Notice for TAIYO YUDEN Products Please read this notice before using the TAIYO YUDEN products. # REMINDERS Product information in this catalog is as of October 2018. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products. Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets. - Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. - Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products. - The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and medical equipment classified as Class I or II by IMDRF. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, disaster prevention equipment, medical equipment classified as Class III by IMDRF, highly public information network equipment including, without limitation, telephone exchange, and base station). Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment). *Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment. When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary. Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above. - Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights. - Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement. - The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel. - Caution for Export Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff. # **MULTILAYER CERAMIC CAPACITORS** WAVE REFLOW # ■PARTS NUMBER | J | М | Κ | 3 | 1 | 6 | Δ | В | J | 1 | 0 | 6 | М | L | _ | Т | Δ | |---|---|---|---|---|---|----------|---|---|---|---|---|---|---|----|----|----| | 1 | 2 | 3 | | 4 | | ⑤ | (| 6 | | 7 | | 8 | 9 | 10 | 11 | 12 | △=Blank space $\textcircled{1} \mathsf{Rated} \ \mathsf{voltage}$ | Code | Rated voltage[VDC] | |------|--------------------| | Р | 2.5 | | Α | 4 | | J | 6.3 | | L | 10 | | E | 16 | | Т | 25 | | G | 35 | | U | 50 | | Н | 100 | | Q | 250 | | S | 630 | | Х | 2000 | | 3End terminatio | n | |-----------------|---| | Code | End termination | | K | Plated | | S | Cu Internal Electrodes (For High Frequency) | | | | 4 Dimension (L × W) | Туре | Dimensions (L×W)[mm] | EIA (inch) | |------|----------------------|------------| | 021 | 0.25 × 0.125 | 008004 | | 042 | 0.4 × 0.2 | 01005 | | 063 | 0.6 × 0.3 | 0201 | | 105 | 1.0 × 0.5 | 0402 | | 105 | 0.52 × 1.0 💥 | 0204 | | 107 | 1.6 × 0.8 | 0603 | | 107 | 0.8 × 1.6 💥 | 0306 | | 212 | 2.0 × 1.25 | 0805 | | 212 | 1.25 × 2.0 💥 | 0508 | | 316 | 3.2 × 1.6 | 1206 | | 325 | 3.2 × 2.5 | 1210 | | 432 | 4.5 × 3.2 | 1812 | Note: ※LW reverse type(□WK) only ## ②Series name | Code | Series name | |------|---| | М | Multilayer ceramic capacitor | | V | Multilayer ceramic capacitor for high frequency | | W | LW reverse type multilayer capacitor | ⑤Dimension tolerance | Code | Туре | L[mm] | W[mm] | T[mm] | |------|------|----------------|---------------------|---------------------| | Δ | ALL | Standard | Standard | Standard | | | 063 | 0.6±0.05 | 0.3±0.05 | 0.3±0.05 | | | 105 | 1.0±0.10 | 0.5±0.10 | 0.5±0.10 | | | 107 | 1.6+0.15/-0.05 | 0.8+0.15/-0.05 | 0.8+0.15/-0.05 | | | | | | 0.45 ± 0.05 | | Α | 212 | 2.0+0.15/-0.05 | 1.25 + 0.15 / -0.05 | 0.85±0.10 | | | | | | 1.25 + 0.15 / -0.05 | | | 316 | 3.2±0.20 | 1.6±0.20 | 0.85±0.10 | | | 310 | 3.2±0.20 | 1.6±0.20 | 1.6±0.20 | | | 325 | 3.2±0.30 | 2.5±0.30 | 2.5±0.30 | | | 063 | 0.6 ± 0.09 | 0.3±0.09 | 0.3±0.09 | | | 105 | 1.0+0.15/-0.05 | 0.5+0.15/-0.05 | 0.5+0.15/-0.05 | | | 107 | 1.6+0.20/-0 | 0.8+0.20/-0 | 0.45 ± 0.05 | | В | 107 | 1.0+0.20/ -0 | 0.8 + 0.20/ - 0 | 0.8+0.20/-0 | | Ь | | | | 0.45±0.05 | | | 212 | 2.0+0.20/-0 | 1.25 + 0.20 / -0 | 0.85±0.10 | | | | | | 1.25 + 0.20 / -0 | | | 316 | 3.2 ± 0.30 | 1.6±0.30 | 1.6±0.30 | | С | 105 | 1.0+0.20/-0 | 0.5+0.20/-0 | 0.5+0.20/-0 | | E | 105 | 1.0+0.30/-0 | 0.5+0.30/-0 | 0.5+0.30/-0 | Note: cf. STANDARD EXTERNAL DIMENSIONS Δ= Blank space # **®**Temperature characteristics code ■ High dielectric type (Excluding Super low distortion multilayer ceramic capacitor) | Code | Applicable standard | | Temperature range[°C] | Ref. Temp.[°C] | Capacitance change | Capacitance
tolerance | Tolerance
code | | | | | | | | | | | |--------|---------------------|---------|-----------------------|----------------|--------------------|--------------------------|-------------------|--------|------|-----|-----|-----|-------------------|----|------|------|---| | | JIS | В | -25 ~ + 85 | 20 | ±10% | ±10% | K | | | | | | | | | | | | BJ | 013 | ь | 25.9 1 65 | 20 | ± 10 % | ±20% | М | | | | | | | | | | | | ы | EIA | X5R | -55 ~ + 85 | 25 | ±15% | ±10% | K | | | | | | | | | | | | | EIA | YOK | -55~+ 85 | 25 | <u> </u> | ±20% | М | | | | | | | | | | | | B7 | EIA | X7R | -55 ~ +125 | 25 | ±15% | ±10% | K | | | | | | | | | | | | Б/ | EIA | X/IX | 33.9 T 123 | 2.5 | ± 13 70 | ±20% | М | | | | | | | | | | | | C6 | EIA X6S | Vec | VEC | VEC | VGC | VGC | VEC | Vec | Vec | VEC | VAS | VAS | -55 ~ +105 | 25 | ±22% | ±10% | K | | | | 703 | -55°₹ ± 105 | 25 | ± 22% | ±20% | М | | | | | | | | | | | | C7 | E14 | X7S | -55 ~ +125 | 0.5 | ±220/ | ±10% | K | | | | | | | | | | | | G/ | EIA | EIA X/S | -55~+125 | 25 | ±22% | ±20% | М | | | | | | | | | | | | 1.5(%) | | | | | F14 V5D | FF 0F | 0.5 | 1.450/ | ±10% | K | | | | | | | | | LD(※) | EIA | X5R | −55~+ 85 | 25 | ±15% | ±20% | М | | | | | | | | | | | Note: X.LD Low distortion high value multilayer ceramic capacitor Δ= Blank space [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). # ■Temperature compensating type | Code | Applicable standard | | Temperature
