Single 8 bits ADC, up to 40 MHz Rev. 03 — 2 July 2012

General description 1.

The ADC0801S040 is an 8-bit universal analog-to-digital converter (ADC) for video and general purpose applications. It converts the analog input signal from 2.7 V to 5.5 V into 8-bit binary-coded digital words at a maximum sampling rate of 40 MHz. All digital inputs and outputs are CMOS/Transistor-Transistor Logic (TTL) compatible. A sleep mode allows reduction of the device power consumption to 4 mW.

2. **Features**

- 8-bit resolution
- Operation between 2.7 V and 5.5 V
- Sampling rate up to 40 MHz
- DC sampling allowed
- High signal-to-noise ratio over a large analog input frequency range (7.3 effective bits at 4.43 MHz full-scale input at f_{clk} = 40 MHz)
- CMOS/TTL compatible digital inputs and outputs
- External reference voltage regulator
- Power dissipation only 30 mW (typical value)
- Low analog input capacitance, no buffer amplifier required
- Sleep mode (4 mW)
- No sample-and-hold circuit required

Applications 3.

- Video data digitizing
- Camera
- Camcorder
- Radio communication
- Car alarm system

4. Quick reference data

Table 1. Quick reference data

 $V_{DDA} = V5$ to V6 = 3.3 V; $V_{DDD} = V3$ to V4 = 3.3 V; $V_{DDO} = V20$ to V11 = 3.3 V; V_{SSA} , V_{SSD} and V_{SSO} shorted together; $V_{i(a)(p-p)} = 1.84$ V; $C_L = 20$ pF; $T_{amb} = 0$ °C to 70 °C; typical values measured at $T_{amb} = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	analog supply voltage		2.7	3.3	5.5	V
V _{DDD}	digital supply voltage		2.7	3.3	5.5	V
V _{DDO}	output supply voltage		2.5	3.3	5.5	V
ΔV_{DD}	supply voltage	$V_{DDA} - V_{DDD}$	-0.2	-	+0.2	V
	difference	$V_{DDD} - V_{DDO}$	-0.2	-	+2.25	V
I _{DDA}	analog supply current		-	4	6	mA
I _{DDD}	digital supply current		-	5	8	mA
I _{DDO}	output supply current	f_{clk} = 40 MHz; ramp input; C _L = 20 pF	-	1	2	mA
INL	integral non-linearity	ramp input; see Figure 6	-	±0.5	±0.75	LSB
DNL	differential non-linearity	ramp input; see Figure 7	-	±0.25	±0.5	LSB
f _{clk(max)}	maximum clock frequency		40	-	-	MHz
P _{tot}	total power dissipation	$V_{DDA} = V_{DDD} = V_{DDO} = 3.3 V$	-	30	53	mW

5. Ordering information

Table 2.Ordering information

Type number	Package	Package		
	Name	Description	Version	
ADC0801S040TS	SSOP20	plastic shrink small outline package; 20 leads; body width 4.4 mm	SOT266-1	

6. Block diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
CLK	1	clock input
SLEEP	2	sleep mode input
V _{DDD}	3	digital supply voltage (2.7 V to 5.5 V)
V _{SSD}	4	digital ground
V _{DDA}	5	analog supply voltage (2.7 V to 5.5 V)
V _{SSA}	6	analog ground
RB	7	reference voltage BOTTOM input
RM	8	reference voltage MIDDLE
VI	9	analog input voltage
RT	10	reference voltage TOP input
V _{SSO}	11	output stage ground
D0	12	data output; bit 0 (Least Significant Bit (LSB))
D1	13	data output; bit 1
D2	14	data output; bit 2
D3	15	data output; bit 3
D4	16	data output; bit 4
D5	17	data output; bit 5

Table 3.	Pin description .	continued
Symbol	Pin	Description
D6	18	data output; bit 6
D7	19	data output; bit 7 (Most Significant Bit (MSB))
V _{DDO}	20	positive supply voltage for output stage (2.7 V to 5.5 V)

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

		•••	,		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA}	analog supply voltage		[1] -0.3	+7.0	V
V _{DDD}	digital supply voltage		[1] -0.3	+7.0	V
V _{DDO}	output supply voltage		^[1] –0.3	+7.0	V
ΔV_{DD}	supply voltage difference	$\begin{array}{l} V_{DDA}-V_{DDD};\\ V_{DDD}-V_{DDO};\\ V_{DDA}-V_{DDO} \end{array}$	-0.1	+4.0	V
VI	input voltage	referenced to V _{SSA}	-0.3	+7.0	V
V _{i(clk)(p-p)}	peak-to-peak clock input voltage	referenced to V_{SSD}	-	V _{DDD}	V
lo	output current		-	10	mA
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-20	+75	°C
Tj	junction temperature		-	150	°C
-					

[1] The supply voltages V_{DDA} , V_{DDD} and V_{DDO} may have any value between -0.3 V and +7.0 V provided that the supply voltage ΔV_{DD} remains as indicated.

