function⁽¹⁾, the package, and the taping type for the device are user-selectable options.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP105Kxx1*-TR	DFN(PL)1212-6	5,000 pcs	Yes	Yes
RP105Qxx2*-TR-FE ⁽²⁾	SC-88A	3,000 pcs	Yes	Yes
RP105Nxx1*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes
RP105Lxx1*-TR	DFN1212-5	5,000 pcs	Yes	Yes

xx : The set output voltage (V_{SET}) can be designated within the range of 0.6 V (06) to 1.5 V (15) in 0.1 V step.

If the set output voltage (V_{SET}) is designated in 0.01 V step, indicate the product name as follows. 1.05 V: RP105x10x*5-TR

- * : CE pin polarity and auto-discharge function of the product can be defined as follows.
 - (B) "H" active, auto-discharge function is not included, UVLO is included
 - (D) "H" active, auto-discharge function is included, UVLO is included
 - (E) "H" active, auto-discharge function is not included, UVLO is not included

(F) "H" active, auto-discharge function is included, UVLO is not included

BLOCK DIAGRAMS

RP105xxxxB/E Block Diagram

RP105xxxxD/F Block Diagram

 ⁽¹⁾ Auto-discharge function quickly lowers the output voltage to 0 V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor.
⁽²⁾ RP105Qxx2*-TR-FE supports only RP105Qxx2B/D.

4

3

(mark side)

2

SC-88A

Pin Configuration

5

1

No. EA-179-221027

5

1

(mark side)

2

SOT-23-5

Pin Configuration

3

PIN DESCRIPTIONS

DFN(PL)1212-6 Pin Configuration

DFN1212-5 Pin Configuration

DFN(PL)1212-6 Pin Description

Pin No	Symbol	Pin Description
1	VBIAS	Input Pin 1
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	VIN	Input Pin 2
5	NC	No Connection
6	V _{OUT}	Output Pin

SC-88A Pin Description

Pin No	Symbol	Pin Description
1	V _{BIAS}	Input Pin 1
2	GND	Ground Pin
3	Vout	Output Pin
4	VIN	Input Pin 2
5	CE	Chip Enable Pin ("H" Active)

SOT-23-5 Pin Description

Pin No	Symbol	Pin Description				
1	VIN	Input Pin 2				
2	GND	Ground Pin				
3	CE	Chip Enable Pin ("H" Active)				
4	V _{BIAS}	Input Pin 1				
5	Vout	Output Pin				

DFN1212-5 Pin Description

Pin No	Symbol	Pin Description				
1	Vout	Output Pin				
2	VBIAS	Input Pin 1				
3	CE	Chip Enable Pin ("H" Active)				
4	VIN	Input Pin 2				
5	GND	Ground Pin				

ABSOLUTE MAXIMUM RATINGS

Aboslute Maximum Ratings

Symbol		ltem	Rating	Unit	
VBIAS	Input Voltage		6.0	V	
V _{IN}	Input Voltage ((for Driver)		-0.3 to V _{BIAS} + 0.3	V
VCE	Input Voltage ((CE Pin)		6.0	V
Vout	Output Voltage	Э	-0.3 to V _{IN} + 0.3	V	
IOUT	Output Curren	t	500	mA	
		DFN(PL)1212-6	JEDEC STD. 51-7 Test Land Pattern	450	
	Power Dissipation ⁽¹⁾	SC-88A	Standard Test Land Pattern	380	
PD		SOT-23-5	JEDEC STD. 51-7 Test Land Pattern	660	mW
		DFN1212-5	JEDEC STD. 51-7 Test Land Pattern	560	
Tj	Junction Temp	perature Range		-40 to 125	°C
Tstg	Storage Temp	erature Range		-55 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	ltem	Rating	Unit	
VBIAS		2.4 to 5.25	V	
	Input Voltage Denge	0.9 to V _{BIAS}	V	
VIN	Input Voltage Range	V _{SET} + 0.1 to V _{BIAS}	V	
		(RP105xxxxB/D and when V _{SET} ≥ 0.8 V)	v	
Та	Operating Temperature Range	-40 to 85	°C	

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

(1) Refer to POWER DISSIPATION for detailed information.