range[°C] | Ref. Temp.[°C] | Capacitance change | Capacitance
tolerance | Tolerance
code | |------|---------------------|------|--------------------------|----------------|--------------------|--------------------------|-------------------| | | | | | 25 | | ±0.05pF | Α | | | EIA | COG | −55∼+125 | | | ±0.1pF | В | | CG | | | | | 0±30ppm/°C | ±0.25pF | С | | | | | | | | ±0.5pF | D | | | | | | | | ±5% | J | | | JIS | S UJ | | 20 | −750±120ppm/°C | ±0.25pF | С | | UJ | | | $-55 \sim +125$ | | | ±0.5pF | D | | | EIA | U2J | | 25 | | ±5% | J | | UK | JIS | UK | −55~+125 | 20 | -750±250ppm/°C | ±0.25pF | С | | UK | EIA | U2K | −55~ +125 | 25 | —730±230ppiii/ C | ±0.23pr | C | | SL | JIS | SL | -55 ~ +125 | 20 | +350~-1000ppm/°C | ±5% | J | # 6 Series code ·Super low distortion multilayer
ceramic capacitor | Super low distortion matchager ceramic capacitor | | | | | | |--|-------------|--|--|--|--| | Code | Series code | | | | | | SD | Standard | | | | | •Medium-High Voltage Multilayer Ceramic Capacitor | Code | Series code | |------|-------------| | SD | Standard | # 7Nominal capacitance | ©11011111111 04P401141100 | | | | | | | |---------------------------|---------------------|--|--|--|--|--| | Code
(example) | Nominal capacitance | | | | | | | 0R5 | 0.5pF | | | | | | | 010 | 1pF | | | | | | | 100 | 10pF | | | | | | | 101 | 100pF | | | | | | | 102 | 1,000pF | | | | | | | 103 | 10,000pF | | | | | | | 104 | 0.1 μ F | | | | | | | 105 | 1.0 <i>μ</i> F | | | | | | | 106 | 10 μ F | | | | | | | 107 | 100 μ F | | | | | | | | | | | | | | Note: R=Decimal point # 8 Capacitance tolerance | O Capacitance to | Dictance | |------------------|-----------------------| | Code | Capacitance tolerance | | Α | ±0.05pF | | В | ±0.1pF | | С | ±0.25pF | | D | ±0.5pF | | F | ±1pF | | G | ±2% | | J | ±5% | | K | ±10% | | М | ±20% | | Z | +80/-20% | # Thickness | Code | Thickness[mm] | |------|-----------------------| | K | 0.125 | | Н | 0.13 | | E | 0.18 | | С | 0.2 | | D | 0.2 | | Р | 0.3 | | Т | 0.3 | | K | 0.45(107type or more) | | V | 0.5 | | W | 0.3 | | Α | 0.8 | | D | 0.85(212type or more) | | F | 1.15 | | G | 1.25 | | L | 1.6 | | N | 1.9 | | Υ | 2.0 max | | М | 2.5 | # 10Special code | Code | Special code | |------|--------------| | _ | Standard | # 11)Packaging | Code | Packaging | | | | | | | |------|--|--|--|--|--|--|--| | F | <i>ϕ</i> 178mm Taping (2mm pitch) | | | | | | | | Т | ϕ 178mm Taping (4mm pitch) | | | | | | | | P | ϕ 178mm Taping (4mm pitch, 1000 pcs/reel) | | | | | | | | Р | 325 type (Thickness code M) | | | | | | | | R | ϕ 178mm Taping (2mm pitch)105type only | | | | | | | | К | (Thickness code E,H) | | | | | | | | W | ϕ 178mm Taping(1mm pitch)021/042type only | | | | | | | # 12Internal code | 9 | | |------|---------------| | Code | Internal code | | Δ | Standard | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). LW reverse type | Type(EIA) | | | imension [mm] | | | | | |-----------------|------------|-------------|-------------------|--------|---------------------|--|--| | Type(En() | L | W | Т | *1 | е | | | | □MK021 (008004) | 0.25±0.013 | 0.125±0.013 | 0.125±0.013 | K | 0.0675 ± 0.0275 | | | | □VS021 (008004) | 0.25±0.013 | 0.125±0.013 | 0.125 ± 0.013 | K | 0.0675 ± 0.0275 | | | | □MK042(01005) | 0.4±0.02 | 0.2±0.02 | 0.2±0.02 | C
D | 0.1±0.03 | | | | □VS042(01005) | 0.4±0.02 | 0.2±0.02 | 0.2±0.02 | С | 0.1±0.03 | | | | | | | | Р | 0.45.4.0.05 | | | | □MK063(0201) | 0.6±0.03 | 0.3±0.03 | 0.3 ± 0.03 | Т | 0.15±0.05 | | | | | | | 0.13±0.02 | Н | | | | | | | | 0.18±0.02 | Е | | | | | ☐MK105(0402) | 1.0±0.05 | 0.5±0.05 | 0.2 ± 0.02 | С | 0.25 ± 0.10 | | | | | | | 0.3±0.03 | Р | | | | | | | | 0.5±0.05 | ٧ | | | | | □VK105(0402) | 1.0±0.05 | 0.5±0.05 | 0.5±0.05 | W | 0.25±0.10 | | | | □WK105(0204)※ | 0.52±0.05 | 1.0±0.05 | 0.3±0.05 | Р | 0.18±0.08 | | | | DMK107(0600) | 16+010 | 0.8±0.10 | 0.45±0.05 | K | 0.25 ± 0.25 | | | | □MK107(0603) | 1.6±0.10 | 0.8±0.10 | 0.8±0.10 | Α | 0.35±0.25 | | | | □WK107(0306)※ | 0.8±0.10 | 1.6±0.10 | 0.5±0.05 | ٧ | 0.25±0.15 | | | | | | | 0.45±0.05 | K | | | | | □MK212(0805) | 2.0±0.10 | 1.25±0.10 | 0.85±0.10 | D | 0.5 ± 0.25 | | | | | | | 1.25±0.10 | G | | | | | □WK212(0508)※ | 1.25±0.15 | 2.0±0.15 | 0.85±0.10 | D | 0.3±0.2 | | | | | | | 0.85±0.10 | D | | | | | □MK316(1206) | 3.2±0.15 | 1.6±0.15 | 1.15±0.10 | F | 0.5 + 0.35 / -0.25 | | | | | | | 1.6±0.20 | L | | | | | | | | 0.85±0.10 | D | | | | | | | | 1.15±0.10 | F | | | | | □MK325(1210) | 3.2±0.30 | 2.5±0.20 | 1.9±0.20 | N | 0.6 ± 0.3 | | | | | | | 1.9+0.1/-0.2 | Υ | | | | | | | | 2.5±0.20 | М | | | | | | 45.10.40 | 001000 | 2.0+0/-0.30 | Υ | 0.6±0.4 | | | | □MK432(1812) | 4.5±0.40 | 3.2±0.30 | 2.5±0.20 | М | 0.9±0.6 | | | Note: X. LW reverse type, *1.Thickness code # ■STANDARD QUANTITY | т | EIA (inch) | Dime | nsion | Standard o | uantity[pcs] | | |------|------------|---------|-------|------------|---------------|--| | Type | EIA (inch) | [mm] | Code | Paper tape | Embossed tape | | | 021 | 008004 | 0.125 | K | _ | 50000 | | | 040 | 01005 | 0.2 | С | | 40000 | | | 042 | 01005 | 0.2 | D | _ | 40000 | | | 063 | 0201 | 0.3 | Р | 15000 | | | | 003 | 0201 | 0.3 | T | 15000 | _ | | | | | 0.13 | Н | _ | 20000 | | | | | 0.18 | E | _ | 15000 | | | | 0400 | 0.2 | С | 20000 | _ | | | 105 | 0402 | 0.3 | Р | 15000 | _ | | | | | ٥٢ | V | | 1 | | | | | 0.5 | W | 10000 | _ | | | | 0204 ※ | 0.30 | Р | | | | | | 0000 | 0.45 | K | 4000 | | | | 107 | 0603 | 0.8 | Α | 4000 | _ | | | | 0306 ※ | 0.50 | V | _ | 4000 | | | | | 0.45 | K | 4000 | | | | 040 | 0805 | 0.85 | D | 4000 | _ | | | 212 | | 1.25 | G | _ | 3000 | | | | 0508 ※ | 0.85 | D | 4000 | _ | | | | | 0.85 | D | 4000 | _ | | | 316 | 1206 | 1.15 | F | _ | 3000 | | | | | 1.6 | L | _ | 2000 | | | | | 0.85 | D | | | | | | | 1.15 | F | | 2000 | | | 325 | 1210 | 1.9 | N | _ | 2000 | | | | | 2.0 max | Υ | | | | | | | 2.5 | М | - | 1000 | | | 400 | 1010 | 2.0 max | Υ | _ | 1000 | | | 432 | 1812 | 2.5 | М | _ | 500 | | Note : ※.LW Reverse type(□WK) [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). # Low Distortion High Value Multilayer Ceramic Capacitors(CF_LD) ### ■ 107TYPF [Temperature Characteristic LD : $X5R(-55 \sim +85^{\circ}C)$] 0.8mm thickness(A) | Part number 1 | Part number 2 | Rated voltage
[V] | Temperature characteristics | Capacitance
[F] | Capacitance tolerance [%] | tan δ
[%] | HTLT Rated voltage x % | Thickness*3 [mm] | Soldering
R:Reflow
W:Wave | |-------------------|---------------|----------------------|-----------------------------|--------------------|---------------------------|--------------|------------------------|------------------|---------------------------------| | UMK107BLD224[]A-T | | 50 | X5R | 0.22 μ | ±10, ±20 | 10 | 150 | 0.8+0.20/-0 | R | | TMK107BLD474[]A-T | | 25 | X5R | 0.47 μ | ±10, ±20 | 10 | 150 | 0.8+0.20/-0 | R | | TMK107BLD105[]A-T | | 25 | X5R | 1 μ | ±10, ±20 | 10 | 150 | 0.8+0.20/-0 | R | # 212TYPE | | Part number 1 | Part number 2 | Rated voltage
[V] | Tempe
charact | erature
eristics | Capacitance
[F] | Capacitance tolerance [%] | tan δ
[%] | HTLT Rated voltage x % | Thickness*3 [mm] | Soldering
R:Reflow
W:Wave | |---|-------------------|---------------|----------------------|------------------|---------------------|--------------------|---------------------------|--------------|------------------------|------------------|---------------------------------| | 7 | GMK212 LD105∏G-T | | 25 | | X5R | 1 μ | ±10, ±20 | 10 | 150 | 1.25±0.10 | R | | | GMK212BLD225[]G-T | | 35 | | X5R | 2.2 μ | ±10, ±20 | 10 | 150 | 1.25+0.20/-0 | R | # **316TYPE** [Temperature Characteristic LD : $X5R(-55\sim+85^{\circ}C)$] 1.6mm thickness(L) | Part number 1 | Part number 2 | Rated voltage
[V] | Temperature
characteristic | | Capacitance tolerance [%] | tan δ
[%] | HTLT Rated voltage x % | Thickness*3 [mm] | Soldering
R:Reflow
W:Wave | |-------------------|---------------|----------------------|-------------------------------|---------|---------------------------|--------------|------------------------|------------------|---------------------------------| | UMK316 LD105[]L-T | | 50 | X5 | 1 μ | ±10, ±20 | 10 | 150 | 1.6±0.20 | R | | GMK316BLD475□L-T | | 35 | X5 | R 4.7 μ | ±10, ±20 | 10 | 150 | 1.6±0.30 | R | | TMK316BLD106[]L-T | | 25 | X5 | R 10 μ | ±10, ±20 | 10 | 150 | 1.6±0.30 | R | # ●325TYPE [Temperature Characteristic LD : $X5R(-55 \sim +85^{\circ}C)$] 1.9mm thickness(N) | | Part number 1 | Part number 2 | Rated voltage
[V] |
erature
eristics | Capacitance
[F] | Capacitance tolerance [%] | tan δ
[%] | HTLT Rated voltage x % | Thickness*3 [mm] | Soldering
R:Reflow
W:Wave | |-----|---------------|---------------|----------------------|-------------------------|--------------------|---------------------------|--------------|------------------------|------------------|---------------------------------| | UMK | 325 LD105∏N-T | | 50 | X5R | 1 μ | ±10, ±20 | 10 | 200 | 1.9±0.20 | R | [Temperature Characteristic LD : $X5R(-55 \sim +85^{\circ}C)$] 2.5mm thickness(M) | Part number 1 | Part number 2 | Rated voltage
[V] | Tempera
character | | Capacitance
[F] | Capacitance tolerance [%] | tan δ
[%] | HTLT Rated voltage x % | Thickness*3 [mm] | Soldering
R:Reflow
W:Wave | |------------------|---------------|----------------------|----------------------|-----|--------------------|---------------------------|--------------|------------------------|------------------|---------------------------------| | UMK325 LD475∏M-P | | 50 | | X5R | 4.7 μ | ±10, ±20 | 10 | 200 | 2.5 ± 0.20 | R | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/). # Multilayer Ceramic Capacitors # ■PACKAGING # 1 Minimum Quantity | Taped package | TILL | | 0, 1, 1 | en F 3 | |
------------------------------|-------------|------|--------------|-----------------------------|--| | Type(EIA) | Thick
mm | code | Paper tape | uantity [pcs] Embossed tape | | | □MK021(008004) | 0.125 | K | - парет саре | 50000 | | | □VS021(008004) | 0.123 | IX | | 30000 | | | ☐MK042(01005) | 0.2 | C, D | _ | 40000 | | | □VS042(01005) | 0.2 | С | _ | 40000 | | | ☐MK063(0201) | 0.3 | P,T | 15000 | _ | | | □WK105(0204) ※ | 0.3 | Р | 10000 | _ | | | | 0.13 | Н | _ | 20000 | | | DM(105(0400) | 0.18 | E | _ | 15000 | | | ☐MK105(0402)