9. Thermal characteristics

Table 5.	Thermal characteristics			
Symbol	Parameter	Condition	Value	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	120	K/W

10. Characteristics

Table 6.Characteristics

 $V_{DDA} = V5$ to V6 = 3.3 V; $V_{DDD} = V3$ to V4 = 3.3 V; $V_{DDO} = V20$ to V11 = 3.3 V; V_{SSA} , V_{SSD} and V_{SSO} shorted together; $V_{i(a)(p-p)} = 1.84$ V; $C_L = 20$ pF; $T_{amb} = 0$ °C to 70 °C; typical values measured at $T_{amb} = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Supplies						
V _{DDA}	analog supply voltage		2.7	3.3	5.5	V
V _{DDD}	digital supply voltage		2.7	3.3	5.5	V
V _{DDO}	output supply voltage		2.5	3.3	5.5	

Table 6. Characteristics ...continued

 $V_{DDA} = V5$ to V6 = 3.3 V; $V_{DDD} = V3$ to V4 = 3.3 V; $V_{DDO} = V20$ to V11 = 3.3 V; V_{SSA} , V_{SSD} and V_{SSO} shorted together; $V_{i(a)(p-p)} = 1.84$ V; $C_L = 20$ pF; $T_{amb} = 0$ °C to 70 °C; typical values measured at $T_{amb} = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔV_{DD}	supply voltage difference	$V_{DDA} - V_{DDD}$	-0.2	-	+0.2	V
		$V_{DDD} - V_{DDO}$	-0.2	-	+2.25	V
DDA	analog supply current		-	4	6	mA
DDD	digital supply current		-	5	8	mA
IDDO	output supply current	f _{clk} = 40 MHz; ramp input; C _L = 20 pF	-	1	2	mA
⊃ _{tot}	total power dissipation	$V_{DDA} = V_{DDD} = V_{DDO} = 3.3 V$	-	30	53	mW
Inputs						
Clock input	CLK (Referenced to V _{SSD}) [[]	1]				
V _{IL}	LOW-level input voltage		0	-	$0.3 V_{DDD}$	V
V _{IH}	HIGH-level input voltage	$V_{DDD} \leq 3.6 \ V$	$0.6 V_{DDD}$	-	V _{DDD}	V
		V _{DDD} > 3.6 V	$0.7 V_{DDD}$	-	V _{DDD}	V
IIL	LOW-level input current	V_{clk} = 0.3 V_{DDD}	-1	0	+1	μA
Ін	HIGH-level input current	V_{clk} = 0.7 V_{DDD}	-	-	5	μA
Z _i	input impedance	f _{clk} = 40 MHz	-	4	-	kΩ
C _i	input capacitance	f _{clk} = 40 MHz	-	3	-	pF
Input SLEE	P (Referenced to V _{SSD}); see	e Table 8				
V _{IL}	LOW-level input voltage		0	-	$0.3 V_{DDD}$	V
V _{IH}	HIGH-level input voltage	$V_{DDD} \leq 3.6 \ V$	$0.6 V_{DDD}$	-	V _{DDD}	V
		V _{DDD} > 3.6 V	$0.7 V_{DDD}$	-	V _{DDD}	V
IL	LOW-level input current	V_{IL} = 0.3 V_{DDD}	-1	-	-	μA
IIH	HIGH-level input current	$V_{IH} = 0.7 V_{DDD}$	-	-	+1	μA
Analog inp	ut VI (Referenced to V _{SSA})					
IL	LOW-level input current	$V_{I} = V_{RB}$	-	0	-	μA
Ін	HIGH-level input current	$V_{I} = V_{RT}$	-	9	-	μA
Z _i	input impedance	f _i = 1 MHz	-	20	-	kΩ
C _i	input capacitance	f _i = 1 MHz	-	2	-	pF
Reference	voltages for the resistor la	adder; see Table 7				
V _{RB}	voltage on pin RB		1.1	1.2	-	V
V _{RT}	voltage on pin RT	$V_{RT} \leq V_{DDA}$	2.7	3.3	V _{DDA}	V
V _{ref(dif)}	differential reference voltage	$V_{RT} - V_{RB}$	1.5	2.1	2.7	V
ref	reference current		-	0.95	-	mA
R _{lad}	ladder resistance		-	2.2	-	kΩ
TC _{Rlad}	ladder resistor temperature coefficient		-	4092	-	mΩ/l
V _{offset}	offset voltage	BOTTOM	[2] _	170	-	mV
		TOP	[2] _	170	-	mV
V _{i(a)(p-p)}	peak-to-peak analog input voltage		^[3] 1.4	1.76	2.4	V