ELECTRICAL CHARACTERISTICS

 $V_{\text{BIAS}} = V_{\text{CE}} = 3.6 \text{ V}, V_{\text{IN}} = \text{Set } V_{\text{OUT}} + 0.5 \text{ V}, I_{\text{OUT}} = 1 \text{ mA}, C_{\text{BIAS}} = C_{\text{IN}} = 1.0 \mu\text{F}, C_{\text{OUT}} = 2.2 \mu\text{F}, \text{ unless otherwise noted}.$ The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 85^{\circ}C$.

RP105x						(Та	= 25°C)		
Symbol	Item	Condi	Min.	Тур.	Max.	Unit			
		Ta = 25°C		Set V _{OUT} −15 mV		Set V _{оυт} + 15 mV	V		
V _{OUT} Output Voltage	-40°C ≤ Ta ≤ 85	5°C	Set V _{OUT} -20 mV		Set V _{оυт} + 20 mV	V			
Іоит	Output Current			400			mA		
ΔV out	Load Regulation (K, Q, N package)	1 mA ≤ I _{OUT} ≤ 4()0 mA		30	50	mV		
/∆I _{OUT}	Load Regulation (L package)	$1 \text{ mA} \le I_{OUT} \le 40$		15	35	mV			
VDIF	Dropout Voltage	Refer to PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTIC							
lss	Supply Current	І _{оит} = 0 mA		28	40	μA			
Istandby	Standby Current	V _{CE} = 0 V		0.1	3.0	μA			
	Lizz De mulation	$2.4 \text{ V} \leq \text{V}_{\text{BIAS}} \leq 5$		0.02	0.1	%/V			
$/\Delta V_{IN}$	Line Regulation	Set Vout + 0.3 V		0.02	0.1	70/ V			
RR	Dinale Deigetian	I _{0UT} = 30 mA, f = V _{IN} Ripple 0.2 V		80		dB			
ĸĸ	Ripple Rejection	I _{OUT} = 30 mA, f = V _{BIAS} Ripple 0.2		50		uБ			
		V _{OUT} < 0.8 V		2.4		5.25			
VBIAS	Input Voltage ⁽¹⁾	V _{OUT} ≥ 0.8 V		Set V _{OUT} + 1.6		5.25	V		
			V _{OUT} < 0.8 V	0.9		VBIAS			
Vin	Input Voltage (for Driver) ⁽¹⁾	RP105xxxxB/D	V _{OUT} ≥ 0.8 V	Set V _{OUT} + 0.1		VBIAS	v		
		RP105xxxxE/F	0.9		VBIAS				
ΔV _{OUT} /ΔTa	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 85	5°C		±50		ppm /°C		
Isc	Short Current Limit	V _{OUT} = 0 V			120		mA		
ICEPD	CE Pull-down Current				1.0		μA		

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C) except Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient.

⁽¹⁾ The maximum Input Voltage listed under Electrical Characteristics is 5.25 V. If for any reason the input voltage exceeds 5.25 V, it has to be no more than 5.5 V with 500 hours of the total operating time.

ELECTRICAL CHARACTERISTICS (continued)

 $V_{BIAS} = V_{CE} = 3.6 \text{ V}, V_{IN} = \text{Set } V_{OUT} + 0.5 \text{ V}, I_{OUT} = 1 \text{ mA}, C_{BIAS} = C_{IN} = 1.0 \mu\text{F}, C_{OUT} = 2.2 \mu\text{F}, \text{ unless otherwise noted}.$ The specifications surrounded by are guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Ta} \le 85^{\circ}\text{C}.$

RP105x

(Ta = 25°C)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VCEH	CE Input Voltage "H"		0.8			V
VCEL	CE Input Voltage "L"				0.3	V
VIN UVLO	V _{IN} Under Voltage Lock Out (only RP105xxxxB/D)	Ιουτ = 1.0 μΑ		Set V _{OUT} + 50 mV	Set V _{OUT} + 100 mV	V
tdelay	Detector Delay Time (only RP105xxxxB/D)			100		μS
en	Output Noise	BM = 10 Hz to 100 kHz I _{OUT} = 30 mA, Set V _{OUT} = 0.6 V		70		μVrms
RLOW	Nch On Resistance For auto-discharge (only RP105xxxxD/F)	V _{BIAS} = 3.6 V, V _{CE} = "L"		50		Ω

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except Output Noise, Ripple Rejection and Output Voltage Temperature Coefficient.

PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS

DFN(PL)1212-6, SC-88A, SOT-23-5

The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 85^{\circ}C$

Dropout Voltage

Set Veur (V)			VDIF (IOUT =	300 mA) (V)	V _{DIF} (I _{OUT} = 400 mA) (V)		
Set Vout (V)	VBIAS (V)	V _{GS} (V)	Тур.	Max.	Тур.	Max.	
0.6	3.6	3.0	0.115	0.180	0.180	0.320	
0.7	3.6	2.9	0.120	0.190	0.180	0.320	
0.8	3.6	2.8	0.120	0.120 0.190 0.180		0.300	
0.9	3.6	2.7	0.120	0.190	0.180	0.300	
1.0	3.6	2.6	0.120	0.190	0.180	0.280	
1.1	3.6	2.5	0.120	0.190	0.180	0.280	
1.2	3.6	2.4	0.130	0.200	0.180	0.280	
1.3	3.6	2.3	0.130	0.200	0.180	0.260	
1.4	3.6	2.2	0.130	0.200	0.180	0.260	
1.5	3.6	2.1	0.130	0.200	0.180	0.260	

Dropout Voltage (V_{GS} (V), V_{DIF} (V), I_{OUT} = 200 mA)

(Ta = 25°C)

	V _{BIAS} = 2.5 V		V _{BIAS} = 3.0 V		VBIAS =	V _{BIAS} = 3.3 V		V _{BIAS} = 3.6 V		= 4.2 V	V _{BIAS} = 5.0 V	
Set Vout (V)	V _{GS} (V)	V _{DIF} (V)	V _{GS} (V)	V _{DIF} (V)	V _{GS} (V)	V _{DIF} (V)	V _{GS} (V)	V _{DIF} (V)	V _{GS} (V)	V _{DIF} (V)	V _{GS} (V)	V _{DIF} (V)
0.6	1.9	-	2.4	-	2.7	-	3.0	-	3.6	-	4.4	-
0.7	1.8	-	2.3	-	2.6	-	2.9	-	3.5	-	4.3	-
0.8	1.7	0.098	2.2	0.093	2.5	0.093	2.8	0.092	3.4	0.092	4.2	0.092
0.9	1.6	0.098	2.1	0.094	2.4	0.093	2.7	0.092	3.3	0.092	4.1	0.092
1.0			2.0	0.094	2.3	0.093	2.6	0.092	3.2	0.092	4.0	0.092
1.1			1.9	0.096	2.2	0.094	2.5	0.094	3.1	0.093	3.9	0.093
1.2			1.8	0.098	2.1	0.096	2.4	0.095	3.0	0.095	3.8	0.094
1.3			1.7	0.098	2.0	0.096	2.3	0.095	2.9	0.095	3.7	0.095
1.4			1.6	0.098	1.9	0.096	2.2	0.095	2.8	0.095	3.6	0.095
1.5					1.8	0.096	2.1	0.095	2.7	0.095	3.5	0.095

All of units are tested and specified under load conditions such that $Tj \approx Ta = 25^{\circ}C$ except for Output Noise, Ripple <u>Rejection</u> and Output Voltage Temperature Coefficient items.

 \bigvee V_{BIAS} pin voltage must be equal or more than Set V_{OUT} + 1.6 V.

DFN1212-5

The specifications surrounded by \Box are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 85^{\circ}C$

Dropout Voltage

			VDIF (IOUT =	300 mA) (V)	VDIF (IOUT = 400 mA) (V)	
Set Vout (V)	et Vout (V) VBIAS (V)	V _G s (V)	Тур.	Max.	Тур.	Max.
0.6	3.6	3.0	-	-	-	-
0.7	3.6	2.9	-	-	-	-
0.75	3.6	2.85	-	-	-	0.170
0.8	3.6	2.8	0.077	0.130	0.105	0.170
0.9	3.6	2.7	0.077	0.130	0.105	0.170
0.95	3.6	2.65	0.077	0.130	0.105	0.170
1.0	3.6	2.6	0.077	0.130	0.105	0.170
1.05	3.6	2.55	0.077	0.130	0.105	0.170
1.1	3.6	2.5	0.077	0.130	0.105	0.170
1.2	3.6	2.4	0.077	0.130	0.105	0.170
1.3	3.6	2.3	0.077	0.130	0.105	0.170
1.4	3.6	2.2	0.077	0.130	0.105	0.170
1.5	3.6	2.1	0.077	0.130	0.105	0.170