☐MF105(0402) | 0.2 | С | 20000 | _ | | | MF 105(0402) | 0.3 | Р | 15000 | _ | | | | 0.5 | V | 10000 | _ | | | □VK105(0402) | 0.5 | W | 10000 | _ | | | □MK107(0603) | 0.45 | K | 4000 | _ | | | □WK107(0306) ※ | 0.5 | V | _ | 4000 | | | □MF107(0603) | 0.8 | Α | 4000 | _ | | | □VS107(0603) | 0.7 | С | 4000 | _ | | | □MJ107(0603) | 0.8 | Α | 3000 | 3000 | | | □MK212(0805) | 0.45 | K | 4000 | | | | □WK212(0508) ※ | 0.85 | D | 4000 | _ | | | □MF212(0805) | 1.25 | G | _ | 3000 | | | □VS212(0805) | 0.85 | D | 4000 | _ | | | | 0.85 | D | 4000 | _ | | | □MJ212(0805) | 1.25 | G | _ | 2000 | | | | 0.85 | D | 4000 | _ | | | □MK316(1206) | 1.15 | F | _ | 3000 | | | □MF316(1206) | 1.6 | L | _ | 2000 | | | | 1.15 | F | _ | 3000 | | | □MJ316(1206) | 1.6 | L | _ | 2000 | | | | 0.85 | D | | | | | | 1.15 | F | 1 | | | | ☐MK325(1210) | 1.9 | N | 1 - | 2000 | | | □MF325(1210) | 2.0max. | Y | 1 | | | | | 2.5 | M | _ | 1000 | | | [] 1 1005(1015) | 1.9 | N | _ | 2000 | | | □MJ325(1210) | 2.5 | М | _ | 500(T), 1000(P) | | | □MK432(1812) | 2.5 | М | _ | 500 | | Note: K LW Reverse type. # **No bottom tape for pressed carrier tape Card board carrier tape Top tape Base tape Sprocket hole Chip cavity Base tape Chip cavity This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). # 3 Representative taping dimensions | Type(EIA) | Chip Cavity | | Insertion Pitch | Tape Thickness | | |---------------------|-------------|------|-----------------|----------------|----------| | Type(EIA) | Α | В | F | Т | T1 | | □MK063(0201) | 0.37 | 0.67 | | 0.45max. | 0.42max. | | □WK105(0204) ※ | | | | 0.45max. | 0.42max. | | □MK105(0402) (*1 C) | 0.65 | 1.15 | 2.0±0.05 | 0.4max. | 0.3max. | | □MK105(0402) (*1 P) | | | | 0.45max. | 0.42max. | Note *1 Thickness, C:0.2mm ,P:0.3mm. * LW Reverse type. Unit:mm | Type(EIA) | Chip | Cavity | Insertion Pitch | Tape Thickness | |---------------|------|--------|-----------------|----------------| | Type(EIA) | Α | В | F | Т | | ☐MK105 (0402) | | | | | | ☐MF105 (0402) | 0.65 | 1.15 | 2.0 ± 0.05 | 0.8max. | | □VK105 (0402) | | | | | | | • | | | Unit:mm | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | Type(EIA) | Chip (| Cavity | Insertion Pitch | Tape Thickness | | |----------------|--------|--------|-----------------|----------------|--| | Type(EIA) | Α | В | F | Т | | | ☐MK107(0603) | | | | | | | □WK107(0306) ※ | 1.0 | 1.8 | | 1.1max. | | | ☐MF107(0603) | | | 40+01 | | | | ☐MK212(0805) | 1.65 | 0.4 | 4.0±0.1 | | | | □WK212(0508) ※ | 1.65 | 2.4 | | 1.1max. | | | ☐MK316(1206) | 2.0 | 3.6 | | | | Note: Taping size might be different depending on the size of the product. X LW Reverse type. Unit:mm | Type(EIA) | Chip Cavity | | Insertion Pitch | Tape Thickness | | | |----------------|-------------|------|-----------------|----------------|----------|--| | Type(EIA) | Α | В | F | K | Т | | | ☐MK021(008004) | 0.135 | 0.07 | 1.0±0.02 | | 0.25max. | | | □VS021(008004) | 0.135 | 0.27 | | 0.5max. | | | | ☐MK042(01005) | 0.23 | 0.42 | | | | | | □VS042(01005) | 0.23 | 0.43 | | | | | Unit:mm | T (FIA) | Chip (| Cavity | Insertion Pitch | Tape Thickness | | |------------------------------|--------|--------|-----------------|----------------|----------| | Type(EIA) | Α | В | F | K | Т | | ☐MK105(0402) | 0.6 | 1.1 | 2.0±0.1 | 0.6max | 0.2±0.1 | | □WK107(0306) ※ | 1.0 | 1.8 | | 1.3max. | 0.25±0.1 | | ☐MK212(0805)
☐MF212(0805) | 1.65 | 2.4 | | | | | ☐MK316(1206)
☐MF316(1206) | 2.0 | 3.6 | 4.0±0.1 | 3.4max. | 0.6max. | | ☐MK325(1210)
☐MF325(1210) | 2.8 | 3.6 | | | | Note: ※ LW Reverse type. Unit:mm This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | Type(EIA) | Chip (| Cavity | Insertion Pitch | Tape Thickness | | |--------------|--------|--------|-----------------|----------------|---------| | | Α | В | F | K | Т | | ☐MK325(1210) | 3.1 | 4.0 | 8.0±0.1 | 4.0max. | 0.6max. | | ☐MK432(1812) | 3.7 | 4.9 | 8.0±0.1 | 4.0max. | 0.6max. | Unit:mm # 4 Trailer and Leader # ⑤Reel size | Α | В | С | D | Е | R | |------------------|-----------------|-----------------------|-------------------|---------|-----| | ϕ 178 ± 2.0 | <i>ф</i> 50min. | ϕ 13.0 \pm 0.2 | ϕ 21.0 ± 0.8 | 2.0±0.5 | 1.0 | | | T | W | |----------------|---------|--------| | 4mm wide tape | 1.5max. | 5±1.0 | | 8mm wide tape | 2.5max. | 10±1.5 | | 12mm wide tape | 2.5max. | 14±1.5 | Unit:mm # ®Top Tape Strength The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). # Multilayer Ceramic Capacitors # ■RELIABILITY DATA | | Temperature | Standard | l | | | | | | |----------------------|----------------------------------|---------------------|---------------|----------------------|----------------------------------|--|--|--| | Compensating(Class1) | | High Frequency Type | _55 to ∃ | −55 to +125°C | | | | | | | | | Specification | Temperature Range | | | | | | | | | | В | −25 to +85°C | | | | | Specified | | | BJ | X5R | −55 to +85°C | | | | | √alue | | ` | B7 | X7R | −55 to +125°C | | | | | | High Permittivity (Class2 |) | C6 | X6S | −55 to +105°C | | | | | | | | C7 | X7S | −55 to +125°C | | | | | | | | LD(※) | X5R | −55 to +85°C | | | | | | | | Note: > | LD Low distortion hi | gh value multilayer ceramic capa | | | | | | • | | | | | | | | | . Storage Co | aditions | | | | | | | | | Storage Ooi | | Standard | | | | | | | | | Temperature Compensating(Class1) | | −55 to + | −55 to +125°C | | | | | | | Compensating (Glass I) | High Frequency Type | | | | | | | | | | | | Specification | Temperature Range | | | | | C:E1 | | | BJ | В | −25 to +85°C | | | | | Specified