Table 6. Characteristics ...continued

 $V_{DDA} = V5$ to V6 = 3.3 V; $V_{DDD} = V3$ to V4 = 3.3 V; $V_{DDO} = V20$ to V11 = 3.3 V; V_{SSA} , V_{SSD} and V_{SSO} shorted together; $V_{i(a)(p-p)} = 1.84$ V; $C_L = 20$ pF; $T_{amb} = 0$ °C to 70 °C; typical values measured at $T_{amb} = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Digital out	puts D7 to D0 and IR (Refe	erenced to V _{SSD})				
V _{OL}	LOW-level output voltage	I _O = 1 mA	0	-	0.5	V
V _{OH}	HIGH-level output voltage	I _O = -1 mA	$V_{DDO}-0.5$	-	V _{DDO}	V
l _{oz}	OFF-state output current	$0.4 V < V_{O} < V_{DDO}$	-20	-	+20	μA
Clock inpu	It CLK; see Figure 4 ^[1]					
f _{clk(max)}	maximum clock frequency		40	-	-	MHz
t _{w(clk)H}	HIGH clock pulse width		9	-	-	ns
t _{w(clk)L}	LOW clock pulse width		9	-	-	ns
Analog sig	nal processing (f _{clk} = 40 M	/Hz)				
Linearity						
INL	integral non-linearity	ramp input; see Figure 6	-	±0.5	±0.75	LSB
DNL	differential non-linearity	ramp input; see Figure 7	-	±0.25	±0.5	LSB
Bandwidth						
В	bandwidth	full-scale sine wave	[4] _	10		MHz
		75 % full-scale sine wave	-	13		MHz
		50 % full-scale sine wave	-	20		MHz
		small signal at mid scale; $V_i = \pm 10$ LSB at code 128	-	350		MHz
Input set re	sponse; see Figure 8 ^[5]					
t _{s(LH)}	LOW to HIGH settling time	full-scale square wave	-	3	5	ns
t _{s(HL)}	HIGH to LOW settling time	full-scale square wave	-	3	5	ns
Harmonics	see Figure 9 ^[6]					
THD	total harmonic distortion	f _i = 4.43 MHz	-	-50	-	dB
Signal-to-N	oise ratio; see Figure 9 ^[6]					
S/N	signal-to-noise ratio	without harmonics; f _i = 4.43 MHz	-	47	-	dB
Effective bi	ts; see Figure 9 ^[6]					
ENOB	effective number of bits	f _i = 300 MHz	-	7.8	-	bits
		f _i = 4.43 MHz	-	7.3	-	bits
Differential	gain ^[7]					
G _{dif}	differential gain	PAL modulated ramp	-	1.5	-	%

Table 6. Characteristics ...continued

 V_{DDA} = V5 to V6 = 3.3 V; V_{DDD} = V3 to V4 = 3.3 V; V_{DDO} = V20 to V11 = 3.3 V; V_{SSA} , V_{SSD} and V_{SSO} shorted together; $V_{i(a)(p-p)}$ = 1.84 V; C_L = 20 pF; T_{amb} = 0 °C to 70 °C; typical values measured at T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Differential	phase ^[7]					
Φdif	differential phase PAL modulated ramp		-	0.25	-	deg
Timing (f _{cl}	_{lk} = 40 MHz; C _L = 20 pF);	see Figure 4 ^[8]				
t _{d(s)}	sampling delay time		-	-	5	ns
t _{h(o)}	output hold time		5	-	-	ns
t _{d(o)}	output delay time	V _{DDO} = 4.75 V	8	12	15	ns
		V _{DDO} = 3.15 V	8	17	20	ns
		V _{DDO} = 2.7 V	8	18	21	ns
3-state ou	tput delay times; see Fig	jure 5				
t _{dHZ}	active HIGH to float delay time		-	14	18	ns
t _{dZL}	float to active LOW delay time		-	16	20	ns
t _{dZH}	float to active HIGH delay time		-	16	20	ns
t _{dLZ}	active LOW to float delay time		-	14	18	ns

[1] In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock must not be less than 1 ns.