Dropout Voltage (VGs (V), VDIF (V), IOUT = 200 mA)

(Ta = 25°C)

		= 2.5 V		= 3.0 V	VBIAS =	= 3.3 V	VBIAS =	= 3.6 V	VBIAS =	= 4.2 V	VBIAS :	= 5.0 V
Set Vout (V)	V _{GS} (V)	V _{DIF} (V)										
0.6	1.9	-	2.4	-	2.7	-	3.0	-	3.6	-	4.4	-
0.7	1.8	-	2.3	-	2.6	-	2.9	-	3.5	-	4.3	-
0.75	1.75	-	2.25	-	2.55	-	2.85	-	3.45	-	4.25	-
0.8	1.7	-	2.2	-	2.5	-	2.8	-	3.4	-	4.2	-
0.9	1.6	0.059	2.1	0.054	2.4	0.053	2.7	0.051	3.3	0.050	4.1	0.048
0.95			2.05	0.054	2.35	0.053	2.65	0.051	3.25	0.050	4.05	0.048
1.0			2.0	0.054	2.3	0.053	2.6	0.051	3.2	0.050	4.0	0.048
1.05			1.95	0.054	2.25	0.053	2.55	0.051	3.15	0.050	3.95	0.048
1.1			1.9	0.054	2.2	0.053	2.5	0.051	3.1	0.050	3.9	0.048
1.2			1.8	0.054	2.1	0.053	2.4	0.051	3.0	0.050	3.8	0.048
1.3	\square		1.7	0.054	2.0	0.053	2.3	0.051	2.9	0.050	3.7	0.048
1.4			1.6	0.054	1.9	0.053	2.2	0.051	2.8	0.050	3.6	0.048
1.5					1.8	0.053	2.1	0.051	2.7	0.050	3.5	0.048

All of units are tested and specified under load conditions such that $Tj \approx Ta = 25^{\circ}C$ except for Output Noise, Ripple <u>Rejection</u> and Output Voltage Temperature Coefficient items.

VBIAS pin voltage must be equal or more than Set Vout + 1.6 V.

APPLICATION INFORMATION

TYPICAL APPLICATION

External Components

Symbol	Descriptions
Cout	2.2 μF, Ceramic Capacitor, GRM155B30J225ME15, MURATA
CBIAS, CIN	1.0 μF, Ceramic Capacitor, GRM155B31A105KE15, MURATA

TECHNICAL NOTES

UVLO (Undervoltage Lockout)

In RP105xxxxB/D, UVLO detects and turns off the output when the input voltage V_{IN} drops lower than or equal to V_{SET} + 50 mV (Typ.) while CE = "H". Since RP105xxxxE/F does not have UVLO, it continues to output even if V_{IN} drops to V_{SET} + 50 mV (Typ.) or lower.

When V_{IN} drops below the set output voltage V_{SET}, UVLO does not turn off the output in RP105xxxxE/F while CE = "H", therefore the current flows from V_{BIAS} pin to V_{IN} pin via the inside IC. This will not be generated in RP105xxxxB/D since UVLO turns off the output when V_{IN} is lower than or equal to V_{SET} + 50 mV (Typ).

Phase Compensation

In this device, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a capacitor for C_{OUT} with the capacity of equal or more than 2.2 μ F.

If tantalum capacitors are connected as C_{OUT} , and if the equivalent series resistance (ESR) value is large, the operation might be unstable. Because of this, test the device with as same external components as ones to be used on the PCB.

PCB Layout

Make V_{BIAS} , V_{IN} , and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor with a capacitance value as much as 1.0 μ F or more between V_{BIAS} pin and GND, between V_{IN} pin and GND, and as close as possible to the pins.

Set external components, especially the output capacitor, as close as possible to the device, and make wiring as short as possible. V_{IN} source is supposed to be the output of the DC/DC converter. The value should be equal or lower than V_{BIAS} voltage.

TYPICAL CHARACTERISTICS

 Output Current IOUT (mA)

Nisshinbo Micro Devices Inc.

 Output Current IOUT (mA)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0 100

Output Voltage Vour (V)

No. EA-179-221027

900 1000

VBIAS=3.6V

RP105x15xx

500

Output Current IOUT (mA)

700

VIN=1.76V VIN=2.0V

VIN=3.6V

300

2) Output Voltage vs. Input Voltage (C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, Ta = 25°C)

Nisshinbo Micro Devices Inc.

RP105x10xB/D RP105x15xB/D VBIAS=5.25V VBIAS=2.4V 1.2 1.6 1.4 Output Voltage Vour (V) Output Voltage Vour (V) 1.0 1.2 0.8 1.0 0.6 0.8 IOUT=1mA lout=1mA 0.6 0.4 - IOUT=30mA IOUT=30mA IOUT=50mA 0.4 - Iоит=50mA 0.2 0.2 0 0 0 0.5 5.25 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 1.5 2.5 3.5 4.5 Input Voltage VIN (V) Input Voltage VIN (V) RP105x15xB/D RP105x15xB/D VBIAS=3.6V VBIAS=5.25V 1.6 1.6 1.4 1.4 Output Voltage Vour (V) Output Voltage Vour (V) 1.2 1.2 1.0 1.0 0.8 0.8 Iout=1mA IOUT=1mA 0.6 0.6 IOUT=30mA IOUT=30mA lout=50mA lout=50mA 0.4 0.4 0.2 0.2 0 0 0 0.5 0 0.6 1.2 1.8 2.4 3.0 3.6 1.5 2.5 3.5 4.5 5.25 Input Voltage VIN (V) Input Voltage VIN (V) RP105x06xE/F RP105x06xE/F $V_{BIAS} = 2.4V$ $V_{BIAS} = 3.6V$ 0.7 0.7 0.6 0.6 Output Voltage V_{OUT} [] 0.0 0.4 0.3 0.0 1.0 0.1 Output Voltage V_{our} [V] 7.0 0.4 7.0 0.1 7.0 0.1 8.0 0.1 9.0 IOUT = 1mA IOUT = 1mA IOUT = 30mA IOUT = 30mA IOUT = 50mA IOUT = 50mA 0 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 0.5 1.5 2.5 3.5 0 2.4 0 2 3 1 Input Voltage V_{IN} [V] Input Voltage V_{IN} [V]

No. EA-179-221027

Nisshinbo Micro Devices Inc.

Nisshinbo Micro Devices Inc.

In RP105xxxxE/F, the current flows from V_{BIAS} pin to V_{IN} pin via the inside IC when the input voltage V_{IN} drops below the set output voltage V_{SET} .

4) Output Voltage vs. Temperature (C_{BIAS} = 1.0 μF, C_{IN} = C_{OUT} = 2.2 μF, I_{OUT} = 1 mA, V_{BIAS} = 3.6 V)

5) Supply Current vs. Temperature ($C_{BIAS} = C_{IN} = C_{OUT} = none, V_{BIAS} = 3.6 V$)

6) Dropout Voltage vs. Output Current ($C_{BIAS} = 1.0 \ \mu F$, $C_{IN} = C_{OUT} = 2.2 \ \mu F$)

7) Ripple Rejection vs. Input Bias Voltage (C_{OUT} = 2.2 μF, Ripple = 0.2 Vp-p, Ta = 25°C) RP105x10xx RP105x10xx

*RP105Q (SC-88A) is the discontinued product as of April, 2018.

No. EA-179-221027

9) Input Transient Response (Iout = 30 mA, Cout = 1.0 μ F, tr = tf = 5 μ s, Ta = 25°C)

RP105x06xx

10) Load Transient Response (V_{BIAS} = 3.6 V, C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, tr = tf = 0.5 μ s, Ta = 25°C)

Nisshinbo Micro Devices Inc.

11) Turn On Speed with CE pin (V_{BIAS} = 3.6 V, C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, Ta = 25°C)

*RP105Q (SC-88A) is the discontinued product as of April, 2018.

12) Turn Off Speed with CE Pin (V_{BIAS} = 3.6 V, C_{BIAS} = 1.0 μ F, C_{IN} = C_{OUT} = 2.2 μ F, Ta = 25°C)

Nisshinbo Micro Devices Inc.

No. EA-179-221027

13) Turn On Transient with V_{IN} pin (V_{BIAS} = 3.6 V, C_{BIAS} = 1.0 μ F, C_{IN} = none, C_{OUT} = 2.2 μ F, Ta = 25°C) RP105x06xx RP105x06xx

Nisshinbo Micro Devices Inc.

ESR vs. Output Current

Ceramic type output capacitor is recommended for this series; however, the other output capacitors with low ESR also can be used. The relations between I_{OUT} (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40 μ V (Avg.) are marked as the hatched area in the graph.

Measurement conditions

Frequency Band: 10 Hz to 2 MHz				
Temperature	: –40°C to 85°C			
Hatched Area	: Noise level is under 40 μV (Avg.)			
$C_{\text{BIAS}}, C_{\text{IN}}$: 1.0 μF			
Соит	: 2.2 μF			

POWER DISSIPATION

DFN(PL)1212-6

PD-DFN(PL)1212-6-(85 125)-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.2 mm × 14 pcs

Measurement Result

(Ta = 25°C, Tjmax = 125°C) Item **Measurement Result Power Dissipation** 450 mW Thermal Resistance (0ja) θja = 218°C/W Thermal Characterization Parameter (ψjt) ψjt = 105°C/W

θja: Junction-to-Ambient Thermal Resistance

wit: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

PACKAGE DIMENSIONS

DFN(PL)1212-6

DM-DFN(PL)1212-6-JE-B

UNIT: mm

i

DFN(PL)1212-6 Package Dimensions

PART MARKINGS

RP105K

MK-RP105K-JE-B

①②: Product Code … Refer to Part Marking List 3 4: Lot Number ··· Alphanumeric Serial Number

DFN(PL)1212-6 Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

RP105K Part Marking List

RP105KxxxB

Product Name	0 0	VSET
RP105K061B	A A	0.6 V
RP105K071B	A B	0.7 V
RP105K081B	A C	0.8 V
RP105K091B	A D	0.9 V
RP105K101B	ΑE	1.0 V
RP105K121B	AF	1.2 V
RP105K131B	AG	1.3 V
RP105K141B	AH	1.4 V
RP105K151B	A J	1.5 V
RP105K111B	AK	1.1 V

RP105KxxxD

Product Name	0 0	VSET
RP105K061D	ΒA	0.6 V
RP105K071D	ΒB	0.7 V
RP105K081D	ВC	0.8 V
RP105K091D	ΒD	0.9 V
RP105K101D	ΒE	1.0 V
RP105K121D	ΒF	1.2 V
RP105K131D	ΒG	1.3 V
RP105K141D	ΒH	1.4 V
RP105K151D	ΒJ	1.5 V
RP105K111D	ΒK	1.1 V

RP105KxxxE

Product Name	0 2	V _{SET}
RP105K061E	9 A	0.6 V
RP105K071E	9 B	0.7 V
RP105K081E	9 C	0.8 V
RP105K091E	9 D	0.9 V
RP105K101E	9 E	1.0 V
RP105K121E	9 F	1.2 V
RP105K131E	9 G	1.3 V
RP105K141E	9 H	1.4 V
RP105K151E	9 J	1.5 V
RP105K111E	9 K	1.1 V

RP105KxxxF		
Product Name	0 0	V _{SET}
RP105K061F	0 A	0.6 V
RP105K071F	0 B	0.7 V
RP105K081F	0 C	0.8 V
RP105K091F	0 D	0.9 V
RP105K101F	0 E	1.0 V
RP105K121F	0 F	1.2 V
RP105K131F	0 G	1.3 V
RP105K141F	0 H	1.4 V
RP105K151F	0 J	1.5 V
RP105K111F	0 K	1.1 V

POWER DISSIPATION

SC-88A

PD-SC-88A(85125)-JE-B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Standard Test Land Pattern	
Environment	Mounting on Board (Wind Velocity = 0 m/s)	
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)	
oard Dimensions	40 mm × 40 mm × 1.6 mm	
opper Ratio	Top Side: Approx. 50%	
	Bottom Side: Approx. 50%	
Through-holes	φ 0.5 mm × 44 pcs	

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

Item	Standard Test Land Pattern
Power Dissipation	380 mW
Thermal Resistance (θja)	θja = 263°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 75°C/W

 $\boldsymbol{\theta} ja:$ Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

SC-88A

DM-SC-88A-JE-A

UNIT: mm

SC-88A Package Dimensions

PART MARKINGS

RP105Q

MK-RP105Q-JBEC

①②③④: Product Code … Refer to *Part Marking List*⑤⑥: Lot Number … Alphanumeric Serial Number

SC-88A Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

RP105Q Part Marking List

RP105QxxxB		
Product Name	0234	VSET
RP105Q062B	E 0 0 1	0.6 V
RP105Q072B	E 0 0 2	0.7 V
RP105Q082B	E 0 0 3	0.8 V
RP105Q092B	E 0 0 4	0.9 V
RP105Q102B	E 0 0 5	1.0 V
RP105Q122B	E 0 0 6	1.2 V
RP105Q132B	E 0 0 7	1.3 V
RP105Q142B	E 0 0 8	1.4 V
RP105Q152B	E 0 0 9	1.5 V
RP105Q112B	E 0 1 0	1.1 V

RP105QxxxD		
Product Name	1234	VSET
RP105Q062D	F 0 0 1	0.6 V
RP105Q072D	F 0 0 2	0.7 V
RP105Q082D	F 0 0 3	0.8 V
RP105Q092D	F 0 0 4	0.9 V
RP105Q102D	F005	1.0 V
RP105Q122D	F006	1.2 V
RP105Q132D	F 0 0 7	1.3 V
RP105Q142D	F 0 0 8	1.4 V
RP105Q152D	F009	1.5 V
RP105Q112D	F 0 1 0	1.1 V

POWER DISSIPATION

SOT-23-5

PD-SOT-23-5-(85125)-JE-B

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

ltem	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.3 mm × 7 pcs

Measurement Result

(Ta = 25°C, Tjmax = 125°C)

Measurement Result		
660 mW		
θja = 150°C/W		
ψjt = 51°C/W		

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

SOT-23-5

DM-SOT-23-5-JE-B

PART MARKINGS

<u>RP105N</u>

MK-RP105N-JE-B

①②③: Product Code … Refer to *Part Marking List*④⑤: Lot Number … Alphanumeric Serial Number

SOT-23-5 Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

RP105N Part Marking List

RP105NxxxB		_	_	
Product Name	0	2	3	V _{SET}
RP105N061B	R	0	А	0.6 V
RP105N071B	R	0	В	0.7 V
RP105N081B	R	0	С	0.8 V
RP105N091B	R	0	D	0.9 V
RP105N101B	R	0	Е	1.0 V
RP105N121B	R	0	F	1.2 V
RP105N131B	R	0	G	1.3 V
RP105N141B	R	0	Н	1.4 V
RP105N151B	R	0	J	1.5 V
RP105N111B	R	0	Κ	1.1 V

RP105NxxxD				
Product Name	0	2	3	V _{SET}
RP105N061D	R	1	А	0.6 V
RP105N071D	R	1	В	0.7 V
RP105N081D	R	1	С	0.8 V
RP105N091D	R	1	D	0.9 V
RP105N101D	R	1	Е	1.0 V
RP105N121D	R	1	F	1.2 V
RP105N131D	R	1	G	1.3 V
RP105N141D	R	1	Н	1.4 V
RP105N151D	R	1	J	1.5 V
RP105N111D	R	1	Κ	1.1 V

RP105NxxxE

Product Name	1	0	3	V _{SET}
RP105N061E	R	2	А	0.6 V
RP105N071E	R	2	В	0.7 V
RP105N081E	R	2	С	0.8 V
RP105N091E	R	2	D	0.9 V
RP105N101E	R	2	Е	1.0 V
RP105N121E	R	2	F	1.2 V
RP105N131E	R	2	G	1.3 V
RP105N141E	R	2	Н	1.4 V
RP105N151E	R	2	J	1.5 V
RP105N111E	R	2	Κ	1.1 V

RP105NxxxF				
Product Name	1	0	3	V _{SET}
RP105N061F	R	3	А	0.6 V
RP105N071F	R	3	В	0.7 V
RP105N081F	R	3	С	0.8 V
RP105N091F	R	3	D	0.9 V
RP105N101F	R	3	Е	1.0 V
RP105N121F	R	3	F	1.2 V
RP105N131F	R	3	G	1.3 V
RP105N141F	R	3	Н	1.4 V
RP105N151F	R	3	J	1.5 V
RP105N111F	R	3	Κ	1.1 V

POWER DISSIPATION

DFN1212-5

PD-DFN1212-5-JEDEC(85125)-D-JE-A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.2 mm × 14 pcs

Measurement Result

Measurement Result	(Ta = 25°C, Tjmax = 125°	
Item	Measurement Result	
Power Dissipation	560 mW	
Thermal Resistance (θja)	θja = 178°C/W	
Thermal Characterization Parameter (ψjt)	ψjt = 105°C/W	

θja: Junction-to-Ambient Thermal Resistance

wjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

PACKAGE DIMENSIONS

DFN1212-5

DM-DFN1212-5-JE-A

DFN1212-5 Package Dimensions (Unit: mm)

PART MARKINGS

RP105L

MK-RP105L-JE-D

①②: Product Code … Refer to *Part Marking List*③④: Lot Number … Alphanumeric Serial Number

DFN1212-5 Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

PART MARKINGS

RP105L

MK-RP105L-JE-D

RP105L Part Marking List

Product Name	0 2	VSET
RP105L061B	ТА	0.6 V
RP105L071B	ТВ	0.7 V
RP105L071B5	ΤN	0.75V
RP105L081B	ТС	0.8 V
RP105L091B	ΤD	0.9 V
RP105L091B5	ТМ	0.95 V
RP105L101B	ΤE	1.0 V
RP105L101B5	ΤL	1.05 V
RP105L111B	TF	1.1 V
RP105L121B	ΤG	1.2 V
RP105L131B	ТН	1.3 V
RP105L141B	ΤJ	1.4 V
RP105L151B	ТК	1.5 V

RP105LxxxD		
Product Name	0 0	VSET
RP105L061D	UA	0.6 V
RP105L071D	UΒ	0.7 V
RP105L071D5	UN	0.75V
RP105L081D	UC	0.8 V
RP105L091D	UD	0.9 V
RP105L091D5	UM	0.95 V
RP105L101D	UE	1.0 V
RP105L101D5	UL	1.05 V
RP105L111D	UF	1.1 V
RP105L121D	UG	1.2 V
RP105L131D	UΗ	1.3 V
RP105L141D	υJ	1.4 V
RP105L151D	UK	1.5 V

RP105LxxxE

0 0	VSET
V A	0.6 V
V B	0.7 V
V N	0.75V
V C	0.8 V
V D	0.9 V
VM	0.95 V
VΕ	1.0 V
V L	1.05 V
VF	1.1 V
V G	1.2 V
VΗ	1.3 V
V J	1.4 V
VK	1.5 V
	V A V B V N V C V D V D V M V E V E V L V F V C V F V G V H V J

RP105LxxxF

KF IUGLXXXF		
Product Name	0 0	VSET
RP105L061F	W A	0.6 V
RP105L071F	W B	0.7 V
RP105L071F5	W N	0.75V
RP105L081F	W C	0.8 V
RP105L091F	W D	0.9 V
RP105L091F5	W M	0.95 V
RP105L101F	WΕ	1.0 V
RP105L101F5	WL	1.05 V
RP105L111F	WF	1.1 V
RP105L121F	WG	1.2 V
RP105L131F	WΗ	1.3 V
RP105L141F	WJ	1.4 V
RP105L151F	WK	1.5 V

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period

In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.

8-2. Quality Warranty Remedies

When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.

- Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
- 8-3. Remedies after Quality Warranty Period

With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.

- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website https://www.nisshinbo-microdevices.co.jp/en/ Purchase information https://www.nisshinbo-microdevices.co.jp/en/buy/