Value | | | | X5R | −55 to +85°C | | | | | value | High Permittivity (Class2 |) | B7 | X7R | −55 to +125°C | | | | | | ,g | , | C6 | X6S | −55 to +105°C | | | | | | | | C7 | X7S | −55 to +125°C | | | | | | | | LD(X) | X5R | −55 to +85°C | | | | | | | | Note: • | LD Low distortion hi | gh value multilayer ceramic capa | | | | | | | | | | | | | | | 3. Rated Volta | ge | | | | | | | | | | Temperature | Standard | 50VDC, 25 | SVDC, 16VDC | | | | | | Specified
Value | Compensating(Class1) | High Frequency Type | 50VDC, 25 | SVDC, 16VDC | | | | | | | High Permittivity (Class2 |) | 50VDC, 35 | 5VDC, 25VDC, 16VDC | C, 10VDC, 6.3VDC, 4VDC, 2.5VD | I. Withstandin | g Voltage(Between termina | ls) | | | | | | | | 4. Withstanding | Voltage (Between terminal | s) | | | | | | |---------------------|----------------------------|---------------------|-------------------|----------------|------------------------|--|--| | Specified
Value | Temperature | Standard | | | | | | | | Compensating(Class1) | High Frequency Type | | No breakdown o | No breakdown or damage | | | | - Value | High Permittivity (Class2) | | | | | | | | - . | | | Cla | iss 1 | Class 2 | | | | Test
Methods and | Applied voltage Ra | | Rated voltage × 3 | | Rated voltage × 2.5 | | | | Remarks | Duration | | | 1 to 5 sec. | | | | | Remarks | Charge/discharge current | | | 50mA max. | | | | | 5. Insulation Re | 5. Insulation Resistance | | | | | | | |---|--------------------------|---|--|--|--|--|--| | Specified Compensating (Class 1) High Permittivity (Class 2) | Standard | 10000 MΩmin. | | | | | | | | High Frequency Type | TOOOD IN 32 HIIII. | | | | | | | | Note 1 | C ≤ 0.047 μ F : 10000 M Ω min.
C>0.047 μ F : 500M Ω• μ F | | | | | | | Test | Applied voltage | : Rated voltage | | | | | | | Methods and | Duration | : 60±5 sec. | | | | | | | Remarks | Charge/discharge current | : 50mA max. | | | | | | [▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 6. Capacitance | (Tolerance) | | | | | | |------------------------|----------------------------------|---------------------|------------------------------|---------------------------------------|---|-------------| | Specified | Temperature Compensating(Class1) | Standard | C U SL |
0.2pF≦C≦5pF
0.2pF≦C≦10pF
C>10pF | : ±0.25pF
: ±0.5pF
: ±5% or ±10% | | | Value | | High Frequency Type | CG | 0.2pF≦C≦2pF
C>2pF | : ±0.1pF
: ±5% | | | | High Permittivity (Class2) |) | ±10% | or ±20% | | | | | Standa | | Class 1 | | Class 2 | | | - . | | | Standard High Frequency Type | | C≦10 <i>µ</i> F | C>10 µF | | Test | Preconditioning | | None | | Thermal treatment (at 150°C for 1hr) Note 2 | | | Methods and
Remarks | Measuring frequency | | 1MHz±10% | | 1kHz±10% | 120±10Hz | | Remarks | Measuring voltage Nte | | 0.5 to | 5Vrms | 1±0.2Vrms | 0.5±0.1Vrms | | | Bias application | | | | None | | | Specified | Temperature | | Standard | | C < 30pF : Q ≥ 400 + 20C
C ≥ 30pF : Q ≥ 1000 (C:Nominal capacitance) | | | | |-------------|-----------------------------------|---------------------|--------------|---------------------------------|---|-----------------------|----------|--| | Value | Compensating(Class1) | High Frequency Type | | Refer to detailed specification | | | | | | | High Permittivity (Class2) Note 1 | | | BJ, B7, C6, C7:2.5% max. | | | | | | | | | | Cla | ss 1 | Class 2 | | | | | | | Standard | | High Frequency Type | C≦10 <i>µ</i> F | C>10 µF | | | | Preconditioning | | None | | Thermal treatment (at | 150°C for 1hr) Note 2 | | | | Test | Measuring frequency | | 1MHz±10% | | 1GHz | 1kHz±10% | 120±10Hz | | | Methods and | Measuring voltage Note 1 | | 0.5 to 5Vrms | | 1±0.2Vrms | 0.5±0.1Vrms | | | | Remarks | Bias application | Bias application | | | None | | | | | | High Frequency Type | | | | | | | | | | Measuring equipment | : HP | 4291A | | | | | | | | Measuring jig | : HP | 16192A | | | | | | | 8. Temperature Chara | cteristic (Without vo | ltage application) | | | | | | | |----------------------|-------------------------------------|---------------------|-------|-----------------|--------------------|--------------------|--------------------|--| | | | | Tem | perature Charac | C] | Tolerance [ppm/°C] | | | | | | | C□: | 0 | CG | | G: ±30 | | | | Temperature
Compensating(Class1) | Standard | U□ : | — 750 | UJ, UK | | J:±120
K:±250 | | | Com | | | SL : | +350 to −100 | 0 | | | | | | | High Frequency Type | Tem | perature Charac | cteristic [ppm/° | C] | Tolerance [ppm/°C] | | | | | | C□: | 0 | CG | | G: ±30 | | | Specified