[2] Analog input voltages producing code 0 up to and including code 255:

- a) V_{offset} BOTTOM is the difference between the analog input which produces data equal to 00 and the reference voltage on pin RB (V_{RB}) at T_{amb} = 25 °C.
- b) V_{offset} TOP is the difference between the reference voltage on pin RT (V_{RT}) and the analog input which produces data outputs equal to code 255 at T_{amb} = 25 °C.
- [3] To ensure the optimum linearity performance of such a converter architecture the lower and upper extremities of the converter reference resistor ladder are connected to pins RB and RT via offset resistors R_{OB} and R_{OT} as shown in Figure 3.
 - a) The current flowing into the resistor ladder is $I = \frac{V_{RT} V_{RB}}{R_{OB} + R_L + R_{OT}}$ and the full-scale input range at the converter, to cover code 0

to 255 is
$$V_I = R_L \times I_L = \frac{R_L}{R_{OB} + R_L + R_{OT}} \times (V_{RT} + V_{RB}) = 0.838 \times (V_{RT} - V_{RB})$$

b) Since R_L, R_{OB} and R_{OT} have similar behavior with respect to process and temperature variation, the ratio $\frac{R_L}{R_{OB} + R_L + R_{OT}}$

will be kept reasonably constant from device to device. Consequently variation of the output codes at a given input voltage depends mainly on the difference $V_{RT} - V_{RB}$ and its variation with temperature and supply voltage. When several ADCs are connected in parallel and fed with the same reference source, the matching between each of them is optimized.

- [4] The analog bandwidth is defined as the maximum input sine wave frequency which can be applied to the device. No glitches greater than 2 LSB, nor any significant attenuation is observed in the reconstructed signal.
- [5] The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale input (square wave signal) in order to sample the signal and obtain correct output data.
- [6] Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8000 acquisition points per equivalent fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency (Nyquist frequency). Conversion to signal-to-noise ratio: S/N = ENOB × 6.02 + 1.76 dB.
- [7] Measurement carried out using video analyzer VM700A, where video analog signal is reconstructed through a DAC.
- [8] Output data acquisition: the output data is available after the maximum delay time of t_{d(o)}.

3ADC0801S040_3

Single 8 bits ADC, up to 40 MHz

11. Additional information relating to Table 6

Table 7. Output coding and input voltage (typical values; referenced to V_{SSA})

Code	V _{i(a)(p-p)} (V)	Binary outputs D7 to D0
Underflow	< 1.37	00 0000 00
0	1.37	00 0000 00
1	-	00 0000 01
\downarrow	-	\downarrow
254	-	11 11 11 10
255	3.13	11 11 11 11
Overflow	> 3.13	11 11 11 11

Table 8. Mode selection

SLEEP	D7 to D0	I _{DDA} + I _{DDD} (typ)
1	high impedance	1.2 mA
0	active	9 mA

Single 8 bits ADC, up to 40 MHz

Single 8 bits ADC, up to 40 MHz

3ADC0801S040_3

Single 8 bits ADC, up to 40 MHz

Single 8 bits ADC, up to 40 MHz

Fig 12. SLEEP 3-state input

014aaa505

RL

RL

RL

014aaa506

Fig 13. RB, RM and RT inputs

3ADC0801S040_3

Single 8 bits ADC, up to 40 MHz

12. Application information

12.1 Application diagrams

Fig 15. Application diagram

13. Package outline

Fig 16. Package outline SOT266-1 (SSOP20)

14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
ADC0801S040_3	20120702	Product data sheet	-	ADC0801S040_2		
ADC0801S040_2	20080818	Product data sheet	-	ADC0801S040_1		
Modifications:	 Corrections made to table notes in Figure 1. 					
	Corrections made to Table 3.					
	Corrections made to symbol in Table 4.					
	Corrections made to Table 6.					
	Corrections made to Figure 13					
ADC0801S040 1	20080612	Product data sheet	-	-		

15. Contact information

For more information or sales office addresses, please visit: http://www.idt.com

Single 8 bits ADC, up to 40 MHz

16. Contents

1	General description 1	9
2	Features 1	10
3	Applications 1	11
4	Quick reference data 2	12
5	Ordering information 2	12.1
6	Block diagram 3	13
7	Pinning information 4	14
7.1	Pinning	15
7.2	Pin description 4	16
8	Limiting values 5	

	Thermal characteristics ! Characteristics !	
	Additional information relating to Table 6 9	3
	Application information	5
1	Application diagrams	5
	Package outline 16	3
	Revision history 17	7
	Contact information 17	7
	Contents 18	3