Value | | | | Specification | Capacitance | Referer | Temperature Rang | | | value | | | | оросписации | change | tempera | ture | | | | | | | В | ±10% | 20°C | -25 to +85°C | | | | | | | X5R | ±15% | 25°C | −55 to +85°C | | | High | High Permittivity (Class2) | | В7 | X7R | ±15% | 25°C | -55 to +125℃ | | | | | | C6 | XS | ±22% | 25°C | -55 to +105°C | | | | Class 1 | | C7 | X7S | ±22% | 25°C | -55 to +125℃ | | | | | | LD(※) | X5R | ±15% | 25°C | -55 to +85°C | | | | | | Note: | LD Low disto | rtion high value i | multilaver c | ceramic capacitor | | Class 1 Capacitance at 20° C and 85° C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. $$\frac{(C_{85}-C_{20})}{C_{20}\times\Delta T} \times 10^{6} (ppm/^{\circ}C) \qquad \Delta T = 65$$ Test Methods and Remarks Canadita Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation. | Step | В | X5R, X7R, X6S, X7S | | | | |------|-------------------------------|--------------------|--|--|--| | 1 | Minimum operating temperature | | | | | | 2 | 20°C | 25°C | | | | | 3 | Maximum operating temperature | | | | | $\frac{(C-C_2)}{C_2}$ × 100 (%) $\frac{C}{C_2}$: Capacitance in Step 1 or Step 3 $\frac{C_2}{C_2}$: Capacitance in Step 2 This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 9. Deflection | | | | | |--------------------|-------------------|----------------------------|----------------------------------|---| | Specified
Value | Temperature | Standard | Appearance
Capacitance change | : No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. | | | Compensating (Cla | High Frequency Typ | e Appearance Capacitance change | : No abnormality : Within \pm 0.5 pF | | | High Permittivity | (Class2) | Appearance
Capacitance change | : No abnormality
: Within ±12.5% | | | | Multilayor Car | amic Capacitors | 20 | | | | 021, 042, 063, *105 Type | The other types | | | Test | Board | | resin substrate | Board R-230 Warp | | Methods and | Thickness | 0.8mm | 1.6mm | | | Remarks | Warp | 1 | mm | 45±2 45±2 1 | | rtomarto | Duration | 10 | sec. | | | | | *105 Type thickness, C: 0. | 2mm ,P: 0.3mm. | (Unit: mm) | | | | | | Capacitance measurement shall be conducted | | | | | | with the board bent | | 10. Body Stren | gth | | | |--------------------------------|---|---------------------|-----------------------| | Specified
Value | Temperature | Standard | 1 | | | Compensating(Class1) | High Frequency Type | No mechanical damage. | | | High Permittivity (Class2) |) | | | Test
Methods and
Remarks | High Frequency 105Type Applied force : 5N Duraton : 10 sec. | Pres
← A → | Pressing Jig Chip A | | 11. Adhesive S | trength of Terminal Ele | ctrodes | | | | | | |--------------------|----------------------------|-----------------------|------------------------|---|--|--|--| | Specified
Value | Temperature | Standard | | | | | | | | Compensating(Class | 1) High Frequency Typ | e No terminal separati | No terminal separation or its indication. | | | | | | High Permittivity (Class2) | | | | | | | | | | Multilayer Cera | mic Capacitors | Hooked jig | | | | | Test | | 021, 042, 063 Type | 105 Type or more | | | | | | Methods and | Applied force | 2N | 5N | R=05 | | | | | Remarks | Duration | 30±5 | sec. |] ←Chip | | | | | | | | | Chip Chip | | | | | | | | | | | | | | 12. Solderability | / | | | | | | |---------------------|----------------------------|-------------------------------------|----------|--|--|--| | | Temperature | Standard | | | | | | Specified
Value | Compensating(Class1) | High Frequency Type At least 95% of | | east 95% of terminal electrode is covered by new solder. | | | | | High Permittivity (Class2) |) | | | | | | | | Eutectic so | older | Lead-free solder | | | | Test
Methods and | Solder type | H60A or H | 63A | Sn-3.0Ag-0.5Cu | | | | Remarks | Solder temperature | 230±5° | С | 245±3°C | | | | Remarks | Duration | | 4±1 sec. | | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 100101011100 | to Soldering | | T | | | |------------------------|-----------------------|---------------------|--|--|---| | Specified
Value | Temperature | Standard | Appearance Capacitance cha Q Insulation resista Withstanding vol | : Initial value
nce : Initial value | ±0.25pF, whichever is larger. ⇒ : No abnormality | | | Compensating(Class1 | High Frequency Type | Appearance
Capacitance cha
Q
Insulation resista
Withstanding vol | : Initial value
nce : Initial value | :) : No abnormality | | | High Permittivity(Cla | ss2) Note 1 | Appearance
Capacitance cha
Dissipation facto
Insulation resista
Withstanding vol | r : Initial value
nce : Initial value | s): No abnormality | | | | | Class 1 | | | | | | 021, 042, 063 Type | | 105 Type | <u>_</u> | | | Preconditioning | | None | | _ | | | Preheating | 150°C, 1 to 2 min. | | 0 to 100°C, 2 to 5 min.
0 to 200°C, 2 to 5 min. | | | | Solder temp. | | 270±5°C | | 7 | | | Duration | | 3±0.5 sec. | | | | est | Recovery | 6 to 24 hrs | Standard condit | on) Note 5 | | | Methods and
Remarks | | | | Class 2 | | | | | 021, 042, 063 Type | | 105, 107, 212 Type | 316, 325, 432 Type | | | Preconditioning | | Thermal treat | ment (at 150°C for 1 hr) I | Note 2 | | | Preheating | 150°C, 1 to 2 min. | | 0 to 100°C, 2 to 5 min.
0 to 200°C, 2 to 5 min. | 80 to 100°C, 5 to 10 min.
150 to 200°C, 5 to 10 min. | | | Solder temp. | | • | 270±5°C | • | | | Duration | | | 3±0.5 sec. | | | | Recovery | | 24±2 hrs | (Standard condition) Note | 5 | | 14. Temperatur | re Cycle (Thermal Shock) | | | | | | | | |--------------------------------|---------------------------|----------------|--------------|---|--|--------------------------------------|--|--| | Specified
Value | Temperature | Standard | | Capacitance change : Q : Insulation resistance : | No abnormality Within ±2.5% or ±0.25 Initial value Initial value (between terminals): N | | | | | | Compensating (Class1) | High Frequency | Туре | Appearance : No abnormality Capacitance change : Within ±0.25pF Q : Initial value Insulation resistance : Initial value Withstanding voltage (between
terminals) : No abnormality | | | | | | | High Permittivity (Class2 |) Note 1 | | Capacitance change : Dissipation factor : Insulation resistance : | No abnormality
Within ±7.5%
Initial value
Initial value
between terminals): No | o abnormality | | | | | | | C | Class 1 | Class 2 | | | | | | Preconditioning | | | None | Thermal trea | tment (at 150°C for 1 hr)
Note 2 | | | | Test
Methods and
Remarks | 1 cycle | - | Step 1 2 3 4 | Minimum operatir
Normal tem
Maximum operatin | Temperature (°C) Minimum operating temperature Normal temperature Normal temperature Time (min 30±3) Normal temperature 2 to 3 Normal temperature 2 to 3 | | | | | | Number of cycles | | | 5 | ī times | | | | | | Recovery | 6 to 24 hrs | (Stan | dard condition)Note 5 | 24±2 hrs (S | 24±2 hrs (Standard condition) Note 5 | | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). | 15. Humidity (| Steady State) | | | | | | |--------------------|------------------------------------|---------------------|---------------------------------------|--|--|--| | Specified
Value | Temperature
Compensating(Class1 | Standard | Capacitance change
Q | : No abnormality
: Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.
: C<10pF: Q\ge 200+10C
10 \le C<30pF: Q\ge 275+2.5C
C\ge 30pF:Q\ge 350(C:Nominal capacitance)
: 1000 M\Omega min. | | | | | | High Frequency Type | Capacitance change | : No abnormality
: Within ±0.5pF,
: 1000 MΩmin. | | | | | High Permittivity (Cla | ss2) Note 1 | Capacitance change Dissipation factor | : Within
: 5.0% m | normality \pm 12.5%
nax.
$2\mu \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$ | | | | | Cla | ass 1 | | Class 2 | | | | | Standard | High Frequency Type | | All items | | | Test | Preconditioning | N | lone | | Thermal treatment (at 150°C for 1 hr) Note 2 | | | Methods and | Temperature | 40±2°C | 60±2°C | | 40±2°C | | | Remarks | Humidity | 90 to | 95%RH | | 90 to 95%RH | | | | Duration | 500+2 | 4/-0 hrs | | 500+24/-0 hrs | | | | Recovery | 6 to 24 hrs (Stand | ard condition)Note 5 | | 24±2 hrs (Standard condition) Note 5 | | | 16. Humidity Lo | pading | | | | | |--------------------|---------------------------|--|---|---|--| | Specified
Value | Temperature | Standard | Appearance Capacitance change Q Insulation resistance | : Witl
: C <
C≧ | abnormality hin $\pm 7.5\%$ or ± 0.75 pF, whichever is larger. (30pF: Q \geq 100 $+$ 10C/3 \leq 30pF: Q \geq 200 (C:Nominal capacitance) 0 M Ω min. | | | Compensating (Class1) | High Frequency Type Capacitance change : C≦ | | : C≦
C> | abnormality
2pF:Within ±0.4 pF
2pF:Within ±0.75 pF
(C:Nominal capacitance)
ΜΩmin. | | | High Permittivity (Class2 | Appearance Capacitance change Dissipation factor Insulation resistance | : Wit | abnormality hin \pm 12.5% $\%$ max. M $\Omega\mu$ F or 500 M Ω whichever is smaller. | | | | | C | Class 1 | | Class 2 | | | | Standard | High Frequency Ty | ре | All items | | | Preconditioning | | None | | Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3 | | Test | Temperature | 40±2°C | 60±2°C | | 40±2°C | | Methods and | Humidity | 90 t | to 95%RH | | 90 to 95%RH | | Remarks | Duration | 500+ | 24/-0 hrs | | 500+24/-0 hrs | | | Applied voltage | Rate | ed voltage | | Rated voltage | | | Charge/discharge current | 50r | mA max. | | 50mA max. | | | Recovery | 6 to 24 hrs (Stan | dard condition)Note 5 | | 24±2 hrs(Standard condition) Note 5 | | 17. High Tempe | erature Loading | | | | | | |--------------------|-------------------------------------|---|---|---|---|--| | Specified
Value | Temperature
Compensating(Class1) | Appearance Capacitance ch Q Standard Insulation resis | | : C<10pF: Q≥200+10C
10≤C<30pF:Q≥275+2.5C
C≥30pF: Q≥350(C:Nominal capacitance) | | | | | | High Frequency Type | Appearance Capacitance change Insulation resistance | : No abnormality : Within $\pm 3\%$ or ± 0.3 pF, whichever is larger. : 1000 M Ω min. | | | | | High Permittivity (Class2 |) Note 1 | Appearance
Capacitance change
Dissipation factor
Insulation resistance | : 5.0% max. | | | | | | Class | | Class 2 | | | | | | Standard F | ligh Frequency Type | BJ, LD(※) C6 B7, C7 | | | | | Preconditioning | Nor | ne | Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4 | | | | Test | Temperature | Maximum operatir | ng temperature | Maximum operating temperature | | | | Methods and | Duration | 1000+48 | /-0 hrs | 1000+48/-0 hrs | 1 | | | Remarks | Applied voltage | Rated voltage | ×2 Note 4 | Rated voltage × 2 Note 4 | | | | Remarks | Charge/discharge current | 50mA | max. | 50mA max. | | | | | Recovery | 6 to 24hr (Standard | condition) Note 5 | 24±2 hrs(Standard condition)Note 5 | | | | | | | Note: | : XLD Low distortion high value multilayer ceramic capacitor | - | | Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail. - Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150 \pm 0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours. - Note 3 Voltage treatment: Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours. - Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information. - Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition. Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition". This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). # Precautions on the use of Multilayer Ceramic Capacitors # **■**PRECAUTIONS ### 1. Circuit Design - ◆Verification of operating environment, electrical rating and performance - 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications. Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications. ### Precautions - ◆Operating Voltage (Verification of Rated voltage) - 1. The operating voltage for capacitors must always be their rated voltage or less. - If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less. - For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less. - 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit. # 2. PCB Design Precautions - ◆Pattern configurations (Design of Land-patterns) - 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns: - (1) Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder. - (2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist. - ◆Pattern configurations (Capacitor layout on PCBs) After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses. ◆Pattern configurations (Design of Land-patterns) The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts. - (1) Recommended land dimensions for typical chip capacitors - Multilayer Ceramic Capacitors : Recommended land dimensions
(unit: mm) Wave-soldering | Туре | | 107 | 212 | 316 | 325 | | |------|---|------------|------------|------------|------------|--| | C: | L | 1.6 | 2.0 | 3.2 | 3.2 | | | Size | W | 0.8 | 1.25 | 1.6 | 2.5 | | | Α | | 0.8 to 1.0 | 1.0 to 1.4 | 1.8 to 2.5 | 1.8 to 2.5 | | | В | | 0.5 to 0.8 | 0.8 to 1.5 | 0.8 to 1.7 | 0.8 to 1.7 | | | С | | 0.6 to 0.8 | 0.9 to 1.2 | 1.2 to 1.6 | 1.8 to 2.5 | | Land patterns for PCBs # Technical considerations # Reflow-soldering | 110 | Tichow Soldering | | | | | | | | | | |------|------------------|-------------|-----------|-----------|-----------|---------|---------|---------|---------|---------| | Ту | фе | 021 | 042 | 063 | 105 | 107 | 212 | 316 | 325 | 432 | | Size | L | 0.25 | 0.4 | 0.6 | 1.0 | 1.6 | 2.0 | 3.2 | 3.2 | 4.5 | | Size | W | 0.125 | 0.2 | 0.3 | 0.5 | 0.8 | 1.25 | 1.6 | 2.5 | 3.2 | | / | 4 | 0.095~0.135 | 0.15~0.25 | 0.20~0.30 | 0.45~0.55 | 0.8~1.0 | 0.8~1.2 | 1.8~2.5 | 1.8~2.5 | 2.5~3.5 | | E | 3 | 0.085~0.125 | 0.15~0.20 | 0.20~0.30 | 0.40~0.50 | 0.6~0.8 | 0.8~1.2 | 1.0~1.5 | 1.0~1.5 | 1.5~1.8 | | (|) | 0.110~0.150 | 0.15~0.30 | 0.25~0.40 | 0.45~0.55 | 0.6~0.8 | 0.9~1.6 | 1.2~2.0 | 1.8~3.2 | 2.3~3.5 | $Note: Recommended \ land \ size \ might be \ different \ according \ to \ the \ allowance \ of \ the \ size \ of \ the \ product.$ # ●LWDC: Recommended land dimensions for reflow-soldering (unit: mm) | Type | | 105 | 107 | 212 | | |------|---|-----------|----------|---------|--| | Size | L | 0.52 | 0.8 | 1.25 | | | | W | 1.0 | 1.6 | 2.0 | | | Α | | 0.18~0.22 | 0.25~0.3 | 0.5~0.7 | | | В | | 0.2~0.25 | 0.3~0.4 | 0.4~0.5 | | | С | | 0.9~1.1 | 1.5~1.7 | 1.9~2.1 | | This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). (2) Examples of good and bad solder application - ◆Pattern configurations (Capacitor layout on PCBs) - 1-1. The following is examples of good and bad capacitor layouts; capacitors shall be located to minimize any possible mechanical stresses from board warp or deflection. | Items Not recommended | | Recommended | | | | |-----------------------|--|---|--|--|--| | Deflection of board | | Place the product at a right angle to the direction of the anticipated mechanical stress. | | | | 1-2. The amount of mechanical stresses given will vary depending on capacitor layout. Please refer to diagram below. 1-3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location. # 3. Mounting - ◆Adjustment of mounting machine - 1. When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. - 2. Maintenance and inspection of mounting machines shall be conducted periodically. - ◆Selection of Adhesives Precautions - 1. When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked: size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) . # ◆Adjustment of mounting machine - 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. - (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection. - (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads. - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement: # Technical considerations 2. As the alignment pin is worn out, adjustment of the nozzle height can cause chipping or cracking of capacitors because of mechanical impact on the capacitors. To avoid this, the monitoring of the width between the alignment pins in the stopped position, maintenance, check and replacement of the pin shall be conducted periodically. # ◆Selection of Adhesives Some adhesives may cause IR deterioration. The different shrinkage percentage of between the adhesive and the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect components. Therefore, the following precautions shall be noted in the application of adhesives. - (1) Required adhesive characteristics - a. The adhesive shall be strong enough to hold parts on the board during the mounting & solder process. - b. The adhesive shall have sufficient strength at high temperatures. - c. The adhesive shall have good coating and thickness consistency. - d. The adhesive shall be used during its prescribed shelf life. - e. The adhesive shall harden rapidly. - f. The adhesive shall have corrosion resistance. - g. The adhesive shall have excellent insulation characteristics. - h. The adhesive shall have no emission of toxic gasses and no effect on the human body. - (2) The recommended amount of adhesives is as follows; [Recommended condition] | Figure | 212/316 case sizes as examples | | |--------|----------------------------------|--| | а | 0.3mm min | | | b | 100 to 120 μm | | | С | Adhesives shall not contact land | | | | • | | # 4. Soldering Precautions Technical considerations # ◆Selection of Flux Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; - (1) Flux used shall be less than or equal to 0.1 wt% (in Cl equivalent) of halogenated content. Flux having a strong acidity content shall not be applied. - (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level. - (3) When water-soluble flux is used, special care shall be taken to properly clean the boards. # **♦**Soldering Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions. Sn-Zn solder paste can adversely affect MLCC reliability. Please contact us prior to usage of Sn-Zn solder. # ◆Selection of Flux - 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors. - 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system. - 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used. meanous and the supu This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/). # **♦**Soldering - · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. - · Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock - Preheating: Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 130°C. - · Cooling: The temperature difference between the capacitors and cleaning process shall not be greater than 100°C. # [Reflow soldering] [Recommended conditions for eutectic # [Recommended condition for Pb-free ### Caution - 1The ideal condition is to have solder mass(fillet) controlled to 1/2 to 1/3 of the thickness of a capacitor. - ②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible. soldering for 2 times. # [Wave soldering] [Recommended conditions for eutectic # [Recommended condition for Pb-free # Caution ①Wave soldering must not be applied to capacitors designated as for reflow soldering only. soldering for 1 times. # [Hand soldering] 【Recommended conditions for eutectic soldering】 # [Recommended condition for Pb-free # Caution - ①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm. - 2The soldering iron shall not directly touch capacitors. soldering for 1 times. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site
(http://www.ty-top.com/). ### 5. Cleaning Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use Precautions of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics. 1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of Technical considerations capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked: 40 kHz or less Ultrasonic output: 20 W/Q or les Ultrasonic frequency: Ultrasonic washing period: 5 min. or less # 6. Resin coating and mold # Precautions 1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance. 2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended. ### 7. Handling # ◆Splitting of PCB # Precautions 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. # 2. Board separation shall not be done manually, but by using the appropriate devices. ### ◆Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. - (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. - (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components. ### 8. Storage conditions 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. # Recommended conditions Ambient temperature : Below 30°C Humidity: Below 70% RH # Precautions The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. - ·Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. - 2. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for # Technical considerations If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors. **RCR-2335B(Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA. Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on. This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .