
CY8CKIT-040

PSoC® 4000 Pioneer Kit Guide

Doc. # 001-91316 Rev. *C

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): +1.408.943.2600

www.cypress.com

http://www.cypress.com
http://www.cypress.com

2 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Copyrights

Copyrights

© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice.
Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a
Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an
express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components
in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user.
The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such
use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by
and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty
provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom soft-
ware and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as speci-
fied in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATE-
RIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support sys-
tems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all
charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

PSoC and CapSense are registered trademarks and PSoC Components, PSoC Creator, and SmartSense are trademarks of
Cypress Semiconductor Corporation. All other products and company names mentioned in this document may be the trade-
marks of their respective holders.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Phil-
ips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard
Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semicon-
ductors.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress Datasheets. Cypress believes that its family of
products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be
methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would
be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of
their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly
evolving. We at Cypress are committed to continuously improving the code protection features of our products.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 3

Contents

 Safety Information 5

1. Introduction 7
1.1 Kit Contents ...7
1.2 PSoC Creator ..9

1.2.1 PSoC Creator Code Examples ..10
1.2.2 Kit Code Example ..11
1.2.3 PSoC Creator Help ..12

1.3 Getting Started...13
1.4 Additional Learning Resources..13
1.5 Technical Support..14
1.6 Documentation Conventions..14

2. Software Installation 15
2.1 Before You Begin...15
2.2 Install Software ..15
2.3 Install Hardware...17
2.4 Uninstall Software..18

3. Kit Operation 19

3.1 Kit Overview...19
3.2 Kit USB Connection ...21
3.3 Programming and Debugging PSoC 4000 ..22

3.3.1 Using the Onboard PSoC 5LP Programmer and Debugger22
3.3.2 Using the CY8CKIT-002 MiniProg3 Programmer and Debugger...................23

3.4 USB-I2C Bridge ...26
3.5 USB-UART Bridge ...27
3.6 Updating the Onboard Programmer Firmware ..28

4. Hardware 31

4.1 Board Details ...31
4.2 Block Diagram ...34
4.3 Kit Component Details ...35

4.3.1 CY8CKIT-040 Baseboard Components ...35
4.3.2 CY8CKIT-040 CapSense Trackpad Shield Board..49

5. Code Examples 51
5.1 Overview..51

5.1.1 Programming the Example Projects...51
5.2 Project: Blinking LED ...56

5.2.1 Project Overview ..56

4 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Contents

5.2.2 Project Description...57
5.2.3 Verify Output ..58

5.3 Project: CapSense Proximity and UART...59
5.3.1 Project Overview..59
5.3.2 Project Description...60
5.3.3 Verify Output ..69

5.4 Project: CapSense Touchpad with I2C Tuner ...76
5.4.1 Project Overview..76
5.4.2 Project Description...78
5.4.3 Verify Output ..81

5.5 Project: Color Palette...86
5.5.1 Project Overview..86
5.5.2 Project Description...86
5.5.3 Verify Output ..103

5.6 ADC in PSoC 4000..104
5.6.1 Using PSoC Creator Code example: ADC_VoltageInput.............................104

6. Advanced Topics 107

6.1 Using PSoC 5LP as a USB-I2C Bridge ...107
6.2 Using FM24W256 F-RAM ...115

6.2.1 Address Selection.. 115
6.2.2 Write/Read Operation .. 116
6.2.3 Example Firmware... 117

6.3 Using PSoC 5LP as a USB-UART Bridge ...120
6.4 Developing Applications for PSoC 5LP ...133

6.4.1 Building a Bootloadable Project for PSoC 5LP..134
6.4.2 Building a Normal Project for PSoC 5LP ...142

6.5 PSoC 5LP Factory Program Restore Instructions ...144
6.5.1 PSoC 5LP Programmed with a Bootloadable Application144
6.5.2 PSoC 5LP Programmed with a Standard Application150

6.6 Using µC/Probe Tool ...152

A. Appendix 161
A.1 CY8CKIT-040 Schematics...161
A.2 Pin Assignment Table..166
A.3 Program and Debug Headers..168
A.4 Use of Zero-ohm Resistors and No Load ..169
A.5 KitProg Status LED States ..170
A.6 Bill of Materials ..171
A.7 Trackpad/Touchpad Sticker Details...174
A.8 Regulatory Compliance Information ..174
A.9 Migrating projects across different Pioneer series kits ..175

Revision History 179

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 5

Safety Information

Regulatory Compliance

The CY8CKIT-040 PSoC® 4000 Pioneer Kit is intended for use as a development platform for
hardware or software in a laboratory environment. The board is an open system design, which does
not include a shielded enclosure. For this reason, the board may cause interference to other
electrical or electronic devices in close proximity. In a domestic environment, this product may cause
radio interference. In such cases, the user may be required to take adequate preventive measures.
Also, this board should not be used near any medical equipment or RF devices.

Attaching additional wiring to this product or modifying the product operation from the factory default
may affect its performance and cause interference with other apparatus in the immediate vicinity. If
such interference is detected, suitable mitigating measures should be taken.

The CY8CKIT-040 as shipped from the factory has been verified to meet with requirements of CE as
a Class A product.

The CY8CKIT-040 contains electrostatic discharge (ESD) sensitive
devices. Electrostatic charges readily accumulate on the human body
and any equipment, and can discharge without detection. Permanent
damage may occur to devices subjected to high-energy discharges.
Proper ESD precautions are recommended to avoid performance
degradation or loss of functionality. Store unused CY8CKIT-040
boards in the protective shipping package.

End-of-Life/Product Recycling

The end of life for this kit is five years from the date of manufacture
mentioned on the back of the box. Contact your nearest recycler to
discard the kit.

6 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Safety Information

General Safety Instructions

ESD Protection

ESD can damage boards and associated components. Cypress recommends that the user perform
procedures only at an ESD workstation. If an ESD workstation is not available, use appropriate ESD
protection by wearing an antistatic wrist strap attached to the chassis ground (any unpainted metal
surface) on the board when handling parts.

Handling Boards

CY8CKIT-040 boards are sensitive to ESD. Hold the board only by its edges. After removing the
board from its box, place it on a grounded, static free surface. Use a conductive foam pad if
available. Do not slide the board over any surface.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 7

1. Introduction

Thank you for your interest in the PSoC® 4000 Pioneer Kit. The kit is designed as an easy-to-use
and inexpensive development kit, highlighting the unique flexibility of the PSoC 4000 architecture.
Designed for flexibility, this kit offers footprint compatibility with several third-party Arduino™ shields.
In addition, the board features an RGB LED, integrated USB programmer/debugger, a program/

debug header, USB-UART/I2C bridges, a proximity header, and an Arduino-compatible CapSense®

Trackpad shield. This kit supports either 5 V or 3.3 V as power supply voltages.

The PSoC 4000 Pioneer Kit is based on the PSoC 4000 device family, delivering a programmable
platform for a wide range of embedded applications. The PSoC 4000 is the smallest member of the

PSoC 4 platform with support for CapSense, Timer Counter Pulse Width Modulator (TCPWM), I2C
master or slave, and up to 20 GPIOs. PSoC 4000 is a cost-optimized, entry-level PSoC 4 device tar-
geted as socket replacements for obsolete and/or proprietary 8-bit and 16-bit MCUs. PSoC 4000
with its ARM Cortex-M0 core provides 32 programmable peripherals including CapSense.

1.1 Kit Contents

The PSoC 4000 Pioneer Kit contains the following (see Figure 1-1):

■ PSoC 4000 Pioneer Kit board

■ Trackpad shield board with a color palette sticker

■ Quick start guide

■ USB Standard A to Mini-B cable

■ 6 jumper wires

Note: Trackpad and Touchpad denote the same in the context of this document and can be used
interchangeably.

8 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Introduction

Figure 1-1. Kit Contents

Inspect the contents of the kit; if you find any part missing, contact your nearest Cypress sales office
for help: www.cypress.com/go/support.

Download the latest version of the kit setup file from www.cypress.com/CY8CKIT-040.

http://www.cypress.com/go/support
www.cypress.com/CY8CKIT-040

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 9

Introduction

1.2 PSoC Creator

PSoC Creator™ is a state-of-the-art, easy-to-use integrated design environment (IDE). It introduces
revolutionary hardware and software co-design, powered by a library of preverified and
precharacterized PSoC Components. With PSoC Creator, you can:

1. Drag and drop Components to build your hardware system design in the main design workspace

2. Codesign your application firmware with the PSoC hardware

3. Configure Components using configuration tools

4. Explore the library of 100+ Components

5. Review Component datasheets

Figure 1-2. PSoC Creator Features

PSoC Creator also enables you to tap into an entire tool ecosystem with integrated compiler chains
and production programming programmers for PSoC devices.

For more information, visit www.cypress.com/psoccreator. Visit PSoC Creator training page for video
tutorials on learning and using PSoC Creator.

www.cypress.com/psoccreator
http://www.cypress.com/?rID=40547

10 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Introduction

1.2.1 PSoC Creator Code Examples

PSoC Creator includes a large number of code examples. These examples are available from the
PSoC Creator Start Page, as Figure 1-3 shows.

Code examples can speed up your design process by starting you off with a complete design,
instead of a blank page. The code examples also show how PSoC Creator Components can be
used for various applications. Code examples and documentation are included, as shown in
Figure 1-4 on page 11.

In the Find Example Project dialog shown in Figure 1-4 on page 11, you have several options:

■ Filter for examples based on architecture or device family, that is, PSoC 3, PSoC 4, or
PSoC 5LP; project name; or keyword.

■ Select from the menu of examples offered based on the Filter Options.

■ Review the example project’s description (on the Documentation tab).

■ Review the code from the Sample Code tab. You can copy the code from this window and paste
to your project, which can help speed up code development.

■ Create a new project (and a new workspace if needed) based on the selection. This can speed
up your design process by starting you off with a complete, basic design. You can then adapt that
design to your application.

Figure 1-3. Code Examples in PSoC Creator

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 11

Introduction

Figure 1-4. Code Example Projects with Sample Code

1.2.2 Kit Code Example

In addition to the examples built into PSoC Creator, this kit includes a simple example, which can be
used to quickly evaluate the functionality of this kit. The example is described in the Code
Examples chapter on page 51. In addition, the chapter also includes a section explaining how to use
PSoC Creator code examples with the kit by taking one example.

12 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Introduction

1.2.3 PSoC Creator Help

Visit the PSoC Creator home page to download the latest version of PSoC Creator. Then, launch
PSoC Creator and navigate to the following items:

■ Quick Start Guide: Choose Help > Documentation > Quick Start Guide. This guide gives you
the basics for developing PSoC Creator projects.

■ Simple Component example projects: Choose File > Example project.... These example
projects demonstrate how to configure and use PSoC Creator Components.

■ Starter designs: Choose File > New > Project > PSoC 4000 Starter Designs. These starter
designs demonstrate the unique features of PSoC 4.

■ System Reference Guide: Choose Help > System Reference Guides. This guide lists and
describes the system functions provided by PSoC Creator.

■ Component datasheets: Right-click a Component and select Open Datasheet, as shown in
Figure 1-5 on page 12. Visit the PSoC 4 Component Datasheets page for a list of all PSoC 4
Component datasheets.

■ Document Manager: PSoC Creator provides a document manager to help you to easily find and
review document resources. To open the document manager, choose the menu item Help >
Document Manager.

Figure 1-5. Opening Component Datasheet

http://www.cypress.com/?id=2494&source=an79953
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=377&id=4749&applicationID=0&l=0

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 13

Introduction

1.3 Getting Started

This guide helps acquaint you with the PSoC 4000 Pioneer Kit.

■ The Software Installation chapter on page 15 describes the installation of the kit software.

■ The Kit Operation chapter on page 19 explains how to program the PSoC 4 with a programmer
and debugger, either the onboard PSoC 5LP or the external MiniProg3 (CY8CKIT-002).

■ The Hardware chapter on page 31 details the hardware operation.

■ The Code Examples chapter on page 51 describes the example projects that are provided with
the kit.

■ The Advanced Topics chapter on page 107 deals with topics such as building projects for

PSoC 5LP, using onboard F-RAM, USB-UART functionality, and USB-I2C functionality of
PSoC 5LP.

■ The Appendix on page 161 provides schematics, pin assignments, information on the use of
zero-ohm resistors, troubleshooting details, and the bill of materials (BOM).

1.4 Additional Learning Resources

Cypress provides a wealth of information at www.cypress.com to help you to select the right PSoC
device for your design, and to help you to quickly and effectively integrate the device into your
design. For a comprehensive list of resources, see KBA86521, How to Design with PSoC 3, PSoC 4,
and PSoC 5LP. The following is an abbreviated list for PSoC 4:

■ Overview: PSoC Portfolio and PSoC Roadmap

■ Product Selectors: PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP. In addition, PSoC Creator includes a
device selection tool.

■ Datasheets: Describe and provide electrical specifications for the PSoC 4 device family.

■ CapSense Design Guide: Learn how to design capacitive touch-sensing applications with the
PSoC 4 family of devices.

■ Application Notes and Code Examples: Cover a broad range of topics, from basic to advanced
level. Many of the application notes include code examples. Visit the PSoC 3/4/5 Code Examples
webpage for a list of all available PSoC Creator code examples. To access code examples from
within PSoC Creator, see PSoC Creator Code Examples on page 10.

■ Technical Reference Manuals (TRM): Provide detailed descriptions of the architecture and
registers in each PSoC 4 device family.

■ Development Kits:

❐ CY8CKIT-040, CY8CKIT-042, and CY8CKIT-044 are easy-to-use and inexpensive develop-
ment platforms. These kits include connectors for Arduino-compatible shields and Digilent
Pmod peripheral modules.

❐ CY8CKIT-049 and CY8CKIT-043 are very low-cost prototyping platforms for sampling PSoC 4
devices.

❐ The MiniProg3 kit provides an interface for flash programming and debug.

■ Knowledge Base Articles (KBA): Provide design and application tips from experts on using the
device.

■ PSoC Creator Training: Visit www.cypress.com/go/creatorstart/creatortraining for a
comprehensive list of video trainings on PSoC Creator.

■ Learning From Peers: Visit www.cypress.com/forums to meet enthusiastic PSoC developers
discussing the next generation embedded systems on Cypress Developer Community Forums.

www.cypress.com
http://www.cypress.com/?id=4&rID=77024&source=an79953
http://www.cypress.com/?id=4&rID=77024&source=an79953
http://www.cypress.com/psoc
http://www.cypress.com/?rID=86788&source=an79953
http://www.cypress.com/?id=1573&source=an79953
http://www.cypress.com/?id=5041&source=an79953
http://www.cypress.com/?id=4976&source=an79953
http://www.cypress.com/?id=5044&source=an79953
http://www.cypress.com/psoccreator
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749&applicationID=0&l=0
http://www.cypress.com/?rID=78578
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=4749&applicationID=0&l=0
http://www.cypress.com/?rID=101641
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=110&id=4749&applicationID=0&l=0
http://www.cypress.com/?rID=94456
http://www.cypress.com/?rid=77780
http://www.cypress.com/?rID=108008
www.cypress.com/cy8ckit-049
www.cypress.com/cy8ckit-043
http://www.cypress.com/go/cy8ckit-002
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=118&id=4749&applicationID=0&l=0
http://www.cypress.com/go/creatorstart/creatortraining
http://www.cypress.com/forums

14 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Introduction

1.5 Technical Support

If you have any questions, you can create a support request at the Cypress Technical Support page.

If you are in the United States, you can talk to our technical support team by calling our toll-free num-
ber: +1-800-541-4736. Select option 2 at the prompt. If you are outside United States, you can talk to
our technical support team by calling: +1 (408) 943-2600 Ext. 2.

You can also use the following support resources if you need quick assistance.

■ Self-help

■ Local Sales Office Locations

1.6 Documentation Conventions
Table 1-1. Document Conventions for Guides

Convention Usage

Courier New
Displays file locations, user-entered text, and source code:
C:\ ...cd\icc\

Italics
Displays file names and reference documentation:
Read about the sourcefile.hex file in the PSoC Creator User Guide.

[Bracketed, Bold]
Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > Open
Represents menu paths:
File > Open > New Project

Bold
Displays commands, menu paths, and icon names in procedures:
Click the File icon and then click Open.

Times New Roman
Displays an equation:
2 + 2 = 4

Text in gray boxes Describes cautions or a unique functionality of the product.

http://www.cypress.com/?id=4
http://www.cypress.com/support
http://www.cypress.com/?id=1062

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 15

2. Software Installation

This section describes the installation of the CY8CKIT-040 PSoC 4000 Pioneer Kit software and the
prerequisites.

2.1 Before You Begin

All Cypress software installations require administrator privileges. However, this is not the case for
installed software. Before you install the kit software, close any other Cypress software that is cur-
rently running.

2.2 Install Software

Follow these steps to install the CY8CKIT-040 PSoC 4000 Pioneer Kit software:

1. Download the CY8CKIT-040 software.

The CY8CKIT-040 software is available in three different formats for download:

a. CY8CKIT-040 Kit Setup: This installation package contains the files related to the kit. How-
ever, it does not include the Windows Installer or Microsoft .NET framework packages. If
these packages are not on your computer, the installer directs you to download and install
them from the Internet.

b. CY8CKIT-040 Kit Only: This executable file installs only the kit contents, which include kit
code examples, hardware files, and user documents. This package can be used if all the soft-
ware prerequisites listed in step 5 are installed on your PC.

c. CY8CKIT-040 CD ISO: This file is a complete package, stored in a CD-ROM image format
that you can use to create a CD or extract using ISO extraction programs, such as WinZip or
WinRAR. The file can also be mounted like a virtual CD using virtual drive programs such as
Virtual CloneDrive or MagicISO. This file includes all the required software, utilities, drivers,
hardware files, and user documents.

www.cypress.com/CY8CKIT-040

16 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Software Installation

2. If you have downloaded the ISO file, mount it in a virtual drive. Extract the ISO contents if you do
not have a virtual drive to mount. Double-click cyautorun.exe in the root directory of the extracted
content or mounted ISO if 'Autorun from CD/DVD' is not enabledd in the PC. The installation win-
dow shown in Figure 2-1 will appear automatically. Note: If you are using the ‘Kit Setup’ or ‘Kit
Only’ file, then go to step 6 for installation.

3. Click Install CY8CKIT-040 to start the kit installation, as shown in Figure 2-1.

Figure 2-1. Kit Installer Startup Screen

4. Select the folder in which you want to install the CY8CKIT-040 kit-related files. Choose the direc-
tory and click Next.

5. When you click Next, the CY8CKIT-040 ISO installer automatically installs the required software,
if it is not present on your computer.

Following is the required software:

a. PSoC Creator 3.1 Service Pack 1 or later: Download the latest version from
www.cypress.com/psoccreator.

b. PSoC Programmer 3.22.2 or later: Download the latest version from
www.cypress.com/programmer.

www.cypress.com/psoccreator
www.cypress.com/programmer

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 17

Software Installation

6. Choose the Typical/Custom/Complete installation type in the Product Installation Overview win-
dow, as shown in Figure 2-2. Click Next after you select the installation type.

Figure 2-2. Product Installation Overview Window

7. Read and Accept the End-User License Agreement and click Next to proceed with the
installation.

8. When the installation begins, a list of packages appears on the installation page. A green check
mark appears next to each package after successful installation.

9. Enter your contact information or select the check box Continue Without Contact Information.
Click Finish to complete the CY8CKIT-040 kit installation.

10.After the installation is complete, the kit contents are available at the following location:
<Install_Directory>\CY8CKIT-040 PSoC 4000 Pioneer Kit\<version>

Default location:

Windows 7 (64-bit):
C:\Program Files (x86)\Cypress\CY8CKIT-040 PSoC 4000 Pioneer Kit\<version>

Windows 7 (32-bit):
C:\Program Files\Cypress\CY8CKIT-040 PSoC 4000 Pioneer Kit\<version>

Note: For Windows 7/8/8.1 users, the installed files and the folder are read only. To change the
property, right-click the folder and choose Properties > Attributes; disable the Read-only check
box. Click Apply and OK to close the window.

2.3 Install Hardware

There is no additional hardware installation required for this kit.

18 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Software Installation

2.4 Uninstall Software

You can uninstall the CY8CKIT-040 PSoC 4000 Pioneer Kit software using one of the following
methods:

■ Go to Start > All Programs > Cypress > Cypress Update Manager > Cypress Update Man-
ager. Select the Uninstall button that corresponds to the kit software.

■ Go to Start > Control Panel > Programs and Features (or Add/Remove Programs for Win-
dows XP). Select the Uninstall/Change button that corresponds to the kit software.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 19

3. Kit Operation

3.1 Kit Overview

The PSoC 4000 Pioneer Kit can be used to develop applications using the PSoC 4000 family of
devices. The kit includes two boards – an Arduino-compatible baseboard and a CapSense-based
Trackpad shield board. Figure 3-1 is an image of the PSoC 4000 Pioneer Kit baseboard and shield
board with a markup of the onboard components.

Figure 3-1. CY8CKIT-040 Kit Details

Proximity Header (J5)

PSoC 4 Power Supply
Jumper (J13)

Cypress F‐RAM 256 Kb

PSoC 4000 (24 QFN)

PSoC 4
Reset Button

PSoC 5LP
 I/O Header (J8)

USB Connector
(J10)

Power LED
(LED1)

RGB LED
(LED3)

LED Power
Jumper (J14)

PSoC 4 External
Program and Debug

Header (J6)

PSoC 5LP (68QFN)
Programmer and Debugger

System Power Supply
Jumper (J9)

Arduino
Compatible I/O
Header (J2)

Status LED (LED2)

Arduino
Compatible I/O
Header (J1)

Arduino
Compatible I/O
Header (J4)

Arduino
Compatible I/O
Header (J3)

20 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Kit Operation

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 21

Kit Operation

3.2 Kit USB Connection

The PSoC 4000 Pioneer Kit connects to the PC over a USB interface (see Figure 3-2). The kit enu-
merates as a composite device and three separate devices appear under the Device Manager in
the Windows operating system. See Table 3-1, and Figure 3-3.

Figure 3-2. Kit USB Connection

Table 3-1. PSoC 4000 Pioneer Kit in Device Manager After Enumeration

Figure 3-3. KitProg Driver Installation Complete

Port Description

USB Composite Device Composite device

USB Input Device USB-I2C bridge, KitProg command interface

KitProg USB-I2C bridge, programmer and debugger

KitProg USB-UART USB-UART bridge, which appears as the COM# port

22 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Kit Operation

3.3 Programming and Debugging PSoC 4000

The kit allows programming and debugging of the PSoC 4 device in two modes:

■ 3.3.1 Using the Onboard PSoC 5LP Programmer and Debugger

■ 3.3.2 Using the CY8CKIT-002 MiniProg3 Programmer and Debugger

3.3.1 Using the Onboard PSoC 5LP Programmer and Debugger

The default programming interface for the kit is a USB-based, onboard programming interface.
Before trying to program the device, PSoC Creator and PSoC Programmer must be installed. See
Install Software on page 15 for information on installing the kit software.

1. To program the device, plug the USB cable into the programming USB connector J10, as shown
in Figure 3-4. The kit will enumerate as a composite device. See Kit USB Connection on page 21
for details.

Figure 3-4. Connect USB Cable to J10

2. The onboard PSoC 5LP uses serial wire debug (SWD) to program the PSoC 4 device. See
Figure 3-5.

Note: Figure 3-5 is provided only for reference, all connections are hardwired on the board itself.

Figure 3-5. SWD Programming of PSoC 4000 Using PSoC 5LP

PSoC 5LP PSoC 4000

SWDCLK

SWDIO

Reset

P12[3]

P12[2]

P12[4]

P3[1]

P3[0]

XRES

Mini
USB D-

D+
P15[6]

P15[7]

VDD

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 23

Kit Operation

3. The kit’s onboard programmer will enumerate on the PC and in the software tools as KitProg.
Open an example project in PSoC Creator (such as Project: Blinking LED on page 56) and
initiate the build by choosing Build > Build Project or pressing [Shift] [F6]. See Figure 3-6.

Figure 3-6. Build Project in PSoC Creator

4. After the project is built without errors and warnings, choose Debug > Program or press
[Ctrl] [F5] to program the device. See Figure 3-7.

Figure 3-7. Program Device From PSoC Creator

The onboard programmer supports only the RESET programming mode. When using the onboard
programmer, the board can either be powered by the USB (VBUS) or by an external source such as
an Arduino shield (see Power Supply System on page 38). If the board is already powered from
another source, plugging in the USB programmer does not damage the board.

3.3.2 Using the CY8CKIT-002 MiniProg3 Programmer and Debugger

The PSoC 4 on the kit can also be programmed using a MiniProg3 (CY8CKIT-002). To use
MiniProg3 for programming, use the J6 connector on the board, as shown in Figure 3-8. With
MiniProg3, programming is similar to the onboard programmer; however, it enumerates as
MiniProg3 instead of KitProg.

The board can also be powered from the MiniProg3. To do so, choose Tool > Options in PSoC Cre-
ator. In the Options window, expand Program/Debug > Port Configuration; click MiniProg3 and
select the settings shown in Figure 3-9. Choose Debug > Program to program and power the
board.

24 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Kit Operation

Note The CY8CKIT-002 MiniProg3 is not part of the PSoC 4000 Pioneer Kit contents. It can be pur-
chased from the Cypress Online Store.

Figure 3-8. PSoC 4 Programming/Debug Using MiniProg3

Figure 3-9. MiniProg3 Configuration in PSoC Creator

http://www.cypress.com/?rID=38154

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 25

Kit Operation

Note: Ensure that both MiniProg3 (with or without power) on header J6 and KitProg are not con-
nected to the onboard PSoC 4 at the same time. This will result in failed device acquisition from
both.

26 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Kit Operation

3.4 USB-I2C Bridge

The PSoC 5LP also functions as a USB-I2C bridge. The PSoC 4 communicates with the PSoC 5LP
using an I2C interface, and the PSoC 5LP transfers the data over the USB to the USB-I2C software
utility on the PC called the Bridge Control Panel (BCP).

The BCP is available as part of the PSoC Programmer installation. This software can be used to
send and receive USB-I2C data from the PSoC 5LP. When the USB Mini-B cable is connected to

header J10 on the PSoC 4000 Pioneer Kit, the KitProg USB-I2C is available under Connected I2C/
SPI/RX8 Ports in the BCP, as shown in Figure 3-10.

Figure 3-10. Bridge Control Panel

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 27

Kit Operation

To use the USB-I2C functionality, select the KitProg USB-I2C in the BCP (Figure 3-10). On success-
ful connection, the Connected and Powered status boxes turn green (Figure 3-11).

Figure 3-11. KitProg USB-I2C Connected in Bridge Control Panel

USB-I2C is implemented using the USB and I2C components of PSoC 5LP. The SCL (P12_0) and
SDA (P12_1) lines from the PSoC 5LP are connected to the SCL (P1_2) and SDA (P1_3) lines of
the PSoC 4 I2C. The USB-I2C bridge currently supports I2C speed of 50 kHz, 100 kHz, 400 kHz, and
1 MHz.

See Using PSoC 5LP as a USB-I2C Bridge on page 107 for building a project that uses the USB-I2C
bridge functionality.

3.5 USB-UART Bridge

The onboard PSoC 5LP can also act as a USB-UART bridge to transfer and receive data from the
PSoC 4 device to the PC via the COM terminal software. When the USB Mini-B cable is connected
to J10 of the PSoC 4000 Pioneer Kit, a device named KitProg USB-UART is available under Ports
(COM & LPT) in the Device Manager. For more information about the USB-UART functionality, see
Using PSoC 5LP as a USB-UART Bridge on page 120.

28 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Kit Operation

To use the USB-UART functionality in the COM terminal software, select the corresponding COM
port as the communication port for transferring data to and from the COM terminal software.

The UART lines from PSoC 5LP are brought to the P12[6] (J8_9) and P12[7] (J8_10) pins of header
J8. This interface can be used to send or receive data from any design/device that has a UART by
connecting the pins on header J8 to the RX and TX pins available on the connecting device.

Note: The PSoC 4000 family that is featured in the kit board does not support a full-duplex UART; it
can support only a software-based UART transmit on any pin. On the board, P3[0] of the PSoC 4000
device is hardwired to the UART bridge's RX line through zero-ohm resistor R57.

Table 3-2 lists the specifications supported by the USB-UART bridge.

Table 3-2. Specifications Supported by USB-UART Bridge

3.6 Updating the Onboard Programmer Firmware

The firmware of the onboard programmer and debugger (KitProg), PSoC 5LP, can be updated from
PSoC Programmer. When a new firmware is available or when the KitProg firmware is corrupt (see
KitProg Status LED States on page 170), PSoC Programmer displays a warning indicating that new
firmware is available.

Open PSoC Programmer from Start > All Programs > Cypress > PSoC Programmer<version>.
When PSoC Programmer opens, a WARNING! window pops up saying that the programmer is cur-
rently out of date, as shown in Figure 3-12.

Figure 3-12. Firmware Update Warning

Parameter Supported Values

Baud rate 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200

Data bits 8

Parity None

Stop bits 1

Flow control None

File transfer protocols
supported

Xmodem, 1K Xmodem, Ymodem, Kermit, and Zmodem (only speeds greater
than 2400 baud).

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 29

Kit Operation

Click OK to close the window. On closing the warning window, the Actions and Results window dis-
plays Please navigate to the Utilities tab and click the Upgrade Firmware button, as shown in
Figure 3-13.

Figure 3-13. Upgrade Firmware Message in PSoC Programmer

30 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Kit Operation

Click the Utilities tab and click the Upgrade Firmware button. On successful upgrade, the Actions
and Results window displays the firmware update message with the KitProg version, as shown in
Figure 3-14.

Figure 3-14. Firmware Updated in PSoC Programmer

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 31

4. Hardware

4.1 Board Details

The PSoC 4000 Pioneer Kit consists of the following blocks:

■ CY8CKIT-040 baseboard (see Figure 4-1) -

❐ PSoC 4 (4000 family)

❐ PSoC 5LP

❐ Power supply system

❐ Coin cell battery holder (BT1)

❐ Programming interfaces (J6, and J10)

❐ Arduino compatible headers (J1, J2, J3, J4, and J12)

❐ PSoC 5LP GPIO header (J8)

❐ Proximity header (J5)

❐ Pioneer board LEDs

❐ Push button (Reset button)

❐ Cypress ferroelectric RAM (F-RAM)

■ CY8CKIT-040 CapSense Trackpad shield board (see Figure 4-2)

Note: Programming header J7 is not populated by default.

32 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

Figure 4-1. CY8CKIT-040 - Baseboard Details

Coin Cell
Battery Hoder (BT1)

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 33

Hardware

Figure 4-2. CY8CKIT-040 CapSense Trackpad Shield Board Details

Figure 4-3. PSoC 4000 Pioneer Kit Pin Mapping

34 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

4.2 Block Diagram

This section provides the block-level description of the PSoC 4000 Pioneer Kit, as illustrated in
Figure 4-4.

Figure 4-4. Block Diagram

PSoC 4 is a new generation of programmable system-on-chip devices from Cypress for embedded
applications. The PSoC 4000 family is the smallest member of the PSoC 4 platform with CapSense,
TCPWM, I2C master or slave, and up to 20 GPIOs support. PSoC 4000 is a cost-optimized, entry-
level PSoC4 device targeted as socket replacements for obsolete and/or proprietary 8-bit and 16-bit
MCUs. PSoC 4000 with its ARM Cortex-M0 core brings 32 CapSense and programmable peripher-
als.

The kit features an onboard PSoC 5LP, which communicates through the USB to program and
debug the PSoC 4 using SWD. The PSoC 5LP also functions as a USB-I2C bridge and USB-UART
bridge. It can also be used to develop PSoC 5LP based applications (see Developing Applications
for PSoC 5LP on page 133).

The kit includes an RGB LED, a status LED, and a power LED. The RGB LED is connected to the
PSoC 4, and the status LED is connected to the PSoC 5LP. This kit also includes a Reset button that
connects to the PSoC 4 XRES, a CapSense proximity header, and a 6x5 elements Trackpad board
that is Arduino shield-compatible and can be used to develop touch-based applications. The PSoC 4
pins are brought out onto headers J1 to J4 on the kit to support Arduino shields. The PSoC 5LP pins
are brought out onto header J8 to enable using the onboard PSoC 5LP to develop custom applica-
tions.

The PSoC 4000 Pioneer Kit can be powered from the USB Mini-B, the Arduino compatible header,
an external power supply, or an optional coin cell battery. The input voltage is regulated by a low
drop out (LDO) regulator to 3.3 V. You can select between VBUS (5 V) and 3.3 V by suitably plug-
ging the jumper onto the voltage selection header J9. VDD can also be supplied by a coin cell bat-
tery placed in the BT1 coin cell holder. The voltage supplied by the coin cell is directly connected to
the VDD line through a diode, D11. Take care to ensure that VDD does not exceed the device's VDD
specification (1.8 V to 5.5 V).

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 35

Hardware

4.3 Kit Component Details

4.3.1 CY8CKIT-040 Baseboard Components

4.3.1.1 PSoC 4

This kit uses the PSoC 4000 family device. PSoC 4 is the architecture of programmable embedded
system controllers with an ARM Cortex-M0 CPU. PSoC 4 delivers a programmable platform for
embedded applications. The CY8C40 family is the smallest member of the PSoC 4 family of devices
and is upward compatible with larger members of PSoC 4.

For more information, refer to the PSoC 4 web page and the PSoC 4000 family datasheet.

Features

■ 32-bit MCU Subsystem

❐ 16-MHz ARM Cortex-M0 CPU

❐ Up to 16 KB of flash with Read Accelerator

❐ Up to 2 KB of SRAM

■ Programmable Analog

❐ Two current DACs (IDACs) for general-purpose or capacitive sensing applications

❐ One low-power comparator with internal reference

■ Low Power 1.71-V to 5.5-V Operation

❐ Deep Sleep mode with wake-up on interrupt and I2C address detect

■ Capacitive Sensing

❐ Cypress Capacitive Sigma-Delta (CSD) provides best-in-class signal-to-noise ratio (SNR) and
water tolerance

❐ Cypress-supplied software component makes capacitive sensing design easy

❐ Automatic hardware tuning (SmartSense™)

■ Serial Communication

❐ Multimaster I2C block with the ability to do address matching during Deep Sleep and generate
a wake-up on match

■ Timing and Pulse-Width Modulation

❐ One 16-bit Timer/Counter/Pulse-Width Modulator (TCPWM) block

❐ Center-aligned, Edge, and Pseudo-Random modes

❐ Comparator-based triggering of Kill signals for motor drive and other high-reliability digital
logic applications

■ Up to 20 Programmable GPIO Pins

❐ 24-pin QFN, 16-pin SOIC, 16-pin QFN, and 8-pin SOIC packages

❐ GPIO pins on Ports 0, 1, and 2 can be CapSense or have other functions

❐ Drive modes, strengths, and slew rates are programmable

■ PSoC Creator Design Environment

❐ Integrated Development Environment (IDE) provides schematic design entry and build (with
analog and digital automatic routing)

❐ Applications Programming Interface (API) component for all fixed-function and programmable
peripherals

http://www.cypress.com/psoc4000
http://www.cypress.com/?rID=94034

36 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

■ Industry-Standard Tool Compatibility

❐ After schematic entry, development can be done with ARM-based industry-standard develop-
ment tools

4.3.1.2 PSoC 5LP

An onboard PSoC 5LP (CY8C5868LTI-LP039) is used to program and debug PSoC 4. The PSoC
5LP connects to the USB port of the PC through a USB Mini-B connector and to the SWD interface
of the PSoC 4 device.

PSoC 5LP is a true system-level solution providing MCU, memory, analog, and digital peripheral
functions in a single chip. The CY8C58LPxx family offers a modern method of signal acquisition, sig-
nal processing, and control with high accuracy, high bandwidth, and high flexibility. Analog capability
spans the range from thermocouples (near DC voltages) to ultrasonic signals. For more information,
refer to the PSoC 5LP web page.

Features

■ 32-bit ARM Cortex-M3 CPU core

❐ DC to 67-MHz operation

❐ Flash program memory up to 256 KB, 100,000 write cycles, 20-year retention, and multiple
security features

❐ Up to 32-KB flash error correcting code (ECC) or configuration storage

❐ Up to 64-KB SRAM

❐ 2-KB electrically erasable programmable read-only memory (EEPROM) memory, 1M cycles,
and 20 years' retention

❐ 24-channel direct memory access (DMA) with multilayer AHB bus access

Programmable chained descriptors and priorities

High-bandwidth 32-bit transfer support

■ Low voltage, ultralow power

❐ Wide operating voltage range: 0.5 V to 5.5 V

❐ High-efficiency boost regulator from 0.5-V input to 1.8-V to 5.0-V output

❐ 3.1 mA at 6 MHz (2.7 V to 5.5 V)

❐ Low-power modes including:

2-µA sleep mode with real-time clock (RTC) and low-voltage detect (LVD) interrupt

300-nA hibernate mode with RAM retention

■ Versatile I/O system

❐ 28 to 72 I/Os (62 GPIOs, 8 SIOs, 2 USBIOs)

❐ Any GPIO to any digital or analog peripheral routability

❐ LCD direct drive from any GPIO, up to 46×16 segments

❐ CapSense support on any GPIO

❐ 1.2-V to 5.5-V I/O interface voltages, up to four domains

❐ Maskable, independent IRQ on any pin or port

❐ Schmitt-trigger transistor-transistor logic (TTL) inputs

❐ All GPIOs configurable as open drain high/low, pull-up/pull-down, High-Z, or strong output

❐ Configurable GPIO pin state at power-on reset (POR)

❐ 25-mA sink on SIO

http://www.cypress.com/psoc5lp/

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 37

Hardware

■ Digital peripherals

❐ 20 to 24 programmable logic device (PLD)-based universal digital blocks (UDBs)

❐ Full CAN 2.0b 16 RX, 8 TX buffers

❐ Full-Speed (FS) USB 2.0 12 Mbps using internal oscillator

❐ Four 16-bit configurable timers, counters, and PWM blocks

❐ 67-MHz, 24-bit fixed point digital filter block (DFB) to implement finite impulse response (FIR)
and infinite impulse response (IIR) filters

❐ Library of standard peripherals

8-, 16-, 24-, and 32-bit timers, counters, and PWMs

Serial peripheral interface (SPI), universal asynchronous transmitter receiver (UART), and I2C

Many others available in Component catalog available in PSoC Creator IDE

❐ Library of advanced peripherals

Cyclic redundancy check (CRC)

Pseudo random sequence (PRS) generator

Local interconnect network (LIN) bus 2.0

Quadrature decoder

■ Analog peripherals (1.71 V  VDDA  5.5 V)

❐ 1.024 V ±0.1 percent internal voltage reference across –40 °C to +85 °C

❐ Configurable delta-sigma ADC with 8- to 20-bit resolution

Sample rates up to 192 ksps

Programmable gain stage: ×0.25 to ×16

12-bit mode, 192 ksps, 66-dB signal-to-noise and distortion ratio (SINAD), ±1-bit INL/DNL

16-bit mode, 48 ksps, 84-dB SINAD, ±2-bit INL, ±1-bit DNL

❐ Up to two SAR ADCs, each 12-bit at 1 Msps

❐ Four 8-bit 8 Msps current IDACs or 1 Msps voltage VDACs

❐ Four comparators with 95 ns response time

❐ Four uncommitted opamps with 25 mA drive capability

❐ Four configurable multifunction analog blocks; example configurations are programmable
gain amplifier (PGA), transimpedance amplifier (TIA), mixer, and sample and hold

❐ CapSense support

■ Programming, debug, and trace

❐ JTAG (4-wire), SWD (2-wire), single-wire viewer (SWV), and TRACEPORT interfaces

❐ Cortex-M3 flash patch and breakpoint (FPB) block

❐ Cortex-M3 Embedded Trace Macrocell™ (ETM™) that generates an instruction trace stream

❐ Cortex-M3 data watchpoint and trace (DWT) that generates data trace information

❐ Cortex-M3 Instrumentation Trace Macrocell (ITM) that can be used for printf-style debugging

❐ DWT, ETM, and ITM blocks that communicate with off-chip debug and trace systems via the
SWV or TRACEPORT

❐ Bootloader programming supportable through I2C, SPI, UART, USB, and other interfaces

38 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

■ Precision, programmable clocking

❐ 3- to 62-MHz internal oscillator over full temperature and voltage range

❐ 4- to 25-MHz crystal oscillator for crystal PPM accuracy

❐ Internal PLL clock generation up to 67 MHz

❐ 32.768-kHz watch crystal oscillator

❐ Low-power internal oscillator at 1, 33, and 100 kHz

For more information, see the CY8C58LPxxx family datasheet.

4.3.1.3 Power Supply System

The power supply system on this board is versatile, allowing the input supply to come from the fol-
lowing sources:

■ 5-V power from onboard USB programming header J10

■ 5-V to 12-V power from Arduino shield using J1_01 (VIN on J1) header

■ VTARG - power from the onboard SWD programming using J6 or J7

■ VIN - J11 (not populated by default)

■ Coin cell battery - BT1 (not populated by default)

The PSoC 4 and PSoC 5LP are powered with either a 3.3 V or 5 V source. The selection between
3.3 V and 5 V is made through the J9 jumper. The board can supply 3.3 V and 5 V to the I/O headers
and receive 3.3 V from the I/O headers (J9 should select 3.3 V for this). The board can also be pow-
ered with an external power supply through the VIN (J11) header; the allowed voltage range for the
VIN is 5 V to 12 V. The LDO regulator regulates the VIN down to 3.3 V. Figure 4-5 shows the power
supply block diagram and circuitry. In addition, there is a coin cell battery holder (BT1), which can
power the VDD line directly. The allowed voltage range supported through the coin cell battery is
between 1.8 V and 5.5 V (VDD specification of PSoC 4000 family). The BT1 holder is not populated
on the board by default. BU2032SM-BT-GTR (from Keystone Electronics) can be used for BT1. This
part supports CR2032 type coin cell batteries. Refer to the Bill of Materials on page 171 for details on
other parts that can be used for BT1.

Note: The 5-V domain is directly powered by the USB (VBUS). For this reason, this domain is unreg-
ulated.

Figure 4-5. Power Supply Block Diagram and Schematic with Protection Circuits

I/O Header

U
SB

PSoC 4

5V Vin 3.3V

PSoC 5LP

USB
5V

P4A 10pin
Debug

P5LP I/O
Header

PTC

LDO

ESD
Protection

MOSFET based
P rotection Ckt

Coin cell
Battery Holder

http://www.cypress.com/?id=4076

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 39

Hardware

40 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

Protection Circuit

The power supply rail has reverse-voltage, overvoltage, short circuits, and excess current protection
features, as seen in Figure 4-5.

■ The Schottky diode (D4) ensures power cannot be supplied to the 5-V domain of the board from
the I/O header.

■ The series protection diode (D3) ensures VIN (power supply from the I/O header) does not back
power the USB.

■ The Schottky diode (D10) ensures 3.3 V from I/O header does not back power the LDO.

■ The series protection diode (D3) ensures that the reverse voltage cannot be supplied from the
VIN to the regulator input.

■ A PTC resettable fuse is connected to protect the computer's USB ports from shorts and over
current.

■ The MOSFET-based protection circuit provides overvoltage and reverse-voltage protection to the
3.3-V rail. The PMOS Q1 protects the board components from a reverse-voltage condition. The
PMOS Q2 protects the PSoC from an overvoltage condition. The PMOS Q2 will turn off when a
voltage greater than 3.6 V is applied, protecting the PSoC 4.

■ The output voltage of the LDO is adjusted such that it takes into account the voltage drop across
the Schottky diode and provides 3.3 V.

■ Populating R46 with a zero-ohm resistor will bypass the MOSFET-based protection circuitry.

Procedure to Measure PSoC 4 Current Consumption

The following two methods are supported for measuring current consumption of the PSoC 4 device.

■ When the board is powered through the USB port (J10), remove jumper J13 and connect an
ammeter, as shown in Figure 4-6.

Figure 4-6. PSoC 4 Current Measurement When Powered From USB Port

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 41

Hardware

■ When using a separate power supply for the PSoC 4 with USB powering (regulator output on the
USB supply must be within 0.5 V of the separate power supply), remove jumper J13. Connect the
positive terminal of voltage supply to the positive terminal of the ammeter and the negative termi-
nal of the ammeter to the lower pin (P4.VDD) of J13. Figure 4-7 shows the required connections.

Figure 4-7. PSoC 4 Current Measurement When Powered Separately

Note: The RGB tricolor LED is powerd from PSoC 4 VDD only. Remove jumper J14 to measure
power consumed by PSoC 4 alone.

4.3.1.4 Programming Interface

The kit allows programming and debugging of the PSoC 4 in two modes:

■ Using the Onboard PSoC 5LP Programmer and Debugger on page 22

■ Using the CY8CKIT-002 MiniProg3 Programmer and Debugger on page 23

42 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

4.3.1.5 Arduino Compatible Headers (J1, J2, J3, J4, and J12)

This kit has five Arduino compatible headers: J1, J2, J3, J4, and J12. You can develop applications
based on the Arduino shield's hardware. An Arduino shield compatible Trackpad board is also sup-
plied with the kit.

Figure 4-8. Arduino Header

Note: The graphic LCD shield in Figure 4-8 is shown for reference only and not part of the kit.

■ The J1 header contains I/O pins for reset and power supply line.

■ The J2 header is an analog port. Because of limited analog support in PSoC 4000 family, it con-
tains general-purpose digital I/O pins only.

■ The J3 header is primarily a digital port. It contains I/O pins for PWM, I2C and general-purpose
digital.

■ The J4 header is also a digital port.

■ The J12 header is an Arduino ICSP compatible header for the SPI interface. This header is not
populated. Refer to the "No Load Components" section of Bill of Materialsfor the header part
number.

Note: The PSoC 4000 family does not support SPI in hardware, but SPI master can be implemented
on any pin using firmware bit banging.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 43

Hardware

Figure 4-9. Arduino Compatible Headers

Functionality of Unpopulated Header J12

The J12 header is a 2×3 header that supports Arduino shields. This header is used on a small sub-
set of shields and is unpopulated on the PSoC 4000 Pioneer Kit.

Note: The J12 header functions only in 5 V mode. For proper shield functionality, ensure the power
jumper (J9) is connected in 5 V mode.

44 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

4.3.1.6 PSoC 5LP GPIO Header (J8)

A limited set of PSoC 5LP pins are brought to this header. Refer to Developing Applications for
PSoC 5LP on page 133 for details on how to develop custom applications. See Pin Assignment
Table on page 166 for pin details.

Figure 4-10. PSoC 5LP GPIO Header (J8)

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 45

Hardware

4.3.1.7 CapSense Circuit

The baseboard contains a header (J5) for CapSense proximity wire connection (see Figure 4-12). A
2.2-nF capacitor (C1) is present on CMOD pin, P0[4], for CapSense operation. An optional resistor
R1 can be loaded to convert the current output from IDAC to a voltage output in non-CapSense
applications.

The board optionally supports CapSense designs that require waterproofing. Any pin that supports
CapSense in the device can be configured as a shield signal to enable waterproof operation. How-
ever, if a shield tank capacitor is required in the design, Capacitor C5 (CTANK) on the board needs
to be populated with the desired tank capacitor value and R30 connecting the Blue LED to P0_2
needs to be removed. Refer to the CapSense Design Guide for further details related to CapSense.

Note: The kit does not demonstrate the waterproof feature using the Trackpad shield board that
ships with the kit because of limited I/O availability after Trackpad and RGB LED implementation.
However, a custom shield board can be designed to use the feature.

Figure 4-11. Baseboard CapSense Circuitry

Figure 4-12. Proximity Header (J5)

http://www.cypress.com/?rid=78578

46 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

4.3.1.8 Board LEDs

The PSoC 4000 Pioneer Kit board has three LEDs. A green LED (LED2) indicates the status of the
programmer. See KitProg Status LED States on page 170 for a detailed list of LED indications. An
amber LED (LED1) indicates the status of power supplied to the board. The kit also has a general-
purpose tricolor (RGB) LED (LED3) for user applications that connect to specific PSoC 4 pins.
Jumper J14 is provided to enable/disable power to the RGB LED (LED3). The RGB LED is powered
from PSoC 4 VDD, so jumper J14 needs to be removed to measure PSoC 4 power accurately with-
out leakage and LED power.

Figure 4-13 shows the indication of all these LEDs on the board. Figure 4-14 and Figure 4-15 detail
the LED schematic.

Figure 4-13. Board LEDs

Figure 4-14. Power LED

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 47

Hardware

Figure 4-15. Status LED and RGB LED

4.3.1.9 Push Buttons

The kit contains only a Reset push button, as shown in Figure 4-16. The Reset button is connected
to the XRES pin of PSoC 4 and is used to reset the onboard PSoC 4 device. The push button con-
nects to ground on activation (active low).

Figure 4-16. Reset Push Button

48 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

4.3.1.10 Cypress Ferroelectric RAM (F-RAM)

The baseboard contains an F-RAM device (FM24W256); see Figure 4-17, which can be accessed
through I2C lines by either of the PSoC devices – PSoC 5 LP or PSoC 4 – or by both. The F-RAM is
256 Kb (32 KB) in size with the I2C speed up to 1 Mbps. The I2C slave address of the F-RAM device
is 7-bit wide, and the LSB three bits are configurable through physical pins and are hardwired to 000
on the board. By default, the address of the F-RAM device used on the board is 0x50. This can be
modified by changing the R19/R18, R17/R16, and R15/R14 pairs. Refer to Use of Zero-ohm Resis-
tors and No Load on page 169 for details on how to change the F-RAM address using these resis-
tors. The Using FM24W256 F-RAM on page 115 provides an example implementation showing how
to use this F-RAM device with PSoC 4 and share it between Bridge Control Panel over the PSoC
5LP USB-I2C bridge.

Figure 4-17. Cypress F-RAM

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 49

Hardware

4.3.2 CY8CKIT-040 CapSense Trackpad Shield Board

The kit also includes an Arduino-compatible CapSense Trackpad shield board. The Trackpad in the
kit is a 6x5 elements capacitive sensing array. Figure 4-18 shows the pin mapping of the Trackpad.

The modulation capacitor (Cmod) used for CapSense is connected to pin P0[4], and an optional
bleeder resistor (R1) can be connected across the Cmod. The Trackpad shield is Arduino-compati-
ble and can also be used with the PSoC 4 Pioneer Kit (CY8CKIT-042). The sticker on the Trackpad
shield can be redesigned according to user requirement and can be pasted on top of the Trackpad to
implement any custom, application-specific UI. The Trackpad/Touchpad Sticker Details on page 174
provides the sticker template.

Refer to the CapSense Design Guide for further details related to CapSense.

http://www.cypress.com/?rid=78578

50 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Hardware

Figure 4-18. CapSense Trackpad Shield Board

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 51

5. Code Examples

5.1 Overview

The example projects described in this chapter introduce the functionality of the PSoC 4000 device
and the onboard components. To access the examples, download and install the CD ISO image or
setup files from the kit web page as explained in Install Software on page 15. The example projects
are available at <Install_Directory>\CY8CKIT-040 PSoC 4000 Pioneer Kit\<ver-
sion>\Firmware\ after installation.

For more code examples, visit the PSoC 3, PSoC 4, and PSoC 5 code examples page. This web
page lists all PSoC Creator code examples available across application notes, kits, and PSoC
Creator.

5.1.1 Programming the Example Projects

This section is provided as a reference for programming any example project into PSoC 4 on the
board. The description of example projects shipped with the kit is from Project: Blinking LED on
page 56. Follow these steps to open and program an example project:

1. Launch PSoC Creator from the Windows Start menu (Start > All Programs > Cypress > PSoC
Creator<version> > PSoC Creator<version>).

2. Open the example project by clicking <Project_name>.cywrk below Examples and Kits > Kits
> CY8CKIT-040, as shown in Figure 5-1. CY8CKIT_040_Blinking_LED.cywrk is used as refer-
ence here.

Figure 5-1. Open Code Example from PSoC Creator

http://www.cypress.com/?rID=101641

52 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

3. Build the code example by choosing Build > Build CY8CKIT_040_Blinking_LED.cywrk to gen-
erate the hex file, as shown in Figure 5-2.

Figure 5-2. Build Project from PSoC Creator

4. To program, connect the board to a computer using the USB cable connected to port J10, as
described in Kit USB Connection on page 21. The board is detected as KitProg.

5. Choose Debug > Program from PSoC Creator, as shown in Figure 5-3.

Figure 5-3. Program Device from PSoC Creator

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 53

Code Examples

6. If the device is not yet acquired, PSoC Creator will open the Select Debug Target window.
Select KitProg/<ID> and click the Port Acquire button, as shown in Figure 5-4.

Figure 5-4. Acquire Device from PSoC Creator

7. After the device is acquired, it is listed in a tree structure below the KitProg (see Figure 5-5). Click
the Connect button.

Figure 5-5. Connect Device from PSoC Creator

54 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

8. Click OK to exit the window and start programming, as shown in Figure 5-6.

Figure 5-6. Program Device from PSoC Creator

Notes:

■ The Debug port is disabled by default in one of the example projects (Project: CapSense Proxim-
ity and UART on page 59) because it uses the P3[0] (SWDIO) pin for software TX output. If
debug is required, then change the Debug Select setting in the cydwr file to SWD, as shown in
Figure 5-8. and disable software TX in the project by commenting out the TX_ENABLE macro
present in the main.h file. The example project, Project: Color Palette on page 86, includes a soft-
ware TX, but the TX port is disabled by default. To enable the TX port, change the Debug Select
setting in the cydwr file to GPIO and uncomment the TX_ENABLE macro in the main.h file. If TX
is required along with SWD debug, then follow these steps:

a. Route TX pin to any other available pin by modifying TX_PORT/TX_PIN macro available in
main.h file of the projects.

b. Remove resistor R57 (Figure 5-7) on the board.

c. Route the TX pin selected in step 1 to pin J8_9 (P12[6]/RX line of PSoC 5LP available in J8).

■ Reset the device after plugging in the USB cable for the first time (if kit drivers are installing, then
after driver installation) when using SmartSense Auto-tuning in the project. This is because
SmartSense tunes the sensors during power-on and the presence of hand or power fluctuations
during the USB plugging will affect the tuning algorithm; it can render stuck or insensitive touch
sensors.

■ By default, when the example projects are opened for the first time, an inline error can pop up in
the main.c or main.h file against the '#include <project.h>' line. This error is temporary and
will go off when the project is built. The project.h file is generated only when the project is built,
hence the error is shown before building the project.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 55

Code Examples

Figure 5-7. R57 Location on the Board

Figure 5-8. Debug Port Pin Functionality Selection

56 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.2 Project: Blinking LED

5.2.1 Project Overview

The CY8CKIT_040_Blinking_LED.cyprj example uses a PWM block to blink the red LED of the RGB
LED, as shown in Figure 5-9. The PWM output is connected to pin P3_2 (red) of the RGB LED. The
PWM block is configured as a digital clock signal generator with a frequency of 1 Hz. The blinking
rate can be varied by changing the period and compare value of the PWM.

Figure 5-9. PSoC Creator Schematic Design of Blinking LED Project

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 57

Code Examples

5.2.2 Project Description

5.2.2.1 PSoC Creator Component Configuration

PWM (TCPWM mode)

The TCPWM Component is configured as a PWM with the parameters shown in Figure 5-10.

Figure 5-10. TCPWM Component Parameters

58 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.2.2.2 Firmware Details

Figure 5-11 shows the flow chart of code implemented in main.c.

Figure 5-11. Blinking LED Project Flow Chart

5.2.2.3 Hardware Connections

No specific hardware connections are required for this project because all connections are hard-
wired on the board. Open CY8CKIT_040_Blinking_LED.cydwr under the Source vertical tab in the
Workspace Explorer and select the suitable pin, as shown in Figure 5-12.

Figure 5-12. Pin Selection for Blinking LED Project

5.2.3 Verify Output

Build and program the code example onto the device. Observe the frequency and duty cycle of the
blinking LED. Change the period and compare value in the PWM Component, as shown in
Figure 5-10. Rebuild and reprogram the device to change the blinking rate.

Table 5-1. Pin Connection

Pin Name Port Name

PWM P3_2 (Red)

Start

Initialize and Start
PWM component

Put CPU to sleep

End

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 59

Code Examples

5.3 Project: CapSense Proximity and UART

5.3.1 Project Overview

The project CY8CKIT_040_Proximity_UART.cyprj implements a capacitive proximity sensor control-
ling the brightness of a LED. The project configures the sensor as a CapSense proximity widget with
SmartSense Auto-tuning. Firmware Details on page 63 presents the firmware flow and explains the
firmware blocks in detail.

Figure 5-13. PSoC Creator Schematic Design of PWM Project

60 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.3.2 Project Description

5.3.2.1 PSoC Creator Component Configuration

CapSense

The CapSense Component is configured in SmartSense Auto-tuning mode with one proximity sen-
sor for the design with the parameters shown in Table 5-2.

PRSm (TCPWM Mode)

The TCPWM Component is used to control the LED brightness. The CapSense proximity sensor's
signal output is used to deduce the LED brightness. Figure 5-14 shows the parameters for the
TCPWM Component. The TCPWM block is configured as a PWM in Pseudo Random Sequence
modulator (PRSm) mode with a resolution of 15 bits (fixed by the TCPWM block architecture). This
15-bit resolution of the PRSm along with a 16-MHz input clock generates a period of 500 Hz (PRS
repeat period). The output line is inverted to drive the Active Low LED. A period of 32767 is set in the

Table 5-2. CapSense Component Parameters

Parameter Tab Present Value Rationale

Tuning method

General

Auto
(SmartSense)

Automatically adjust sensitivity for different system
environments.

Threshold mode Automatic
To enable run-time threshold calculation for 5:1
SNR

Raw data noise filter First Order IIR 1/4
Filter out noise or unwanted spikes in raw count.
This setting can be tweaked based on require-
ment.

ProximitySensor0 Widgets Config -

Add a proximity sensor by clicking Proximity Sen-
sors and then clicking Add Proximity Sensor.
The only parameter that is available to modify in
this tab is debounce. This can be set or adjusted
based on system requirements.

Analog switch drive
source

Advanced

PRS-12b
Reduce EMI emission and enhance EMC immu-
nity.

Sensor auto-reset Disabled
Not required in the design. Add if required by the
application.

Low baseline reset 5
System dependent number. Configure according
to user needs.

Inactive sensor con-
nection

Ground
Make the proximity loop not pick up any charge
when not scanned

Shield Disabled Not used in the design.

Guard sensor Disabled Not used in the design.

Cmod precharge
Precharge by Vref
buffer

Vref is enough for precharging, as there is only
one sensor. Cmod voltage will not drop too low for
a fast GPIO precharge.

Sensitivity Scan Order 1

Obtain the maximum possible sensitivity using
SmartSense. The parameter controls the scan
time, so for a lower number sensitivity setting, the
scan rate will be higher. This parameter can be
adjusted depending on the response rate and
proximity range needed.

Enable Tuner helper Tuner helper Unchecked No tuner used.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 61

Code Examples

Component to generate the proper period macro for the 15-bit PRSm. Though the output of PRSm
has a variable frequency with a maximum frequency of 8 MHz (16 MHZ/2), the repeat rate of PRSm
is considered to be the period in this context.

Note: The Compare value should be a minimum of '1'; '0' will leave the LED on.

Figure 5-14. TCPWM Component Configuration - ‘PWM’ Tab

62 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

TX (Software TX UART)

The software transmit TX is used to send out proximity sensor related data for debugging. The con-
figuration for the component is shown in Figure 5-15. The TX pin is selected in firmware through
TX_PORT/TX_PIN macros defined in the main.h file. The SW TX data can be sent to the PC using
either an RS232 connector (with a voltage level translator in between) or through the USB-UART
bridge available in the CY8CKIT-040 PSoC 5 LP UART bridge, or the CY3240 bridge configured as
a UART bridge as documented in AN2397.

Figure 5-15. Software UART TX Component Parameters

Pin_LED (Digital Output Pin)

The digital output pin is used to drive the PWM output to the LED. It is a standard strong drive output
pin.

Clock_PWM (Cy_Clock)

Clock_PWM provides the clock that drives the PWM block. The clock is configured to be the maxi-
mum possible or allowed (16 MHz), so that the repeat rate of the PRSm is as high as possible for
reduced LED flickers.

GlobalSignal_WDT (Global Signal Reference with ISR)

Component used to route the WDT ISR to an ISR component. This ISR is then configured in firm-
ware for generating periodic wakeup signal using WDT during Sleep_Scan mode.

http://www.cypress.com/?rID=2784

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 63

Code Examples

5.3.2.2 Firmware Details

Firmware Structure

The firmware is written in a modular format, with different aspects of the functionality provided as
separate functions for easy understanding. The header provides a list of handy macros for configur-
ing the project's key aspects according to user requirements. The comments in the header file pro-
vide the details on the macro.

Firmware Flow Chart

Figure 5-16 shows the flow chart of code implemented in main.c.

Figure 5-16. CapSense Proximity and UART Project Flow Chart

Table 5-3. Source Files and Header Files in the CapSense Proximity Project

File Names Purpose

main.c This file contains all the function definitions used in the firmware.

main.h
This file contains all the macros used in the firmware. The details of the macros and their
usage can be found in the comments above each macro.

Start

Start the CapSense
block

Autotune Proximity
sensor parameters

Initialize Baseline of
the Proximity sensor

Setup PRSM &
UART TX Debug

output

If no Prox activity,
sleep for configured

period.
Scan the proximity

sensor

Update proximity
baseline

Is ProxSignal >
THRESHOLD?

Is ProxSignal <
SATURATION?Yes

Duty =
ProxSignal /

PROX_SCALE
Yes

Duty = 100%

No

Duty = 0%

No

Update PRSm Duty

Send Proximity data
over UART TX

Input Initialize

Output Initialize

Input Process

Input Process

Output Process
– Calculation

Output Process

– Data output

64 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

The firmware does the following:

■ The CapSense/input initialization part tunes the CapSense system parameters using
SmartSense.

■ The output initialization part configures the PWM and the software UART TX output.

■ The infinite loop code is divided into two phases: input process and output process.

❐ The input process phase scans the proximity sensor and processes the sensor signal, such
as applying filter, calculating baseline, and signal.

❐ The output process phase is also split into two phases: the data calculation and data output
subphases.

i. The data calculation subphase compares the proximity signal with a minimum and maximum
threshold defined for an approaching hand. The LED brightness is then calculated based on the
sensor's signal value relative to the thresholds. The minimum threshold generates the lowest
LED brightness, and the maximum threshold generates the highest LED brightness.

ii. The data output subphase updates the PWM compare value with the calculated brightness.
The system data such as sensor raw data, baseline, signal, and calculated LED brightness are
sent over the UART TX line.

The device monitors the activity on the proximity sensor, and if there is no activity, that is, if the hand
is out of range of the proximity, then the device enters a sleep-scan mode. The time for which the
device checks for a no activity on the sensor before entering sleep-scan mode is set to 5 seconds
and is configurable in the project (ENTER_SLEEP_COUNTS macro in main.h). In the sleep-scan
mode, the device wakes up every 100 ms and checks for any activity on the proximity sensor. This
wakeup rate is configurable by modifying the WATCHDOG_TIMER_COUNT macro in the main.h
file.

Note: There are macros defined in main.h for configuring the project based on user requirements.
The details of each macro are mentioned in comments above its definition.

Useful CapSense Component Functions/Variables

Table 5-4, Table 5-5, and Table 5-6 provide details of some useful variables, macro definitions, and
component APIs respectively. These details are also available in the CapSense component
datasheet.

Note: All reference to the API/variable/macro assume the CapSense component instance name as
‘CapSense’.

http://www.cypress.com/?rID=78827
http://www.cypress.com/?rID=78827

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 65

Code Examples

Table 5-4 provides a quick reference to some key CapSense component variables/arrays.

Table 5-4. CapSense Component Key Variables

Variable/Array Name Description Usage

uint16
CapSense_SensorRaw
[]

This array contains the raw data for each sensor.
The array size is equal to the total number of sen-
sors (CapSense_TOTAL_SENSOR_COUNT).
The CapSense_SensorRaw [] data is updated by
these functions:

• CapSense_ScanSensor()

• CapSense_ScanEnabledWidgets()

•CapSense_InitializeSensorBaseline()

• CapSense_InitializeAllBaselines()

• CapSense_UpdateEnabledBaselines()

The variable can be accessed in
any file by importing it using
‘extern uint16
CapSense_SensorRaw[];’ in the
‘.c’ or ‘.h’ file.

It is recommended not to alter
the arrays manually.

uint16
CapSense_SensorBas
eline[]

This array holds the baseline data of each sensor.
The historical count value, calculated indepen-
dently for each sensor is called the sensor's base-
line. The array’s size is equal to the total number
of sensors. The CapSense_SensorBaseline[]
array is updated by these functions:

• CapSense_InitializeSensorBaseline()

• CapSense_InitializeAllBaselines()

• CapSense_UpdateSensorBaseline()

• CapSense_UpdateEnabledBaselines().

The variable can be accessed in
any file by importing it using
‘extern uint16
CapSense_SensorBaseline[];’ in
the ‘.c’ or ‘.h’ file.

It is recommended not to alter
the arrays manually.

uint8
CapSense_SensorSign
al[]

This array holds the sensor signal count com-
puted by subtracting the previous baseline from
the current raw count of each sensor. Each array
element corresponding to a sensor will have the
difference value only if the value is above the
noise threshold of the sensor. Otherwise, it will be
0. The array size is equal to the total number of
sensors. The CapSense_SensorSignal[] array is
updated by these functions:

• CapSense_InitializeSensorBaseline()

• CapSense_InitializeAllBaselines()

• CapSense_UpdateSensorBaseline()

• CapSense_UpdateEnabledBaselines().

The variable can be accessed in
any file by importing it using
‘extern uint8
CapSense_SensorSignal[];’ in
the ‘.c’ or ‘.h’ file.

It is recommended not to alter
the arrays manually.

66 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

Table 5-5 provides a quick reference to some key CapSense component macro definitions.

Table 5-6 provides a quick reference to some key CapSense component APIs and their usage.

Table 5-5. CapSense Component Macros

Macro Format Sample Description

CapSense_TOTAL_SENS
OR_COUNT

–
Defines the total number of sensors
within the CapSense component.

CapSense_SENSOR_”WI
DGET_NAME”_<ELE-
MENT+ELEMENT_NUMB
ER>__”WIDGET_TYPE”

• CapSense_SENSOR_TP1_ROW0__TP

• CapSense_SENSOR_LS0_E0__LS

• CapSense_Sensor_BTN1__BTN

The constant denotes the sensor
number of a sensor in the CapSense
block.

WIDGET_TYPE:

BTN – buttons

LS – linear sliders

RS – radial sliders

TP – touchpads

PROX – proximity sensors

MB – matrix buttons

GEN – generic sensors

GRD – guard sensors

CapSense_”WIDGET_NA
ME”__”WIDGET_TYPE”

• CapSense_TP1__TP

• CapSense_LS0__LS

• CapSense_BTN1__BTN

The constant denotes the widget
number of a widget in the CapSense
block.

Table 5-6. CapSense Component APIs

API Description/Usage

void
CapSense_EnableWidget(uint32
widget)

The API enables the selected widget sensors to be part of the scanning
process.

Proximity widgets are disabled by default in the component; the user
needs to call this API along with the proximity widget number to enable
the same to be included in the scanning process.

void CapSense_Start(void)
The API enables the CapSense block and tunes the sensors if
SmartSense or Auto-calibration is used.

It should be called before using the CapSense block for sensing.

void
CapSense_InitializeAllBaselines(voi
d)

The API initializes the CapSense_sensorBaseline[] array with values
obtained by scanning all sensors.

It should be called after starting the CapSense block and before starting
the scan for detecting touches.

void
CapSense_InitializeSensorBaseline
(uint32 sensor)

The API initializes the CapSense_sensorBaseline[sensor] array ele-
ment with values obtained by scanning the selected sensor.

It can be used initialize each baseline individually.

void
CapSense_ScanEnabledWidgets(v
oid)

The API starts scanning a sensor within the enabled widgets. The ISR
continues scanning sensors until all enabled widgets are scanned. Use
of the ISR ensures this function is non-blocking. After each sensor scan
is complete, the ISR copies the measured sensor raw data to the
CapSense_SensorRaw[] array.

This is the preferred scanning method if there are multiple widgets in the
design.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 67

Code Examples

void CapSense_ScanWidget(uint32
widget)

The API sets the CapSense block settings for the selected widget and
starts scanning the widget.

It can be used if scanning of only an individual widget is desired.

void CapSense_ScanSensor(uint32
sensor)

The API scans the selected sensor. After scanning is complete, the ISR
copies the measured sensor raw data to the
CapSense_SensorRaw[sensor] array element.

It can be used to perform individual sensor scanning.

uint32 CapSense_IsBusy(void)

The API returns the status of sensor scanning.

After calling any of the scan APIs, this API can be used to check
whether the triggered scan is complete.

Returns

‘1’ if scan is in progress

‘0’ if scan is complete

void
CapSense_UpdateSensorBaseline(
uint32 sensor)

The API filters the CapSense_SensorRaw[sensor] element using the fil-
ter selected in the component. It updates the
CapSense_SensorBaseline[sensor] element using a low-pass filter with
k = 256 on the filtered CapSense_SensorRaw[sensor] value.

This API should be called after completion of the ScanSensor() API,
before checking for any activity on the sensor.

void
CapSense_UpdateEnabledBaseline
s(void)

The API applies selected filter to the CapSense_SensorRaw[] array and
updates the CapSense_SensorBaseline[] array of all the sensors pres-
ent in the enabled widgets.

This API should be called after the completion of the ScanEnabledWid-
gets() API before checking for any activity on any of the sensors.

uint32
CapSense_CheckIsWidgetActive(ui
nt32 widget)

The API compares the selected sensor CapSense_Signal[] array value
to its finger threshold. Hysteresis and debounce are applied to deter-
mine if a sensor in the selected widget is active.

This API should be called after the UpdateSensorBaseline() or Upda-
teEnabledBaselines() API to check if any sensor in the widget is active.

Returns

‘1’ if one or more sensors within the widget are active

‘0’ if all sensors within the widget are inactive

uint32
CapSense_CheckIsAnyWidgetActiv
e(void)

The API performs the same task as CapSense_CheckIsWidgetActive()
on all the enabled widgets.

This API should be called after the UpdateEnabledBaselines() API or
after updating the baseline of all enabled sensors/widgets, to check if
any of the sensors is active in all the enabled widgets.

Returns

‘1’ if any widget is active

‘0’ if all the widgets are inactive

Table 5-6. CapSense Component APIs

API Description/Usage

68 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.3.2.3 Hardware Connections

A wire in the form of a loop is connected to jumper J5 (P2_0), as shown in Figure 5-17. To enable the
UART TX connection to the PSoC 5LP USB-UART bridge, make sure R57 is populated on the board
(by default it is populated on the board). No other hardware connections are required for this project.
All other connections are hardwired on the board.

Note: The proximity distance depends on the diameter of the wire loop. The larger the diameter, the
greater the distance. Take care while creating the loop because a larger loop tends to pick up more
noise. If the wire shipped with the kit (4 inches in length) is wound to form a loop of 1 to 2 inch diam-
eter, the proximity range will be approximately the same as the loop diameter for a fast approaching
hand. To obtain a higher range, use a longer wire/bigger loop. Also, do not plug the wire loop after
the device is programmed/powered, as the firmware tunes the proximity sensor during reset. Plug-
ging the wire after a reset will be detected as change in capacitance, and the LED will be always on.
Always do a reset after plugging in the wire loop if the device was already programmed.

Figure 5-17. CapSense Proximity Example - Hardware Setup

Open CY8CKIT_040_Proximity_UART.cydwr in the Workspace Explorer and select the suitable
pins, as shown in Figure 5-18.

Table 5-7. Pin Connections

Pin Name Port Name

Proximity Pin P2_0

CMOD Pin P0_4

LED Pin P3_2 (Red)

UART TX Pin P3_01

1. Selected in firmware

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 69

Code Examples

Figure 5-18. Pin Selection for Proximity Project

5.3.3 Verify Output

Build and program the code example, and reset the device. Observe the red LED intensity changing
as you move your palm toward the proximity wire loop. The UART TX data can be viewed through
the BCP, as explained in 5.3.3.1 UART Data Viewing.

Figure 5-19. CapSense Proximity Example Output

5.3.3.1 UART Data Viewing

One UART packet size is 13 bytes, which includes 8 bytes of data, 2 bytes of header, and 3 bytes of
footer. The 2-byte header precedes the data bytes; in the design it is 0x0D and 0x0A. The 3-byte
footer follows the data bytes and in this design consists of 0x00, 0xFF, and 0xFF. The data bytes
consists of proximity sensor raw counts (RC), baseline (BL), and signal (SIG) along with the calcu-
lated PWM duty (DUTY). Table 5-8 shows the UART TX data packet structure.

Follow these steps to set up the BCP for viewing the data:

1. Open the BCP software available from All Programs > Cypress > Bridge Control Panel <ver-
sion> > Bridge Control Panel <version>.

Table 5-8. UART TX Data Packet Structure

Header Data

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6

0x0D 0x0A RC_MSB RC_LSB BL_MSB BL_LSB SIG_MSB

Data Footer

BYTE 7 BYTE 8 BYTE 9 BYTE 10 BYTE 11 BYTE 12

SIG_LSB DUTY_MSB DUTY_LSB 0x00 0xFF 0xFF

70 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

2. Route the TX pin of the device to any available RX that can connect to the PC COM port. CY3240
(refer to AN2397), or KitProg in CY8CKIT-040 can be used for this purpose.

Note: In CY8CKIT-040, Pin 3_0 is routed directly to the RX pin of the PSoC 5 LP USB-UART
bridge through a zero-ohm resistor. Pin 3_0 can be used as TX, and is available only by disabling
the debug feature of the chip. If the debug feature is required along with TX, then the zero-ohm
resistor connecting the TX and RX should be removed. Any free GPIO can be used as the TX for
the device and can be routed to the RX pin of PSoC 5 LP externally (see the last step of
Programming the Example Projects on page 51 for details)

3. In the BCP software, click the COM port to which you have connected the data. In this case, it is
KitProg's COM, as shown in Figure 5-20.

Figure 5-20. KitProg COM Port in Device Manager

http://www.cypress.com/?rID=2784

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 71

Code Examples

4. Select the COM port and RX8 as the protocol, as shown in Figure 5-21.

Figure 5-21. Bridge Control Panel - COM Port and Protocol Selection

5. Choose Tools > Protocol Configuration or press [F7] and configure the RX8 protocol parame-
ters, as shown in Figure 5-22.

Figure 5-22. RX8 Protocol Configuration

72 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

6. Choose Chart > Variable Settings and set the variable names and types, as shown in
Figure 5-23. Or click Load and then select the CapSense Proximity UART - Variable.ini file sup-
plied with the project (...\Firmware\PSoC 4\Bridge Files\) in the Open window that
appears. Click OK to exit.

Figure 5-23. Bridge Control Panel - Variable Settings

7. Choose File > Open File and select the CapSense Proximity UART - Editor.iic file supplied with
the project from the ...\Firmware\PSoC 4\Bridge Files\ folder (as shown in
Figure 5-24). Alternatively, go to Editor and type or copy the following command:
rx8 [h=0D 0A] @1RawCount @0RawCount @1Baseline @0Baseline @1Signal @0Signal @1Duty @0Duty [t=00 ff ff]

Figure 5-24. Open *.iic File in Bridge Control Panel

OR

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 73

Code Examples

8. Click the command line and then click Repeat, as shown in Figure 5-25 to start receiving the
packets (make sure you have powered the device and programmed with the project's firmware,
the TX is connected to the RX line of the COM, and the COM port is selected in the BCP).

Figure 5-25. Bridge Control Panel - Protocol Execution

74 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

9. You should start receiving data. Click the Chart tab to view the graph, as shown in Figure 5-26.

Figure 5-26. Bridge Control Panel - Chart for Viewing Debug Data
Signal

LED Intensity (PRSm duty cycle)

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 75

Code Examples

Raw count and Baseline

76 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.4 Project: CapSense Touchpad with I2C Tuner

5.4.1 Project Overview

The project CY8CKIT_40_CapSense_I2C.cyprj demonstrates the implementation of a CapSense
Trackpad using SmartSense and an EzI2C-based CapSense Tuner window for viewing the Track-
pad coordinates. The project is a simple implementation using SmartSense (minimal tuning). The
EzI2C block of PSoC 4000 is interfaced through the PSoC 5LP based USB-I2C bridge to the PC
GUI. The project uses the SmartSense feature, which sets all CapSense parameters to the optimum
values automatically. The parameter settings can be monitored in the GUI but cannot be altered. In
the manual tuning method, parameter settings can be changed in the GUI, and the resulting output
can be seen (refer to the CapSense Design Guide and CapSense Component datasheet for more
details on manual tuning).

Note: This project requires the Trackpad shield board to be plugged into the PSoC 4000 Pioneer Kit
baseboard, as shown in Figure 5-27.

Figure 5-27. Kit Setup With Trackpad

http://www.cypress.com/?rid=78578

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 77

Code Examples

Figure 5-28. PSoC Creator Schematic Design of CapSense Trackpad Project with I2C Tuner

78 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.4.2 Project Description

5.4.2.1 PSoC Creator Component Configuration

CapSense

The CapSense Component is configured in SmartSense Auto-tuning mode with a 6x5 CapSense
touchpad widget for the design, according to the parameters given in Table 5-9.

Table 5-9. CapSense Component Parameters

Parameter Tab Present Value Rationale

Tuning method

General

Auto(SmartS
ense)

Automatically adjust sensitivity for different system environ-
ments.

Threshold mode Automatic Enable run-time threshold calculation for 5:1 SNR

Raw data noise
filter

First Order
IIR 1/4

Filter out noise or unwanted spikes in raw count. This setting
can be tweaked based on requirement.

TouchPad0
Widgets Con-
fig

- Add and configure the touchpad as shown in Figure 5-29.

Analog switch
drive source

Advanced

PRS-Auto Reduce EMI emission and enhance EMC immunity.

Sensor auto-
reset

Disabled Not required in the design. Add if required by the application.

Low baseline
reset

5
System-dependent number. Configure according to user
needs.

Inactive sensor
connection

Ground
Make the proximity loop not pick up any charge when not
scanned.

Shield Disabled Not used in the design.

Guard sensor Disabled Not used in the design.

Cmod precharge
Precharge by
Vref buffer

Vref is enough for precharging, as there is only one sensor.
Cmod voltage will not drop too low for a fast GPIO precharge.

Sensitivity Scan Order 5
Select all the sensors by pressing and holding [CTRL] or
[Shift] key and clicking on all the sensors. When selected,
enter a value in the Sensitivity field.

Enable Tuner
helper

Tune helper
Enabled/
Checked

Name = 'SCB'

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 79

Code Examples

Figure 5-29. CapSense Touchpad Parameters

SCB (EzI2C Mode)

The Serial Communication Block (SCB) configured in EzI2C mode is used for the CapSense Tuner.
The parameters of the component are shown in Figure 5-30.

Figure 5-30. SCB (EZI2C Mode) Component Parameters

80 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.4.2.2 Firmware Details

Figure 5-31 shows the flow chart of code implemented in main.c.

Figure 5-31. CapSense Touchpad With I2C Tuner Project Flow Chart

5.4.2.3 Hardware Connections

Plug the Trackpad shield board into the Arduino headers of the kit, as shown in Figure 5-27. Other
connections are hardwired on the board.

Open CY8CKIT_040_CapSense_I2C.cydwr in the Workspace Explorer and select the suitable pin.

Table 5-10. Pin Connection1

1. Trackpad_X0 (Touchpad0_Col0_TP) to Trackpad_X5 (Touchpad0_Col5_TP) maps to
COL5 to COL0 of the Trackpad so as to make the Trackpad x-axis left aligned.

Pin Name Port Name

CMOD P0_4

Trackpad_X0 P0_3

Trackpad_X1 P0_7

Trackpad_X2 P0_6

Trackpad_X3 P0_5

Trackpad_X4 P0_0

Trackpad_X5 P0_1

Trackpad_Y0 P1_4

Trackpad_Y1 P1_5

Trackpad_Y2 P1_6

Trackpad_Y3 P1_0

Trackpad_Y4 P1_7

I2C_SCL P1_2

I2C_SDA P1_3

Initialize CapSense and
Enable Tuner

Process CapSense and
Send data over tuner

Start

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 81

Code Examples

Figure 5-32. Pin Selection for CapSense I2C Project

5.4.3 Verify Output

Build and program the code example and reset the device. Launch the CapSense Tuner window as
explained in the following steps.

5.4.3.1 Launching Tuner Window

The Tuner window from PSoC Creator must be up and running for the code example to work. To
launch the GUI, follow these steps:

1. Go to the project's TopDesign.cysch file, as shown in Figure 5-33.

Figure 5-33. Top Design File

82 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

2. To launch the Tuner, right-click the CapSense Component in PSoC Creator and click Launch
Tuner, as shown in Figure 5-34.

Figure 5-34. Launch Tuner

3. The Tuner window opens. Click Configuration to open the configuration window, as shown in
Figure 5-35.

Figure 5-35. Tuner Window

4. Set the I2C communication parameters, as shown in Figure 5-36.

Figure 5-36. I2C Communication

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 83

Code Examples

5. Click OK to apply the settings.

5.4.3.2 Verify Output

1. To start the scanning and communication process, click Start in the Tuner window, as shown in
Figure 5-37.

Figure 5-37. Start Communication

2. Select a sensor in the Tuning tab. A red outline is displayed on the selected sensor. Different
CapSense parameters are shown on the bottom right. You cannot edit the settings because auto-
tuning is used in this project; auto-tuning automatically sets all the parameters. Touch the
selected sensor and observe the response in the Tuner window.

Figure 5-38. Widget Testing

3. In the Graphing tab, the CapSense data – Raw counts, Baseline, and Signal (difference count)
for each sensor are represented as a graph.

84 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

4. Select the sensor parameters to observe, as shown in Figure 5-39. The graph of the selected
parameters appears.

Figure 5-39. Sensor Parameter Graph

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 85

Code Examples

5. Touch a sensor or slider element and see the increase in Raw count and Signal, as shown in
Figure 5-40.

Figure 5-40. Raw Count Increase

86 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.5 Project: Color Palette

5.5.1 Project Overview

The project CY8CKIT_040_Color_Palette.cyprj demonstrates the capability of PSoC 4000 device to
interface with a capacitive Trackpad and control an RGB LED based on the color selected by touch-
ing the sticker on top of the Trackpad. The sticker will also include a slider area (part of Trackpad),
which will control the color brightness of the RGB LED. The project will demonstrate the proximity
sensing capability of the device using a wire. The LED intensity control is done using software Preci-
sion Illumination Signal Modulator (PrISM). The project details are discussed in Firmware Details on
page 91. Figure 5-41 shows the top design schematic of the project.

Figure 5-41. PSoC Creator Schematic Design of Color Palette Project

5.5.2 Project Description

5.5.2.1 PSoC Creator Component Configuration

CapSense:

The CapSense Component is configured in SmartSense Auto-tuning mode with one 6x5 touchpad,
one dedicated proximity sensor, and a dummy/gang proximity sensor for the design with the param-
eters shown in Table 5-11.

Refer to the PSoC 4 CapSense Design Guide or the CapSense component datasheet for details on
various widgets used and parameters.

http://www.cypress.com/?rID=78578
http://www.cypress.com/?rID=78827

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 87

Code Examples

Table 5-11. CapSense Component Parameters

Parameter Tab Present Value Rationale

Tuning method

General

Auto(SmartSense)
Automatically adjust sensitivity for different system
environments.

Threshold mode Automatic Enable run-time threshold calculation for 5:1 SNR.

Raw data noise
filter

First Order IIR 1/8
Filter out noise/unwanted spikes in raw count. This
setting can be tweaked based on requirement.

TouchPad0

Widgets Config

–
Add and configure the touchpad as shown in
Figure 5-42.

ProximitySensor
0

–
Add and configure a proximity sensor as shown in
Figure 5-42.

ProximitySensor
1

–

Add and configure a proximity sensor (Gang) as
shown in Figure 5-42. Note that this sensor is a
dummy sensor, which is ganged with the row ele-
ments of the touchpad for wakeup.

Analog switch
drive source

Advanced

PRS-Auto
For reduced EMI emission and enhanced EMC
immunity.

Sensor auto
reset

Disabled
Not required in the design. Can be added if
required by the application.

Low baseline
reset

5
System dependent number. Can be configured as
per the user needs.

Inactive sensor
connection

Ground
Make sure the proximity loop does not pick up any
charge when not scanned.

Shield Disabled Not used in the design.

Guard sensor Disabled Not used in the design.

Cmod pre-
charge

Precharge by Vref
buffer

Vref is enough for precharging here, as there is
only one sensor, Cmod voltage will not drop too
low for a fast GPIO precharge.

Sensitivity

Scan Order

4

Select all the sensors by pressing and holding
[CTRL] or [Shift] and clicking on all the touchpad
sensors. When selected, enter the value in the
Sensitivity field.

1
Click ProximitySensor0 and set sensitivity as ‘1’
for maximum range.

5
Click ProximitySensor1 and set sensitivity as ‘5’
for minimum resolution of scan during sleep scan
for reduced power consumption.

Sensor ganging -
Gang the touchpad row elements to
ProximitySensor1 as shown in Figure 5-43.

Enable Tuner
helper

Tuner Helper Disabled/unchecked No tuner used.

88 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

Figure 5-42. CapSense Touchpad Parameters

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 89

Code Examples

Figure 5-43. Scan Order Tab in CapSense Component Configure Window

90 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

TX (SW TX UART)

The software transmit TX is used to send out sensor data for debugging if enabled in firmware (refer
to main.h in the project). The configuration for the component is shown in Figure 5-44. The SW TX
can be sent over to PC using either an RS-232 connector (with a voltage level translator in between)
or through USB-UART bridge available in CY8CKIT-040 PSoC 5 LP UART Bridge or CY3240 bridge
configured as UART bridge, as documented in AN2397. The TX pin, if enabled, is configured in firm-
ware through TX_PORT and TX_PIN macro available in main.h.

Note: By default, P3[0] is used for TX in firmware and P3[0] is hardwired in CY8CKIT-040 to the
PSoC 5LP USB-UART bridge's RX line. So SWD debug cannot be used if P3[0] is used for TX and
is enabled in firmware. Refer to the last step in Programming the Example Projects on page 51 for
details on how to use SWD debug and TX in the same project.

Figure 5-44. Software UART TX Component Parameters

RGB_PRSm_<Color> (Digital Output Pin)

To drive the software PrISM output to the respective <color> LEDs. It is a standard strong drive firm-
ware controlled output pin.

GlobalSignal_WDT (Global Signal Reference with ISR)

This component is used to route the WDT ISR to an ISR Component. This ISR is then configured in
firmware for generating periodic wakeup signal using WDT during Sleep_Scan mode.

http://www.cypress.com/?rID=2784

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 91

Code Examples

5.5.2.2 Firmware Details

Firmware Structure

The color palette firmware is written in a modular format with different aspects of the functionality
provided in separate functions, source, and header files. This enables users to understand the firm-
ware structure better and to modify the firmware easily to meet the application requirements. The
key aspects of the firmware can be modified to meet a different application requirement using vari-
ous macros defined in the main.h file.

Table 5-12. Source Files and Header Files in the Color Palette Project

File Names Purpose

RGB_PRSm.c,

RGB_PRSm.h
These files contain the implementation of the software PRS modulator, which controls the
LED intensity.

main.c This file contains all the function definitions used in the firmware.

main.h
This file contains all the macro definitions, imported variables, and exported function decla-
rations. Key aspects of the firmware can be modified by changing the macro values in this
file.

92 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

Firmware Flow Chart

Figure 5-45 shows the flow chart of code implemented in main.c.

Figure 5-45. Color Palette Project Flow Chart

Start

While(1) Loop

Enable proximity and
initialize all blocks
(CSD, PrISM, Debug
Interface, and WDT)

Switch(MODE)

SLEEP_SCAN PROX_SCAN ACTIVE

A B C

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 93

Code Examples

Scan Proximity
Sensor

Is it active?Scan Gang Sensor No

Mode = PROX_SCAN
and exit sleep scan

Yes

End of loop

A

Scan all sensors
including Prox

Is Prox Active?
Mode = SLEEP_SCAN
and Enter Sleep ScanNo

End of loop

Is Any Sensor
Active?

Yes

Update PrISM
duty based on
previous color
and proximity

distance

Mode = ACTIVE

Yes

End of loop

No

B

Is it active?

Mode = ACTIVE
and Exit sleep scan

Yes

Sleep No

94 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

Scan all sensors
excluding Prox

Get Trackpad
position

Update PrISM duty
based on color and
brightness level

Process co‐
ordinates to
obtain color

and brightness
detail

Is any sensor
active?

Yes

Increment NO_ACT
counter

No

Is NO_ACT > 5
secs?

Mode =
SLEEP_SCAN

and enter sleep
scan

Yes

Reset NO_ACT to 0 End of loop

No
Is NO_ACT > 2.5

secs?

Yes

Start dimming LED

No

C

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 95

Code Examples

Firmware Implementation Details

The firmware consists of three different modes: active scanning (ACTIVE_SCAN), sleep scanning
(SLEEP_SCAN), and proximity scanning (PROX_SCAN)

■ Active Scanning: Active scanning primarily performs two tasks:

❐ Scans the touchpad

❐ Updates the color based on touchpad activity

Scanning the touchpad sensors along with the proximity sensor, if enabled, in turn performs two sub-
tasks:

❐ Keeps the device in active scan mode

❐ Calculates the touch coordinate itself

Any activity on the touchpad or proximity sensor keeps the device in active scanning mode. If all
activity ceases, the firmware will fade off the RGB color displayed and enter sleep scanning mode.
The timeline at which the LED fades from last detected touch/proximity activity is defined by the
macro LED_DIM_THRESHOLD. The LED_DIM_RATE macro defines the rate at which LED dim-
ming is done. Refer to the main.h file for details on various macros used and their usage.

Figure 5-46 and Figure 5-47 show the two different color selection models implemented in the proj-
ect. The two options are selectable using DO_SATURATION macro defined in main.h.

Figure 5-46. Hue and Brightness Control Implementation Model (default model)

Figure 5-47. Hue, Saturation and Value (HSV) Implementation Model

96 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

Figure 5-48 through Figure 5-51 explain the process of generating the intensity levels for the RGB
LEDs. The color palette and the saturation slider are both part of the Trackpad area. The following
steps summarize the flow.

1. The Trackpad coordinates are obtained as shown in the mapping in Figure 5-48. Figure 5-49
shows various macro definitions used in the firmware (main.h) with respect to the Trackpad/color
palette area.

Figure 5-48. Trackpad Coordinate Selection

Figure 5-49. Macro Definitions Along X-Y Axis

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 97

Code Examples

2. Intensity levels of the RGB colors, before applying saturation, are calculated as shown in
Figure 5-50. Along the X-Pos, the color palette is divided into six windows. In each window, one
color is at maximum brightness, one is at minimum brightness, and one moves from maximum to
minimum or vice versa. The macros shown in Figure 5-49 mark these window boundaries.
<color>_AREA_CENTER marks the center of a <color> window on whose either side the <color>
will be at maximum intensity. <color>_LIMIT_LEFT/<color>_LIMIT_RIGHT macros mark the
edge of each <color>'s area inside which it is at maximum intensity.

Along Y-Pos, each color's intensity moves towards half-intensity level (50 percent) from the inten-
sity level selected along X-Pos (x percent). The color levels are first calculated along the X-Pos
using the window rule and X coordinate. The color thus obtained is then processed with the Y
coordinate.

Figure 5-50. Intensity Calculation Based on X and Y in Color Palette

98 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

3. After the primary color intensities (from the color palette) are derived from step 2, either the
brightness level or the saturation level selected by the slider is applied. The selection between
brightness and saturation is done using DO_SATURATION macro defined in main.h.

a. Disabling/commenting out the DO_SATURATION macro applies brightness control on the
color. Brightness control is a simple scaling of the three color intensities, derived at step 2,
using slider output. Default brightness value at power on is 100% or maximum.

b. Enabling the DO_SATURATION macro applies saturation as explained in Figure 5-51. In sat-
uration control, if the slider output is at half value, the intensities are retained. If it is less than
half value, all the intensities move towards the minimum intensity (black/darker). If it is more
than half value, all the intensities move towards the maximum intensity (white/brighter).
Default saturation value at power ON is 50 percent or HALF_SATURATION value. The
amount by which each color darkens or brightens is proportional to the slider position's rela-
tive difference from its center. See Figure 5-51.

Figure 5-51. Saturation Calculation Based on Slider Output

■ Sleep-Scan Mode

In the sleep-scan mode, the firmware scans either the proximity sensor or the gang sensor (sen-
sors in touchpad row elements ganged together) or both. This option is configurable during proj-
ect compilation by commenting out the ENABLE_PROXIMITY or ENABLE_GANG macros.
Keeping both will scan both the sensors in sleep, and disabling both will keep the device in active
scanning mode always.

❐ If a proximity sensor is used in sleep-scan mode and the device detects any proximity activity
on the sensor, the device will enter proximity scanning mode.

❐ If a gang sensor is used in sleep-scan mode and the device detects activity on the Trackpad
during its scan, the device enters active scanning mode directly.

The rate at which the device scans in the sleep-scan mode is configurable by changing the
macro SLEEP_TIMER_PERIOD defined in main.h.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 99

Code Examples

■ Proximity Scanning Mode:

In proximity scanning mode, the device primarily scans the proximity sensor, and the touchpad
sensors are scanned for activity. The previously selected RGB color is turned on with intensity
proportional to the proximity signal strength. The device enters active scanning mode when a
Trackpad element is touched. It stays in proximity scanning mode as long as there is some activ-
ity on the proximity sensor. If the hand moves out of proximity range, the device will return to
sleep-scan mode.

Output Interfaces

■ Optional TX Interface

The firmware also features an optional UART TX interface, which can be enabled or disabled
based on need. To enable or disable the TX interface, uncomment or comment TX_ENABLE
macro present in main.h. The firmware also provides an option to select between two types of
packets that are transmitted over the TX line. One packet contains the raw count, baseline, and
signal data of all the sensors in the system in multichart format (refer to AN2397 for details on the
multichart charting tool). Another type of packet sends out just the Trackpad coordinates. To
select between these two types of packets, you can use the MINIMAL_TX macro. If the macro is
commented out, then the first type of packet is transmitted. If the macro is present, then the sec-
ond type of packet is sent.

Note: To view the MINIMAL_TX data, you can use BCP (as explained in UART Data Viewing on
page 69) with CapSense Color Palette (Minimal TX) - Commands.iic and CapSense Color Pal-
ette (Minimal TX) - Variables.ini files available under ...\Firmware\PSoC 4\Bridge Files
folder. AN2397's Multichart tool can be used to view the first type of packet because of the packet
size.

■ Software PrISM for LED Intensity Control

The firmware uses a software implemented 7-bit PRS for controlling the LED intensity through
Precision Illumination Signal Modulation (PrISM). The implementation uses the SysTick timer
available as part of Cortex-M0 CPU subsystem. The SysTick timer generates the interrupt where
the PRS computations are performed to generate the Pseudo Random signal at the output of the
LED pins. The implementation details can be found in RGB_PRSm.h and RGB_PRSm.c files
available as part of the project. The polynomial used to generate the PRS is fixed to [7,6,5,2]. The
period or repeat rate of the PRS is 127 counts. With SysTick timer generating an ISR at 20 kHz,
this will result in a ~150 Hz output. Because the output is not a fixed pulse-width signal and is, a
high-frequency signal (with a maximum frequency of 10 kHz and average of around 5 kHz), the
signal easily gets filtered out avoiding any flickers usually noticed with PWM signals at this fre-
quency.

http://www.cypress.com/?rID=2784
http://www.cypress.com/?rID=2784

100 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5.5.2.3 Hardware Connections

The example requires the CapSense Trackpad shield connection, as explained in Project:
CapSense Touchpad with I2C Tuner on page 76. The RGB LED and CMOD connections are hard-
wired on the board. Optionally, a proximity loop can be connected, as shown in setup 1 in
Figure 5-52. To use the firmware efficiently, the proximity loop can be formed as a loop around the
Trackpad, as shown in Figure 5-53. With setup 2, the LED turns on to show the previous color as the
hand approaches the Trackpad.

Note: For the proximity loop, the wire shipped with the kit (4 inches in length) can be wound to form
a loop of 1 to 2 inch diameter; the range obtained will be approximately the same as the loop diame-
ter for a fast approaching hand. To obtain a higher range, use a longer wire/bigger loop.

Figure 5-52. Setup 1

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 101

Code Examples

Figure 5-53. Setup 2

Open CY8CKIT_040_Color_Palette.cydwr under the Source vertical tab in the Workspace
Explorer and select the suitable pin.

Table 5-13. Pin Connection1

1. Trackpad_X0 (Touchpad0_Col0_TP) to Trackpad_X5 (Touchpad0_Col5_TP) maps to COL5 to
COL0 of the Trackpad so as to make the Trackpad x-axis left aligned.

Pin Name Port Name

Trackpad_X0 P0_3

Trackpad_X1 P0_7

Trackpad_X2 P0_6

Trackpad_X3 P0_5

Trackpad_X4 P0_0

Trackpad_X5 P0_1

Trackpad_Y0 P1_4

Trackpad_Y1 P1_5

Trackpad_Y2 P1_6

Trackpad_Y3 P1_0

Trackpad_Y4 P1_7

CMOD P0_4

Proximity P2_0

Red LED P3_2

Green LED P1_1

Blue LED P0_2

UART TX P3_0 2

2. Selected in firmware (refer to main.h)

102 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

Figure 5-54. Pin Selection for Color Palette Project

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 103

Code Examples

5.5.3 Verify Output

Build and program the code example onto the device. The default color for the RGB LEDs is blue.
Therefore, when you move over the proximity sensor before touching the Trackpad, the RGB LED
turns blue. Follow these steps to verify the code.

1. Touch the color palette on the Trackpad, as shown in Figure 5-55. The color touched will be dis-
played in the RGB LEDs.

Note: Because the LED is bigger (compared to pixels in displays and paper), the individual color/
LED may be visible at some points. An extra diffuser such as a thin paper can be placed on top of
the RGB LED, to see proper color mixing. In addition, the LEDs can exhibit different maximum
brightness levels depending on the maximum current that can flow through them and the maxi-
mum luminosity they can generate (brightness = current × luminosity-to-current-ratio). For
instance, red can be brighter than blue for a given series resistance, because of higher luminosity
to current ratio and lower voltage drop across them, which results in higher current. For such
cases, the brighter color's intensity can be limited to ensure proper mixing. An example for the
same is also presented in the example project by limiting the intensity of the red LED to ~85 per-
cent.

Note that when the brightness slider is set to minimum/zero brightness, touches on the color area
are not displayed on the LED.

Figure 5-55. Color Palette Output in Active Scanning Mode

2. Move through the slider area provided at the right corner of the Trackpad to adjust the brightness
level of the color. Observe the color varying from Off to full brightness from one end to other.

Note: When moving from the color selection area to the slider area, remove your finger from the
Trackpad and place it back on the slider for it to work normally. This is implemented to prevent
accidental touches to the slider area when selecting color near the slider area.

3. Move away from the Trackpad and observe the color shown in the LED gradually ramp down
after 2-3 seconds and go off after approximately 5 seconds.

104 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

4. When the LEDs are off, moving your hand towards the proximity loop will slowly ramp up the
brightness of the LED as the hand enters the proximity range, and brightness will be at the maxi-
mum when it is near the Trackpad. The color on the LED will be the previously selected Trackpad
color, as shown in Figure 5-56.

Figure 5-56. Color Palette Output in Proximity Scanning Mode

5.6 ADC in PSoC 4000

Starting with PSoC Creator 3.2, an ADC component (CSD_ADC) for PSoC 4000 family is included in
component catalog. There are two examples that are included with PSoC Creator to get started with
the component. Both the examples make use of CY8CKIT-040 and some external passive
components (resistors and wires) for the implementation. This section provides info on how to
access the code example and use it with CY8CKIT-040. ADC_VoltageInp example is used in the
section as reference for explanation.

5.6.1 Using PSoC Creator Code example: ADC_VoltageInput

Follow these steps to open and use the PSoC Creator CSD_ADC code example.

1. Launch PSoC Creator from Start > All Programs > Cypress > PSoC Creator <version> >
PSoC Creator <version>. Note that the CSD_ADC component is supported in PSoC Creator 3.2
or higher.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 105

Code Examples

2. On the Start page, click Find Example Project… under Examples and Kits, as shown in
Figure 5-57.

Figure 5-57. Open Code Example from PSoC Creator

3. In the Find Example Project window, set the Device family to PSoC 4000 and Keyword to
CSD_ADC as shown in Figure 5-58.

Figure 5-58. Setting the Find Example Filter Options and Selecting ADC_VoltageInp example

4. Two examples for CSD_ADC list as shown in Figure 5-58. We will select the ADC_VoltageInp
example for reference.

106 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Code Examples

5. Select ADC_VoltageInput and click the Create New Workspace button. Save the workspace to
a desired location.

6. This example demonstrates a voltage ADC implementation in PSoC 4000. The example also
explains how to perform a two-point calibration for improved accuracy. The firmware controls a
PWM output based on ADC output and the ADC data is sent out through UART as well. To learn
more about the project, refer to the ADC_VoltageInput.pdf file that opens when creating the
project. The file is also available in the Workspace Explorer see Figure 5-59.

Figure 5-59. Project Datasheet for ADC_VoltageInp Example

7. The example project is already tested with CY8CKIT-040; follow the Development Kit
Configuration section in the ADC_VoltageInput.pdf file for configuring the kit to use with the
example. Note that the current implementation of the CSD_ADC component uses the CapSense
hardware. Hence simultaneous use of CapSense along with ADC is not possible. Refer to the
CSD_ADC component datasheet for details.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 107

6. Advanced Topics

This section describes some of the advanced features available in the kit.

Note: For all the new example projects created in this section, please rename the components as
shown in associated component screen shots/figures. This is required as the .C files attached with
the user guide follow the component names as shown in screen shots.

6.1 Using PSoC 5LP as a USB-I2C Bridge

The PSoC 5LP serves as a USB-I2C bridge, which can be used to communicate with the USB-I2C
software running on the PC.

Note: Section Project: CapSense Touchpad with I2C Tuner on page 76 also uses the USB-I2C
bridge available in the kit, but with the CapSense Tuner window.

The following steps describe how to use the USB-I2C bridge to communicate between the BCP and
the PSoC 4.

1. Create a new project targeting the PSoC 4 device in PSoC Creator, as shown in Figure 6-1.

Figure 6-1. Create a New Project in PSoC Creator

108 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

2. Drag and drop an I2C Component to the top design, as shown in Figure 6-2.

Figure 6-2. I2C Component in Component Catalog

3. To configure the I2C Component, double-click or right-click the I2C Component and select Con-
figure, as shown in Figure 6-3.

Figure 6-3. Open I2C Configuration Window

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 109

Advanced Topics

4. Configure the I2C with the settings and click OK, as shown in Figure 6-4 and Figure 6-5.

Figure 6-4. I2C ‘Configuration’ Tab

Figure 6-5. ‘I2C’ Tab

110 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

5. Select pin P1[2] for the I2C SCL and pin P1[3] for the I2C SDA in the Pins tab of <project.cydwr>,
as shown in Figure 6-6.

Figure 6-6. Pin Selection

6. Place the code available in USB_I2C-main.c, which is attached to this PDF document, in your
main.c project file. This code enables the PSoC 4 device to transmit and receive I2C data to and
from the BCP application.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 111

Advanced Topics

7. Build the project by choosing Build > Build Project or pressing [Shift] [F6]. After the project is
built without errors and warnings, program ([Ctrl] [F5]) this code onto the PSoC 4 through the
PSoC 5LP programmer or MiniProg3.

Note: A warning may be displayed on the I2C input clock. This is because to generate a 100-kbps
I2C clock, the block needs a 1.6-MHz signal, which cannot be derived from the default HFCLK
setting of 12 MHz. To remove the warning, go to <project_name>.cydwr > Clocks and double-
click HFCLK. Set the IMO to 32 MHz and HFCLK divider to '2' in the window that appears (see
Figure 6-7). This generates a 16-MHz HFCLK; using a divider of 10, the 1.6-MHz clock required
for I2C block will be generated.

Figure 6-7. Clock Settings in cydwr File

8. Open BCP from Start > All Programs > Cypress > Bridge Control Panel <version number>.

112 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

9. Connect to KitProg/ under Connected I2C/SPI/RX8 Ports, as shown in Figure 6-8.

Figure 6-8. Connect to KitProg/ in BCP

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 113

Advanced Topics

10.Open Protocol Configuration from the Tools menu and select the appropriate I2C Speed. Make
sure the I2C speed is the same as the one configured in the I2C Component. Click OK to close
the window, as shown in Figure 6-9.

Figure 6-9. Open Protocol Configuration Window in BCP

11.To transfer data, type the command shown in Figure 6-10 and press [Enter] or click the Send
button in the BCP. The log shows whether the transaction was successful. A "+" indication after
each byte indicates that the transaction was successful and a "–" indicates that the transaction
was a failure, as shown in Figure 6-10 and Figure 6-11.

Figure 6-10. Enter Commands in BCP

“Write Data” Command

Slave Address

Data Bytes

Generates Stop condition
on I2C bus

‘+’ Indicates Acknowledgement (ACK)

114 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Figure 6-11. NACK Indication in BCP

12.From the BCP, read five bytes of data from the I2C slave device with slave address 0x08, as
shown in Figure 6-12. The log shows whether the transaction was successful.

Figure 6-12. Read Data Bytes from the BCP

Note: See Help Contents under Help in the BCP or press [F1] for details of the I2C commands.

‘‐’ Indicates No Acknowledgment (NACK)

“Read Data” Command

Slave Address

No. of data bytes to read.
x – Reserved symbol, which means
that 1 byte of data should be read

Generates Stop condition
on I2C bus

Data bytes read from the slave device

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 115

Advanced Topics

6.2 Using FM24W256 F-RAM

The PSoC 4000 Pioneer Kit has an onboard Ferroelectric RAM chip that can hold up to 32 KB of
data. Cypress F-RAM products combine the nonvolatile data storage capability of ROM with the ben-
efits of RAM, which include a high number of read and write cycles, high-speed read and write
cycles, and low power consumption. F-RAM core memory and integrated products are ideal for
applications that require high data integrity and ultra-low power consumption. These products target
markets in automotive, industrial, enabling technologies, and networking. F-RAM inherently features
high endurance, fast single-cycle, and symmetrical read/write speeds, along with low energy con-
sumption, gamma radiation tolerance, and immunity to electromagnetic noise.

The F-RAM chip provides an I2C communication interface for data access. It is hardwired to the
PSoC 4000 I2C lines (P1_2 and P1_3); the same lines are routed to the PSoC 5LP I2C lines as well.
Because the F-RAM device is an I2C slave, it can be accessed or shared among various I2C masters
on the same line. For more details on the F-RAM device, refer to the device datasheet.

This section describes a simple example on how to set the address of the F-RAM device, use it with
an I2C master (PSoC 4000) device, and share the same RAM with the BCP through the PSoC 5LP
USB-I2C bridge.

6.2.1 Address Selection

The slave address of the F-RAM device consists of two parts, as shown in Figure 6-13: slave ID and
device select. Slave ID is an F-RAM family-specific ID located in the particular F-RAM device data-
sheet. For the device used in CY8CKIT-040 (FM24W256-G), the slave ID is 1010b. The device
select bits are set using the three physical pins A2-A0 in the device. The setting of these three pins
in CY8CKIT-040 is controlled by resistors R19/R18 (A0), R17/R16 (A1), and R15/R14 (A2). See
Cypress Ferroelectric RAM (F-RAM) on page 48 for details.

Figure 6-13. F-RAM I2C Address Byte Structure

http://www.cypress.com/?rID=77238

116 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

6.2.2 Write/Read Operation

The device's datasheet includes details on how to perform a write/read operation with the F-RAM.
Figure 6-14 and Figure 6-15 provide a snapshot of the write/read packet structure as a quick refer-
ence.

Figure 6-14. F-RAM Single/Multiple-Byte Write Packet Structure

Figure 6-15. F-RAM Single/Multiple-Byte Read Packet Structure

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 117

Advanced Topics

In the previous figures, "Slave Address" denotes the address of the F-RAM slave device. [Address
MSB: Address LSB] forms the 16-bit address of the memory location in the F-RAM to be accessed
for read/write operation. The first two bytes following the slave address byte during a write operation
constitute the initial memory address to be accessed. From there on, each byte accessed (read/
write) will increment this address by one and the count wraps around at the boundary (0x7FFF to
0x0000 for a 32 KB device). The value can be reset at any time by doing a write operation with the
desired memory address.

6.2.3 Example Firmware

The following steps describe how to create a project with the PSoC 4000 family that uses the
onboard F-RAM and shares it with another I2C master (BCP through PSoC 5LP USB-I2C bridge).

1. Open PSoC Creator 3.0 SP1 and create a new PSoC 4000 project, as shown in Figure 6-16.

Figure 6-16. Create a New PSoC 4000 Project in PSoC Creator

118 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

2. From the Components Catalog, place an I2C (SCB mode) Component in the TopDesign from
Communication > I2C > I2C (SCB mode) [<version>] and configure it as I2C in the Configura-
tion tab with the parameters shown in Figure 6-17.

Figure 6-17. I2C Master Configuration

3. Select Pins 1[2] and 1[3] as the I2C pins in the Pins tab of the .cydwr file, as shown in
Figure 6-18.

Figure 6-18. Pin Selection

4. Place the code available in Example_FRAM-main.c, which is attached to this PDF document, in
the main.c file.

5. Build the project by choosing Build > Build Project or pressing [Shift] F6]. After the project
builds without any errors and warnings, program the device by pressing [Ctrl] F5] through the
MiniProg3 or PSoC 5LP programmer in the kit.

Note: A warning may appear on the I2C input clock. This is because to generate a 100-kbps I2C
clock, the block needs a 1.6-MHz signal, which cannot be derived from the default HFCLK setting
of 12 MHz. To remove the warning, go to <project_name>.cydwr > Clocks and then double-click
HFCLK. Set the IMO to 32 MHz and HFCLK divider to '2' in the window that appears (see
Figure 6-7). This generates a 16-MHz HFCLK; using a divider of 10, the 1.6-MHz clock required
for I2C block will be generated.

6. Open BCP and configure the I2C protocol as defined in Using PSoC 5LP as a USB-I2C Bridge on
page 107.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 119

Advanced Topics

7. In the command window, copy and paste the code from the F-RAM_BCP_Commands.txt file
attached to this document.

8. By default the F-RAM device is configured with a 0x50 slave address. If the value has been
changed as explained in Address Selection on page 115, then change the slave address in the
command window (replace “50” with the slave address in hex format).

9. Do a write to the F-RAM device by sending the 'W 50 00 00 01 02' line, which writes to memory
location 0x0000 with the value 0x01 and memory location 0x0001 with 0x02. The command sent
should be ACKed properly by the slave to make sure the transfer occurred properly, as shown
Figure 6-19.

Figure 6-19. Send/Write Data to F-RAM

120 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

10.If the write transfer is successful, then check back the data using a read command to the same
address by sending the second command line, as shown in Figure 6-20. The read command on
the same locations will yield a '0' at 0x0000 (flag cleared) and 0xFD at 0x0001 (inverse of 0x02
sent). This shows that the PSoC 4 onboard accessed the bytes and modified them. On writing
any byte to 0x0001, as explained in step 9, the inverse of the same will be calculated and stored
back at the same location by PSoC 4 if the 0x0000 byte is set to '1'.

Figure 6-20. Read Data From F-RAM

6.3 Using PSoC 5LP as a USB-UART Bridge

The PSoC 5LP serves as a USB-UART bridge, which can communicate with the COM terminal soft-
ware. This section explains how to use the PSoC 5LP's USB-UART bridge with an external device/
board (PSoC 4200 with CY8CKIT-001) with an example.

Note: This project explains how to use the USB-UART bridge of PSoC 5 LP for external UART lines.
Project: CapSense Proximity and UART on page 59 can be used as reference for using the USB-
UART bridge with the PSoC 4000 family featured on the board. The PSoC 4000 family supports only
a software UART transmit line, which is explained in Project: CapSense Proximity and UART on
page 59.

Users who have a Windows operating system that does not have HyperTerminal can use an alterna-
tive terminal software such as PuTTY.

http://www.putty.org/

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 121

Advanced Topics

1. Create a new PSoC 4 project in PSoC Creator, as shown in Figure 6-21. Select an appropriate
location for your project and rename it as required.

Figure 6-21. Create a New Project From PSoC Creator

122 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

2. Drag and drop a UART (SCB) component from the Component Catalog shown in Figure 6-22 to
the top design.

Figure 6-22. UART Component Under Component Catalog

3. To configure the UART, double-click or right-click the UART Component and select Configure, as
shown in Figure 6-23.

Figure 6-23. Open UART Configuration Tab

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 123

Advanced Topics

4. Configure the UART as shown in Figure 6-24, Figure 6-25, and Figure 6-26 and then click OK.

Figure 6-24. ‘Configuration’ Tab

Figure 6-25. ‘UART Basic’ Tab

124 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Figure 6-26. ‘UART Advanced’ Tab

5. Select P4[0] for UART RX and P4[1] for UART TX in the Pins tab of <Project_Name>.cydwr, as
shown in Figure 6-27.

Figure 6-27. Pin Selection

6. Place the code available in USB_UART-main.c, which is attached to this PDF document, in your
main.c project file. The code will echo any UART data received.

7. Build the project by choosing Build > Build {Project Name} or pressing [Shift] [F6]. After the
project is built without errors and warnings, program (by choosing Debug > Program) the project
to PSoC 4 through MiniProg3.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 125

Advanced Topics

8. Connect the RX line of the PSoC 4 to J8_10 and the TX line of the PSoC 4 to J8_9, as shown in
Figure 6-28 and Figure 6-29.

Notes:

■ Before connecting the RX line, remove R57 connecting P3[0] of the PSoC 4000 device to the
PSoC 5LP RX line. This makes sure the PSoC 4000 device can be programmed/debugged while
using the RX line for external bridge.

■ The setup with CY8CKIT-001, CT8CKIT-038, and CY8CKIT-040 is provided for reference only on
how to use the USB-UART bridge for connecting to an external UART interface.

Figure 6-28. UART Connection Between PSoC 4 and PSoC 5LP

126 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Figure 6-29. Block Diagram of UART Connection Between PSoC 4 and PSoC 5LP

Note: UART RX and UART TX can be routed to any digital pin on PSoC 4 based on the configura-
tion of the UART Component. An SCB implementation of the UART will route the RX and TX pins to
either one of the following subsets: (P0[4], P0[5]) or (P3[0],P3[1]) or (P4[0],P4[1]).

PSoC
5LP

PSoC
4200

J8

CY8CKIT‐040

USB

External PSoC
4200 Board

J8_9 (RX) P4[1] (TX)

P4[0] (RX)J8_10 (TX)

GND connection

D+

D‐

External
Connections

P12[6], RX

P12[7], TX

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 127

Advanced Topics

To communicate with the PSoC 4 from the terminal software, follow this procedure:

1. Connect USB Mini-B to J10. The kit enumerates as a KitProg USB-UART and is available in the
Device Manager, under Ports (COM & LPT). A communication port is assigned to the KitProg
USB-UART, as shown in Figure 6-30.

Figure 6-30. KitProg USB-UART in Device Manager

128 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

2. Open HyperTerminal, choose File > New Connection, enter a name for the new connection, and
click OK, as shown in Figure 6-31.

Figure 6-31. Open New Connection HyperTerminal

3. For PuTTY, double-click the PuTTY icon and select Serial under Connection, as shown in
Figure 6-32.

Figure 6-32. Open New Connection in PuTTY

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 129

Advanced Topics

4. A new window opens, where you can select the communication port, as shown in Figure 6-33.

a. In HyperTerminal, select COMx (or the specific communication port that is assigned to the Kit-
Prog USB-UART) in Connect using and click OK. This code example uses COM12.

b. In PuTTY, enter COMx in Serial line to connect to. This code example uses COM12.

Figure 6-33. Select Communication Port - HyperTerminal and PuTTY

130 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

5. In HyperTerminal, select Bits per second, Data bits, Parity, Stop bits, and Flow control under
Port Settings and click OK, as shown in Figure 6-34. Make sure that the settings are identical to
the UART settings configured for PSoC 4.

In PuTTY, select Speed (baud), Data bits, Stop bits, Parity, and Flow control under Configure
the serial line shown in Figure 6-33 (second image). Click Session and select Serial under
Connection type, as shown in Figure 6-35. Serial line shows the communication port (COM12),
and Speed shows the baud rate selected. Click Open to start the communication.

Figure 6-34. Configure Communication Port in HyperTerminal

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 131

Advanced Topics

Figure 6-35. Select Communication Type in PuTTY

6. Enable Echo typed characters locally under File > Properties > Settings > ASCII Setup to
display the typed characters in HyperTerminal, as shown in Figure 6-36. In PuTTY, enable Force
on under Terminal > Line discipline options to display the typed characters in PuTTY, as
shown in Figure 6-37.

Figure 6-36. Enable Echo of Typed Characters in HyperTerminal

132 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Figure 6-37. Enable Echo of Typed Characters in PuTTY

7. The COM terminal software displays both the typed data and the echoed data from the PSoC 4
UART, as shown in Figure 6-38 and Figure 6-39.

Figure 6-38. Data Displayed on HyperTerminal

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 133

Advanced Topics

Figure 6-39. Data Displayed on PuTTY

6.4 Developing Applications for PSoC 5LP

The PSoC 4000 Pioneer Kit has an onboard PSoC 5LP whose primary function is that of a program-
mer and a bridge. You can build either a normal project or a bootloadable project using the
PSoC 5LP.

The PSoC 5LP connections on the board are summarized in Figure 6-40. J8 is the I/O connector
(see A.2.2 PSoC 5LP GPIO Header (J8)). The USB (J10) is connected and used as the PC inter-
face. However, you can still use this USB connection to create customized USB designs.

The programming header (J7) is meant for standalone programming. This header needs to be popu-
lated. See the "No Load Components" section in A.6 Bill of Materials.

134 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Figure 6-40. PSoC 5LP Block Diagram

6.4.1 Building a Bootloadable Project for PSoC 5LP

All bootloadable applications developed for the PSoC 5LP should be based on the bootloader hex
file, which is programmed onto the kit. The bootloader hex file is available in the kit files or can be
downloaded from the kit web page.

The hex files are included in the following kit installer directory, as illustrated in Figure 6-41:

<Install_Directory>\CY8CKIT-040 PSoC 4000 Pioneer Kit\<version>\Firm-
ware\Programmer\KitProg_Bootloader

Figure 6-41. KitProg Bootloader Hex File Location

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 135

Advanced Topics

To build a bootloadable application for the PSoC 5LP, follow this procedure:

1. In PSoC Creator, choose New > Project > PSoC 5LP; click the expand button adjacent to
Advanced and select the Device as CY8C5868LTI-LP039, as shown in Figure 6-42. Select the
Application Type as Bootloadable from the drop-down list.

Figure 6-42. Create a New Project in PSoC Creator

136 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

2. Navigate to the schematic view and drag and drop a Bootloadable Component on the
TopDesign.

Figure 6-43. Bootloadable Component in Component Catalog

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 137

Advanced Topics

3. Set the dependency of the Bootloadable Component by selecting the Dependencies tab in the
configuration window and clicking the Browse button, as shown in Figure 6-44. Select the
KitProg_Bootloader.hex and KitProg_Bootloader.elf files; click Open, as shown in Figure 6-45
and Figure 6-46 and then click OK on the Configuration window.

Figure 6-44. Configuration Window of Bootloadable Component

138 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Figure 6-45. Select KitProg Bootloader Hex File

Figure 6-46. Select KitProg Bootloader Elf File

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 139

Advanced Topics

4. In the General tab, check the Manual application image placement checkbox and set the
placement address as “0x00002800” as shown in Figure 6-47.

Figure 6-47. Bootloadable Component-General Tab

5. Develop your custom project.

6. The NVL setting of the Bootloadable project and the KitProg_Bootloader project must be the
same. Figure 6-48 shows the KitProg_Bootloader.cydwr system settings.

Figure 6-48. KitProg Bootloader System Settings

7. Build the project in PSoC Creator by choosing Build > Build Project or pressing [Shift] [F6].

8. Keep the reset switch (SW1) pressed and plug in the USB Mini-B connector. If the switch is
pressed for more than 100 ms, the PSoC 5LP enters into bootloader.

140 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

9. To download the project onto the PSoC 5LP device, open the Bootloader Host tool, which is
available from PSoC Creator. Choose Tools > Bootloader Host, as shown in Figure 6-49.

Figure 6-49. Open Bootloader Host Tool from PSoC Creator

10.In the Bootloader Host tool, click Filters and add a filter to identify the USB device. Click OK, as
shown in Figure 6-50.

Figure 6-50. Port ‘Filters’ Tab in Bootloader Host Tool

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 141

Advanced Topics

11. In the Bootloader Host tool, click the Open File button to browse to the location of the bootload-
able file (*.cyacd), as shown in Figure 6-51.

Figure 6-51. Open Bootloadable File from Bootloader Host Tool

Figure 6-52. Select Bootloadable .cyacd File from Bootloader Host

12.Click the Program button in the Bootloader Host tool to program the device.

13.If bootload is successful, the log of the tool displays “Programming Finished Successfully”; other-
wise, it displays “Failed” and a statement for the failure.

142 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Notes:

■ The PSoC 5LP pins are brought to the PSoC 5LP GPIO header (J8). These pins are selected to
support high-performance analog and digital projects. See A.2.2 PSoC 5LP GPIO Header (J8) for
pin information.

■ Take care when allocating the PSoC 5LP pins for custom applications. For example, P2[0]-P2[4]
are dedicated for programming the PSoC 4. Refer to A.1 CY8CKIT-040 Schematics before allo-
cating the pins.

■ When a custom bootloadable project is programmed onto the PSoC 5LP, the initial capability of
the PSoC 5LP to act as a programmer, USB-UART bridge, or USB-I2C bridge is not available.

■ The status LED does not function unless used by the custom project.

For additional information on bootloaders, refer to the Cypress application note AN73503 – USB HID
Bootloader for PSoC 3 and PSoC 5LP.

6.4.2 Building a Normal Project for PSoC 5LP

A normal project is a completely new project created for the PSoC 5LP device on the CY8CKIT-040.
Here, the entire flash of the PSoC 5LP is programmed, overwriting all bootloader and programming
code. To recover the programmer, reprogram the PSoC 5LP device with the factory-set KitProg.hex
file, which is shipped with the kit installer.

The KitProg.hex file is available at the following location:

<Install_Directory>\CY8CKIT-040 PSoC 4000 Pioneer Kit\<version>\Firm-
ware\Programmer\KitProg

This advanced functionality requires a MiniProg3 programmer, which is not included with this kit. The
MiniProg3 can be purchased from www.cypress.com/go/CY8CKIT-002. To build a normal project for
the PSoC 5LP, follow these steps:

http://www.cypress.com/?rID=57561
www.cypress.com/go/CY8CKIT-002

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 143

Advanced Topics

1. In PSoC Creator, choose New > Project > PSoC 5LP; click the expand button adjacent to
Advanced and select Device as CY8C5868LTI-LP039; select Application Type as Normal from
the drop-down list, as shown in Figure 6-53.

Figure 6-53. Create a New Project in PSoC Creator

2. Develop your custom project.

3. Build the project in PSoC Creator by choosing Build > Build Project or pressing [Shift] [F6].

4. Connect the 10-pin connector of MiniProg3 to the onboard 10-pin SWD debug and programming
header J7 (which needs to be populated).

5. To program the PSoC 5LP with PSoC Creator, choose Debug > Program or press [Ctrl] [F5].
The Programming window shows MiniProg3 and the selected device in the project under it
(CY8C5868LTI-LP039).

6. Click on the device and click Connect to program.

Notes:

■ The 10-pin SWD debug and programming header (J7) is not populated. See the "No Load Com-
ponents" section of Bill of Materials on page 171 for details.

■ The PSoC 5LP pins are brought to the PSoC 5LP GPIO header (J8). These pins are selected to
support high-performance analog and digital projects. See PSoC 5LP GPIO Header (J8) on
page 168 for pin information.

144 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

■ Take care when allocating the PSoC 5LP pins for custom applications. For example, P2[0]-P2[4]
are dedicated for programming the PSoC 4. Refer to CY8CKIT-040 Schematics on page 161
before allocating the pins.

■ When a normal project is programmed onto the PSoC 5LP, the initial capability of the PSoC 5LP
to act as a programmer, USB-UART bridge, or USB-I2C bridge is not available.

■ The status LED does not function unless used by the custom project.

6.5 PSoC 5LP Factory Program Restore Instructions

The CY8CKIT-040 PSoC 4000 Pioneer Kit features a PSoC 5LP device that comes factory-pro-
grammed as the onboard programmer and debugger for the PSoC 4 device.

In addition to creating applications for the PSoC 4 device, you can also create custom applications
for the PSoC 5LP device on this kit as explained in Developing Applications for PSoC 5LP on
page 133. Reprogramming or bootloading the PSoC 5LP device with a new flash image will over-
write the factory program and forfeit the ability to use the PSoC 5LP device as a programmer/debug-
ger for the PSoC 4 device. Follow these instructions to restore the factory program on the PSoC 5LP
and enable the programmer/debugger functionality.

6.5.1 PSoC 5LP Programmed with a Bootloadable Application

If the PSoC 5LP is programmed with a bootloadable application, restore the factory program by
using one of the following two methods.

6.5.1.1 Restore PSoC 5LP Factory Program Using PSoC Programmer

1. Launch PSoC Programmer 3.18 or later from Start > Cypress > PSoC Programmer.

2. Configure the kit in Service mode. To do this, while holding down the reset button (SW1 Reset),
plug the PSoC 4000 Pioneer Kit into the computer using the included USB cable (USB A to Mini-
B). This puts the PSoC 5LP into service mode, which is indicated by the blinking green status
LED.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 145

Advanced Topics

3. The following message shown in Figure 6-54 appears in the PSoC Programmer results window:
"KitProg Bootloader device is detected."

Figure 6-54. PSoC Programmer Results Window

146 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

4. Switch to the Utilities tab in PSoC Programmer and click the Upgrade Firmware button, as
shown in Figure 6-55. Unplug all other PSoC programmers (such as MiniProg3 and DVKProg)
from the PC before clicking the Upgrade Firmware button.

Figure 6-55. Upgrade Firmware

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 147

Advanced Topics

5. After programming is completed, the following message appears: “Firmware Update Finished at
<time>,” as shown in Figure 6-56.

Figure 6-56. Firmware Update Complete

6. The factory program is now successfully restored on the PSoC 5LP. It can be used as the pro-
grammer/debugger for the PSoC 4 device.

148 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

6.5.1.2 Restore PSoC 5LP Factory Program Using USB Host Tool

1. Launch the Bootloader Host tool from Start > Cypress > PSoC Creator.

Using the File > Open menu, load the Kit Prog.cyacd file, which is installed with the kit software.

The default location for this file is <Install_Directory>\CY8CKIT-040 PSoC 4000 Pio-
neer Kit\<version>\Firmware\Programmer\KitProg\KitProg.cyacd.

Figure 6-57. Load KitProg.cyacd File

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 149

Advanced Topics

2. Configure the Pioneer Kit in Service mode. To do so, while holding down the reset button (SW1
Reset), plug the PSoC 4000 Pioneer Kit into the computer using the included USB cable (USB A
to Mini-B). This puts the PSoC 5LP into service mode, which is indicated by the blinking green
status LED.

3. In the Bootloader Host tool, set the filters for the USB devices with VID: 04B4 and PID: F13B.
The USB Human Interface Device port appears in the Ports list. Click that port to select it.

Figure 6-58. Select USB Human Interface Device

4. Click the Program button (or menu item Actions > Program) to restore the factory program by
bootloading it onto the PSoC 5LP.

150 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

5. After programming is completed, the following message appears "Programming Finished Suc-
cessfully," as shown in Figure 6-59.

Figure 6-59. Programming Finished Successfully

6. The factory program is now successfully restored on the PSoC 5LP. You can now use it as the
programmer/debugger for the PSoC 4 device.

6.5.2 PSoC 5LP Programmed with a Standard Application

If PSoC 5LP is programmed with a standard application, restore the factory program by using the fol-
lowing method.

1. Launch PSoC Programmer 3.18 or later from Start > Cypress > PSoC Programmer.

2. Use the File > Open menu to load the KitProg.hex factory program hex file, which is shipped with
the kit. The default location for this file is <Install_Directory>\CY8CKIT-040 PSoC 4000
Pioneer Kit\<version>\Firmware\Programmer\KitProg.

3. Connect a CY8CKIT-002 MiniProg3 (sold separately) to the computer. The 10-pin connector
cable on the MiniProg3 plugs into the header [J7]. Note that the J7 header is unpopulated. For
more details, see Bill of Materials on page 171.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 151

Advanced Topics

4. Ensure that MiniProg3 is the selected port in PSoC Programmer and the 10-pin connector (10p
option) is selected, as shown in Figure 6-60. If the board is not powered over USB, select the
Power Cycle programming mode.

Figure 6-60. Select MiniProg3

152 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

5. When ready, select the Program button (or File > Program) to program the PSoC 5LP device,
as shown in Figure 6-61.

6. After programming is completed, the following message appears: "Program Finished at <time>."

Figure 6-61. Program Finished

7. The factory program is now successfully restored on the PSoC 5LP. You can use it as the pro-
grammer/debugger for the PSoC 4 device.

6.6 Using µC/Probe Tool

Micrium’s µC/Probe is a windows application that allows you to read and write the memory of any
embedded target processor during run-time, and map those values to a set of virtual controls and
indicators placed on a graphical dashboard.

This tool helps in designing a simple GUI for the example projects of the development kits with least
effort.

Please note that Micrium µC/Probe tool is not a pre-requisite software required to run this kit and
does not get installed along with kit contents.

The license required to use all the features of the tool need to be purchased separately by the user.
However, the educational edition of the tool is available as a free download from
http://micrium.com/download/ucprobe-3-0-trial-version/.

The Educational Edition of μC/Probe is available for free to enable you to “try before you buy”. For
more details on licensing and the µC/Probe tool, please refer to the µC/Probe Users’ Manual at
http://micrium.com/download/%c2%b5cprobe-3-0-users-manual/.

In Micrium µC/Probe version 3.3, the Cypress KitProg is being supported as a means of communica-
tion to the target device connected to the PC.

http://micrium.com/download/ucprobe-3-0-trial-version/
http://micrium.com/download/%c2%b5cprobe-3-0-users-manual/

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 153

Advanced Topics

When an example project is built in PSoC Creator, it produces the output files in HEX, LST, MAP,
RPT and ELF formats.

The ELF file lists all the symbols (variables), symbol types and its addresses. The Micrium µC/Probe
tool reads the ELF file and detects these symbols (global variables) used in the code.

The µC/Probe tool provides a host of graphical controls such as sliders, RGB palette, graphs, donuts
etc. The controls required can be dragged and dropped onto µC/Probe workbench, and symbols
from the ELF file can be assigned to the controls.

When the workbench is run, the changes in symbol values associated with the controls (slider, graph
etc) can be visualized on the PC.

Appropriate global variables have been assigned in CY8CKIT_040_Color_Palette and
CY8CKIT_040_Proximity_UART example projects of the kit to visualize the color palette output and
proximity output on a GUI.

CY8CKIT_040_Color_Palette Example Project:

To visualize the output of CY8CKIT_040_Color_Palette project using µC/Probe tool, follow the steps
given below:

1. Open the CY8CKIT-040_Color_Palette example project in PSoC Creator.

2. Program the CY8CKIT_040_Color_Palette example project on CY8CKIT-040 by following steps
1–8 in Programming the Example Projects on page 51.

Note: Ensure that Debug Select in System settings of cydwr file is set to SWD before
programming the board. Refer Figure 5-8 on page 55. By default, CY8CKIT_040_Color_Palette
example project has the Debug Select set to SWD. It needs to be changed to GPIO if TX port
needs to be enabled in the project.

3. Download and install µC/Probe tool from http://micrium.com/download/ucprobe-3-0-trial-version/

4. Launch µC/Probe from Start > All Programs > Micrium > uC-Probe > Micruim uC-Probe

Figure 6-62. Micrium µC/Probe

154 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

5. Drag and drop a RGB Palette control from Writable Controls in Toolbox on to the Datascreen to
visualize the RGB output.

Figure 6-63. Adding RGB Palette Control

6. Next, add a Line Chart from Charts Controls in Toolbox on to the Datascreen to visualize the X, Y
position of finger on trackpad.

Figure 6-64. Adding Line Chart Control

7. The DataScreen looks as below after adding both the controls.

Figure 6-65. DataScreen with RGB Palette and Line chart controls

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 155

Advanced Topics

8. Now, click on the ELF button in the Symbol Browser window.

Figure 6-66. ELF button in Symbol Browser

9. Browse and point to the CY8CKIT_040_Color_Palette.ELF file to load the symbols (global vari-
ables) from the Capsense example project. Wait until the ELF file gets loaded. The elf file is in the
collapsed state by default. It can expanded by clicking on the ‘+’ button next to the file name.

10.On expanding the elf file, it can be seen that the Symbol Browser displays all the .C files in the
example project. By expanding each file, the global variables defined in that C file are displayed
with its name, type, size, memory address etc.

11.Now, expand the main.c file to view the global variables defined in main.c file.

Figure 6-67. Global variables in Symbol Browser

156 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

12.Drag and drop the global variable µcARGB on to the RGB Palette to see the RGB output. Simi-
larly, drag and drop xPos and yPos on to the Line chart control to the see the X and Y position of
the finger on trackpad.

Figure 6-68. Assigning RGB output to RGB Palette control

Figure 6-69. Assigning x Position output to Line Chart control

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 157

Advanced Topics

Figure 6-70. Assigning y Position output to Line Chart control

13.By default, the y axis of Line chart control is plotted for values between 0–10000. To change the y
axis scale to 0–100, click on the Line chart control to get the Line chart control toolbar. Click on
the Properties Editor icon in the toolbar. Refer figure below.

Figure 6-71. Line chart control toolbar

158 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Figure 6-72. Properties Editor of Line chart control

14.In the Properties editor, change the Max property of Y axis to 100.

Notes:

1.You may use the Series properties to change the line graph colors of xPos and yPos.

2. The Symbols Manager shows the global variables associated with the control.

15.Now, connect the CY8CKIT-040 to PC. Click on the Settings button in the µC/Probe tool.

Figure 6-73. Settings button in µC/Probe

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 159

Advanced Topics

16.In the µC/Probe setting window, select the Cypress PSoC Prog and select ‘KitProg/<Kit Prog
number>’ from the drop down box for Port and click OK to start communication between the
CY8CKIT-040 and the µC/Probe tool.

Figure 6-74. µC/Probe Settings

17.Click on Run button to start.

Figure 6-75. Run button

18.Now, move your finger on the trackpad on the kit and observe the Line chart and RGB Palette
control output on the datascreen.

Figure 6-76. Line chart and RGB Palette output

160 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

Advanced Topics

Note: If you are using Education edition of µC/Probe tool, pop-up windows will be displayed
before starting datascreen. Click OK to continue. Also, the Datascreen (output) will time-out after
1 minute in case of Education edition.

19.Click on File tab and select Save to save the µC/Probe project. Provide an appropriate name and
select a location to save your project. The µC/Probe projects are saved with extension .WSPX.
Double clicking a .WSPX file opens the µC/Probe tool.

CY8CKIT_040_Proximity_UART Example project:

The µC/Probe project for CY8CKIT_040_Proximity_UART project is already created and packaged
along with kit content. The µC/Probe projects can be found in the installation folder at <Install
directory>/ CY8CKIT-040 PSoC 4000 Pioneer Kit/<version>/uCProbe.

1. Open CY8CKIT-040_Proximity_UART example project in PSoC Creator.

2. In the System settings in cydwr file of the example project, change the Debug Select to SWD
and build the project. Refer Figure 5-8 on page 55.

3. Program the CY8CKIT-040_Proximity_UART example project on CY8CKIT-040 by following
steps 1–8 in Programming the Example Projects on page 51.

4. Double click on CY8CKIT-040_Proximity_UART.wspx file.

5. Insert a wire loop into the proximity sensor.

Note: Ensure that board is not powered while inserting the wire loop in the sensor. Else, the act
of insertion of wire loop causes a shift in baseline and proximity sensor output would be incorrect.

6. Connect the CY8CKIT-040 to PC and follow steps 14 to 16 described in
CY8CKIT_040_Color_Palette Example Project section to start running the datascreen.

7. Move your palm closer to the wire loop. The LED is in OFF state when the proximity is less than
100 and the proximity value is shown on the slider. The LED turns ON when the proximity value is
100.

Figure 6-77. LED and slider control output when away from sensor

Figure 6-78. LED and slider control output at close proximity to sensor

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 161

A. Appendix

A.1 CY8CKIT-040 Schematics

Power Supply

Input Voltage Range VIN is 5-12V

LDO

NO LOAD

NO LOAD

NO LOAD

NO LOAD

NO LOAD

CR2032 Coin
Cell Battery
Holder

VDD

V3.3VBUS

VIN

V3.3

VBUS

VDD

VDD VIN

J9

1
1

2
2

3
3

J11

2 PIN HDR

1
1

2
2

+-

BT1
12

0603
C26
1.0 uF

TP6
RED

SOD123

D11

SOD123

D3

U1

NCP1117DTARKG

ADJ
1

VOUT
2

VIN
3

TAB
4

S
O
D
1
2
3

D10

R36
120 ohm

R3

560 ohm

+
3216C4

10 uFd 25v

SOD123

D1

0603
C8
10uF

TP1 RED

S
O
D
1
2
3

D9
+

3216 C6
22 uFd
16V

0805

LED1

Power LED

2 1

R35
232 ohm

0603

R2 ZERO

S
O
D
1
2
3

D2

162 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

PLACE CAPS CLOSE TO POWER PINS

PSoC 4

NO LOAD

NO LOAD NO LOAD

NO LOAD

NO LOAD

/XRES

P
4_

V
D

D
/X

R
E

S

P
3_

2

P
3_

1

P
3_

0

P
2_

0

P
1_

7

P0_0

P0_1

P0_2

P0_3

P0_4

P1_3

P1_2

P1_1

P
0_

5

P
0_

6

P
0_

7

P1_4

P1_5

P1_6

P
1_

0

VCCD

P4_VDD

P4_VDD
VDD P4_VDD

VTARG

0
6
0
3

R
7

ZE
R

O

0
6
0
3

R
45

ZE
R

O

0402

C9
0.1 uF

0
6
0
3

R
50

ZE
R

O

0
6
0
3

R10
4.7K

0603

R47 ZERO

0603

R44 ZERO

U2

CY8C4014LQI-422

P0[0]
1

P0[1]
2

P0[2]
3

P0[3]
4

P0[4]
5

VCCD
6

V
D

D
7

V
S

S
8

P
0[

5]
9

P
0[

6]
10

P
0[

7]
11

P
1[

0]
12

P1[1]
13

P1[2]
14

P1[3]
15

P1[4]
16

P1[5]
17

P1[6]
18

P
1[

7]
19

P
2[

0]
20

P
3[

0]
21

P
3[

1]
22

P
3[

2]
23

X
R

E
S

24
ep

ad
25

0603

C3
1.0 uF

0402

C30
0.1 uF

0
6
0
3

R
51

ZE
R

O

0
6
0
3

R
53

ZE
R

O

0603

R12 ZERO

0603
R4 ZERO

TP5
BLACK

0603

R48 ZERO

TP4
BLACK

TP3
BLACK

0603

R11 ZERO

0
6
0
3

R
52

ZE
R

O

0603

R49 ZERO

0805

R6 ZERO

J13

2 PIN HDR

1
1

2
2

0402

C2
0.1 uF

Protection Circuit

NO LOAD

V3.3_EXT V3.3

Q2

PMOS(DMP3098L-7)

R42
1K ohm

Q3
PMOS(DMP3098L-7)

0603

R46 ZERO

D5

V
z=

2V
(B

ZT
52

C
2V

0-
7-

F)

R43
442 ohm

Q1

P
M

O
S

(D
M

P
3098L-7)

Shunt
Resistor

CAPSENSE TUNING CIRCUITRY
Default Loaded For CSD

C-TANK

NO LOAD

P0_4 P0_2

R1
NO LOAD

C1
2200 pF C5

10nF

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 163

User Interface

RESET

P5LP3_1

P1_1

P0_2

P3_2

/XRES

P5LP_VDD

LED_PWR

P4_VDD LED_PWR

0805

LED2

Status LED Green

2 1

SW1

EVQ-PE105K

1 2

R29 1.5K

R30 1.5K

0805

R31

330 ohm

J14

2 PIN HDR1
1

2
2

R28 2.2K

R G

B

LED3

RGB LED

1

2 3

4

(J1-J4) Arduino Compatible Headers

I2C Pull up
Resistors

J12 Arduino ICSP
compatible header

NO LOAD Proximity Header

P0_6
P0_5

P0_7
P3_2
P0_3
P3_0

P1_4
P1_5
P1_6
P1_1

P1_7

P1_3
P1_2

/XRES
V3.3_EXT

IOREF

P3_1
P1_7
/XRES

P1_1

P1_3
P0_4
P0_2
P0_1
P0_0

P2_0

P1_2 P2_0
P1_0

P3_1

P4_VDD

V
B

U
S

P4_VDD

VIN

0603

R54 ZERO

06
03

R9
2.2K

J12

3x2 RECPT

1 2
3 4
5 6

J5

1x1 RECP

J1

8x1 RECP

1
2
3
4
5
6
7
8

SOD123

D4

J2

6x1 RECP

1
2
3
4
5
6

J3

10X1 RECP
1
2
3
4
5
6
7
8
9
10

J4

8x1 RECP

1
2
3
4
5
6
7
8

06
03

R8
2.2K

USB MiniB

NO LOAD

DP
DM

VBUS

0
6
0
3

D
6

0402

R13100K

J10

USB MINI B

VBUS
1

DM
2

DP
3

GND
5ID
4

S
1

6
S

2
7

F1

PTC Resettable Fuse

1
2

04
02

C16 0.01 uF

TP2 RED

0
6
0
3

D
7

0
6
0
3

D
8

I2C Connection b/w PSoC 5LP and PSoC 4

NO LOAD NO LOAD

P5LP12_0 P1_2

P5LP12_1 P1_3

P
5L

P
2_

6

P
5L

P
2_

7
06
03

R23
2.2K

0603

R25

ZERO

0603

R24

ZERO

06
03

R22
2.2K

164 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

1

PSoC 5LP GPIO Extension Header

P3_0 P5LP12_7P5LP12_6
P5LP3_6 P5LP3_7

P5LP0_0
P5LP1_2

P5LP3_5P5LP3_4

P5LP3_0

P5LP0_1

P5LP_VDD
J8

6x2 RECPT

1 2
3 4
5 6
7 8

109
1211

0603

R57 ZERO

PSoC 4 / External PSoC Program/Debug Header

P5LP12_2
P5LP12_3

P5LP12_4

P3_0

P3_1

/XRES

VTARG

0603

R32 ZERO

J6

50MIL KEYED SMD

1
3
5
7
9

2
4
6
8

10

TV
S

1
5V

 3
50

W

0603

R34 ZERO0402

C25

0.1 uF

0603

R33 ZERO

PSoC 5LP Programmer / Debugger

P5LP0_4 to P5LP0_7,
P5LP3_2, P5LP3_3 are
reserved for HW REV ID

SAR Bypass
Capacitor

Del Sig Bypass
Capacitor

NO LOADNO LOAD
NO LOAD

NO LOAD

D
P

D
M

P5LP_XRES

P5LP12_0
P5LP12_1

P
5L

P
3_

0

P
5L

P
3_

4
P

5L
P

3_
5

V
S

S
D

P
5L

P
_V

C
C

D

P
5L

P
_V

C
C

D
V

S
S

D

VSSD

VSSD

D
M

_P
D

P
_P

P
5L

P
1_

7

P
5L

P
1_

6

VBUS

P5LP_XRES

P5LP_SWDCLK
P5LP_SWDIO

P5LP_SWO
P5LP_TDI P5LP3_7

P5LP3_6

P5LP0_0
P5LP0_1

P
5L

P
12

_6
P

5L
P

12
_7

P5LP1_2

P5LP0_2

P5LP12_3

P
5L

P
3_

1

P5LP0_3

P5LP12_2

P5LP2_6
P5LP2_7

P5LP12_4

P5LP12_3 P5LP12_2

P5LP_VDD P5LP_VDD

P5LP_VDDP5LP_VDD

P5LP_VDD

P5LP_VDD

P5LP_VDD

VTARG P5LP_VDD

P5LP_VDDVDD

R38
30K

R37
15K

R21
10K

0402

C20
0.1 uF

0603

C19
1.0 uF

R20
10K

0402

C12
0.1 uF

0603

C11
1.0 uF

0402

C14
0.1 uF

0402

C17
0.1 uF

0
6
0
3 R

27
22

E

0402

C21
0.1 uF

0805

R5 ZERO

0402

C24
0.1 uF

U3

CY8C5868LTI-LP039 QFN68

P2_6
1

P2_7
2

P12_4 I2C0_SCL, SIO
3

P12_5 I2C0_SDA, SIO
4

VSSB
5

IND
6

VBOOST
7

VBAT
8

VSSD
9

XRES
10

P1_0
11

P1_1
12

P1_2
13

P1_3
14

P1_4
15

P1_5
16

VDDIO1
17

P
1_

6
18

P
1_

7
19

P
12

_6
_S

IO
20

P
12

_7
_S

IO
21

P
15

_6
 D

P
22

P
15

_7
 D

M
23

V
D

D
D

24

V
S

S
D

25

V
C

C
D

26

P
15

_0
27

P
15

_1
28

P
3_

0
29

P
3_

1
30

P
3_

2
31

P
3_

3
32

P
3_

4
33

P
3_

5
34

VDDIO3
35

V
D

D
IO

0
52

P0_3
51

P0_2
50

P0_1
49

P0_0
48

SIO_P12_3
47

SIO_P12_2
46

VSSD
45

VDDA
44

VSSA
43

VCCA
42

P15_3
41

P15_2
40

SIO, I2C1_SDA P12_1
39

SIO, I2C1_SCL P12_0
38

P3_7
37

P3_6
36

P
2_

4
66

P
2_

3
65

P
2_

2
64

P
2_

1
63

P
2_

0
62

P
15

_5
61

P
15

_4
60

V
D

D
D

59

V
S

S
D

58

V
C

C
D

57

P
0_

7
56

P
0_

6
55

P
0_

5
54

P
0_

4
53

V
D

D
IO

2
67

P
2_

5
68

E
P

A
D

69

R39
15K

0603

C13
1.0 uF

0603

C29
1.0 uF

0402

C22
0.1 uF

0
6
0
3R

26
22

E

0603

C23
1.0 uF

0
6
0
3

R41
4.7K

0603

C28
1.0 uF

0402

C15
0.1 uF

0603

C18
1.0 uF

R40
30K

0402

C7
0.1 uF

PSoC 5LP Program/Debug Header

NO LOAD

P5LP_SWO

P5LP_XRES

P5LP_SWDCLK

P5LP_TDI

P5LP_SWDIO

P5LP_VDD

TV
S

2
5V

 3
50

W

0402

C27

0.1 uF

J7

50MIL KEYED SMD

1
3
5
7
9

2
4
6
8

10

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 165

A.1.1 CapSense Touchpad Shield Board

F-RAM

NO LOAD NO LOAD NO LOAD NO LOAD

A0

A0
A1
A2

A1

P1_3
P1_2
WP

A2 WP

VDD

VDD

VDD VDD

VDD

VDD

0
6
0
3 R55

ZERO

0
6
0
3 R56

ZERO

0
6
0
3 R19

ZERO

U4

FM24W256

A1
2

VSS
4 SCL

6
VDD

8
A0

1

A2
3

SDA
5

WP
7

0402

C10
0.1 uF

0
6
0
3 R18

ZERO

0
6
0
3 R15

ZERO

0
6
0
3 R17

ZERO

0
6
0
3 R14

ZERO

0
6
0
3 R16

ZERO

(J1-J4) Arduino Compatible Headers

CapSense Touch Pad

P1_4

P1_5

P1_6

P1_0

P1_7

P
0_

1

P
0_

0

P
0_

5

P
0_

6

P
0_

7

P
0_

3

/XRES
V3.3

IOREF

P1_3
P1_2
P0_4
P0_2
P0_1
P0_0

P0_6
P0_5

P0_7
P3_2
P0_3
P3_0
P1_0
P2_0

P1_4
P1_5
P1_6
P1_1
P3_1
P1_7

P1_2
P1_3

V5.0

P4_VDD

VIN
CSX1

5X6 Touch Pad

ROW0

ROW1

ROW2

ROW3

ROW4

C
O

L0

C
O

L1

C
O

L2

C
O

L3

C
O

L4

C
O

L5

J1

8x1 RECP

1
2
3
4
5
6
7
8

J2

6x1 RECP

1
2
3
4
5
6

J3

10X1 RECP

1
2
3
4
5
6
7
8
9
10

J4

8x1 RECP

1
2
3
4
5
6
7
8

166 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

A.2 Pin Assignment Table

This section provides the pin map of the headers and their usage.

A.2.1 Arduino Compatible Headers (J1, J2, J3, J4, and J12)

Power Connector (J1)

Pin Baseboard Signal Trackpad Shield Signal

J1_01 VIN NC

J1_02 GND GND

J1_03 GND GND

J1_04 V5.0 NC

J1_05 V3.3 NC

J1_06 RESET NC

J1_07 IOREF/P4_VDD NC

J1_08 NC NC

J2 Connector

Pin Baseboard Signal Trackpad Shield Signal

J2_01 (A0) P0[0] TRACK_COLUMN1

J2_02 (A1) P0[1] TRACK_COLUMN0

J2_03 (A2) P0[2] (TCPWM_LINE/Blue LED, CTANK) NC

J2_04 (A3) P0[4] (CMOD) NC

J2_05 (A4) P1[3] (SDA) NC

J2_06 (A5) P1[2] (SCL) NC

J3 Connector

Pin Baseboard Signal Trackpad Shield Signal

J3_01 (D8) P1[4] TRACK_ROW0

J3_02 (D9) P1[5] TRACK_ROW1

J3_03 (D10) P1[6] TRACK_ROW2

J3_04 (D11) P1[1] (TCPWM_LINE/Green LED) NC

J3_05 (D12) P3[1] (SWDCK) NC

J3_06 (D13) P1[7] TRACK_ROW4

J3_07 GND GND

J3_08 NC NC

J3_09 P1[3] (SDA) NC

J3_10 P1[2] (SCL) NC

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 167

J4 Connector

Pin Baseboard Signal Trackpad Shield Signal

J4_01 (D0) P0[5] TRACK_COLUMN2

J4_02 (D1) P0[6] TRACK_COLUMN3

J4_03 (D2) P0[7] TRACK_COLUMN4

J4_04 (D3) P3[2] (TCPWM_LINE, Red LED) NC

J4_05 (D4) P0[3] TRACK_COLUMN5

J4_06 (D5) P3[0] (SWDIO) NC

J4_07 (D6) P1[0] TRACK_ROW3

J4_08 (D7) P2[0] (PROX) NC

J12

Pin Kit Signal PSoC 4 Description

J12_01 P3[1] GPIO

J12_02 NC NC

J12_03 P1[7] GPIO

J12_04 P1[1] GPIO

J12_05 /XRES PSoC 4 RESET

J12_06 GND GND

168 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

A.2.2 PSoC 5LP GPIO Header (J8)

J8 is a 2×6 header that connects PSoC 5LP pins to support GPIO controls for custom PSoC 5LP proj-
ects.

A.3 Program and Debug Headers

A.3.1 PSoC 4 Direct Program/Debug Header (J6)

A.3.2 PSoC 5LP Direct Program/Debug Header (J7)

J8

Pin
 PSoC 5LP

Signal
 PSoC 5LP Description Pin

 PSoC 5LP
Signal

 PSoC 5LP Description

J8_01 PSoC 5LP_VDD VDD J8_02 P1[2] Digital I/O

J8_03 P0[0] Delta Sigma ADC + input J8_04 P0[1] Delta Sigma ADC – input

J8_05 P3[4] SAR – input J8_06 P3[5] SAR + input

J8_07 P3[6] Buffered VDAC J8_08 P3[7] Buffered VDAC

J8_09 P12[6] UART RX J8_10 P12[7] UART TX

J8_11 GND GND J8_12 P3[0] IDAC output

J6

Pin
 PSoC 5LP

Signal
 PSoC 4
Signal

Description Pin
 PSoC 5LP

Signal
 PSoC 4
Signal

Description

J6_01 VDD VDD VCC J6_02 P12[2] P3[0] TMS/SWDIO

J6_03 GND GND GND J6_04 P12[3] P3[1] TCLK/SWCLK

J6_05 GND GND GND J6_06 NC NC NC

J6_07 GND GND GND J6_08 NC NC NC

J6_09 GND GND GND J6_10 P12[4] XRES RESET

J7

Pin
 PSoC 5LP

Signal
Description Pin

 PSoC 5LP
Signal

Description

J7_01 VDD VCC J7_02 P1[0] TMS/SWDIO

J7_03 GND GND J7_04 P1[1] TCLK/SWCLK

J7_05 GND GND J7_06 P1[3] TDO/SWO

J7_07 GND GND J7_08 P1[4] TDI

J7_09 GND GND J7_10 XRES RESET

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 169

A.4 Use of Zero-ohm Resistors and No Load

Unit Resistor Usage

Power supply R2 Solder zero-ohm resistors to access voltage from VBUS (USB).

I2C connection between PSoC 5LP
and PSoC 4

R24 and R25
Unsolder the resistors to communicate with an external PSoC
using the PSoC 5LP. Removing these will disable the PSoC 4 I2C
communication with the PSoC 5LP device.

PSoC 4/external PSoC program/
debug header

R32, R33, and
R34

Unsolder the resistors to disconnect SWD lines from the PSoC 4.
Use J6 to connect and program an external PSoC. Removing these
will disable PSoC 4 programming by the PSoC 5LP device and
through the J6 header.

Protection circuit R46 Solder zero-ohm resistors to bypass the entire protection circuitry.

CapSense tuning circuitry R1
Convert IDAC output to a voltage, or used as a bleed resistor to
CMOD.

CapSense tuning circuitry/user inter-
face

R30
Unsolder R30, which connects P0[2] to the blue LED to enable
shield tank capacitor C5 on P0[2].

PSoC 4 R4, R6
Unsolder R4 to remove supply to VTARG and solder zero-ohm
resistors R6 to supply P4_VDD with VDD instead of J13.

PSoC 5LP programmer/debugger R11, R12, R14,
R15, R16

For future use.

R5 Unsolder the zero-ohm resistor to cut the VDD supply to PSoC 5LP.

R7 For future use.

F-RAM

R14, R15, R16,
R17, R18, and
R19

Select the lower three bits of the F-RAM I2C slave address. R14-
R15 selects bit 2 (A2), R16-R17 selects bit 1(A1), and R18-R19
selects bit 0 (A0). The selected bits are OR'ed with the F-RAM fam-
ily's I2C address (0x50) to decide the slave address for the one on
the board.

R56 and R55

Solder a zero-ohm resistor for R56 to write-protect the entire
F-RAM memory. R55 is not required to be populated as the WP pin
is internally pulled down. When the WP pin is left floating or R55 is
populated, write access to F-RAM is restored.

PSoC 5LP GPIO header R57
Unsolder the zero-ohm resistor to disconnect P3[0] from the
PSoC 5LP RX line and use P3[0] for PSoC 4 debug or PSoC 5LP
as a USB-UART bridge for another device.

170 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

A.5 KitProg Status LED States

Note: LED status is not applicable when a custom project is running in PSoC 5LP.

User Indication Scenario Action Required by user

1
LED blinks fast:

Frequency = 4.00 Hz
LED starts blinking at power up,
if bootloadable file is corrupt.

Bootload the KitProg.cyacd file: in PSoC Programmer, con-
nect to the kit, open the Utilities tab and press Upgrade
Firmware button.

2
LED blinks slow:

Frequency = 0.67 Hz

Entered Bootloader mode by
holding the BLE Pioneer Kit/BLE
Dongle Reset button during kit
power-up.

Release the Reset button and re-plug power if you entered
this mode by mistake. If the mode entry was intentional,
bootload the new.cyacd file using the Bootloader Host tool
shipped with PSoC Creator.

3
LED blinks very fast:

Frequency = 15.0 Hz

SWD operation is in progress.

Any I2C traffic.

Kit's COM port connect/discon-
nect event (one blink).

In PSoC Programmer, watch the log window for status mes-
sages for SWD operations. In the Bridge Control Panel, the
LED blinks on I2C command requests. In BCP or any other
serial port terminal program, distinguish the kit's COM port
number by the blinking LED when the port is connected or
disconnected.

4 LED is ON.
USB enumeration successful.

Kit is in the idle state waiting for
commands.

The kit functions can be used by PSoC Creator, PSoC Pro-
grammer, Bridge Control Panel, and any serial port terminal
program.

5 LED is OFF. Power LED is ON.

This means that the USB enumeration was unsuccessful.
This can happen if the kit is not powered from the USB host
or the kit is not connected to the USB host through the USB
cable. Verify the USB cable and check if PSoC Programmer
is installed on the PC.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 171

A.6 Bill of Materials

A.6.1 CY8CKIT-040 Baseboard

No. Qty Reference Value Description Manufacturer Mfr Part Number

1
PCB, 68.58 mm x 53.34 mm, High Tg,
ENIG finish, 4 layer, Color = RED, Silk
= WHITE.

Cypress

2 1 C1 2200 pFd CAP CER 2200PF 50V 5% NP0 0805 Murata GRM2165C1H222JA01D

3 13

C2,C9,C10,C12,
C14,C15,C17,C2
0,C21,C22,C24,
C25,C27

0.1 uFd CAP .1UF 16V CERAMIC Y5V 0402 Panasonic - ECG ECJ-0EF1C104Z

4 9
C3,C11,C13,C18
,C19,C23,C26,C
28,C29

1.0 uFd
CAP CERAMIC 1.0UF 25V X5R 0603
10%

Taiyo Yuden TMK107BJ105KA-T

5 1 C4 10 uF 25V CAP TANT 10UF 25V 10% 1210 AVX Corporation TPSB106K025R1800

6 1 C6 22 uF 16V CAP TANT 22UF 16V 10% 1210 AVX Corporation TPSB226K016R0600

7 1 C16 0.01 uFd
CAP 10000PF 16V CERAMIC 0402
SMD

Panasonic - ECG ECJ-0EB1C103K

8 1 C8 10uFd CAP CER 10UF 6.3V 20% X5R 0603
Samsung Electro-
Mechanics America,
Inc

CL10A106MQ8NNNC

9 7
D1,D2,D3,D4,D9
,D10,D11

MBR05
DIODE SCHOTTKY 0.5A 20V SOD-
123

Fairchild Semiconduc-
tor

MBR0520L

10 1 LED1
Power LED
Amber

LED 595NM AMB DIFF 0805 SMD Avago Technologies HSMA-C170

11 1 D5 2V Zener DIODE ZENER 2V 500MW SOD123 Diodes Inc BZT52C2V0-7-F

12 3 D6, D7, D8 ESD diode SUPPRESSOR ESD 5VDC 0603 SMD Bourns Inc. CG0603MLC-05LE

13 1 LED3 RGB LED LED RED/GREEN/BLUE PLCC4 SMD Cree, Inc.
CLV1A-FKB-
CJ1M1F1BB7R4S3

14 1 LED2
Status LED
Green

LED GREEN CLEAR 0805 SMD Chicago Miniature CMD17-21VGC/TR8

15 1 F1 FUSE
PTC Resettable Fuses 15Volts
100Amps

Bourns MF-MSMF050-2

16 2 J1, J4 8x1 RECP
CONN HEADER FEMALE 8POS .1"
GOLD

Sullins Connector
Solutions

PPPC081LFBN-RC

17 1 J2 6x1 RECP
CONN HEADER FMAL 6POS.1"
GOLD

Sullins Connector
Solutions

PPPC061LFBN-RC

18 1 J3 10x1 RECP
CONN HEADER FMALE 10POS .1"
GOLD

Sullins Connector
Solutions

PPPC101LFBN-RC

19 1 J5 1X1 RECP
CONN RCPT 1POS .100" SNGL
HORZ

Samtec Inc BCS-101-L-S-HE

20 1 J6
50MIL KEYED
SMD

CONN HEADER 10 PIN 50MIL KEYED
SMD

Samtec FTSH-105-01-L-DV-K

21 1 J8 6x2 RECP
CONN HEADER FMAL 12PS.1" DL
GOLD

Sullins Connector
Solutions

PPPC062LFBN-RC

22 1 J9 3p_jumper
CONN HEADER VERT SGL 3POS
GOLD

3M 961103-6404-AR

23 1 J10 USB MINI B
CONN USB RECEPTACLE 5POS RT
ANG

Molex Inc 0548190519

172 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

24 2 J13,J14 2p_jumper
CONN HEADER VERT SGL 2POS
GOLD

3M 961102-6404-AR

25 3 Q1,Q2,Q3 PMOS MOSFET P-CH 30V 3.8A SOT23-3 Diodes Inc DMP3098L-7

26 1 R3 560 ohm RES 560 OHM 1/8W 5% 0805 SMD Panasonic - ECG ERJ-6GEYJ561V

27 24

R4,R7,R11,R12,
R14,R16,R18,R2
4,R25,R32,R33,
R34,R44,R45,R4
7,R48,R49,R50,
R51,R52,R53,R5
4,R55,R57

ZERO RES 0.0 OHM 1/10W 0603 SMD Panasonic-ECG ERJ-3GEY0R00V

28 1 R5 ZERO RES 0.0 OHM 1/8W 0805 SMD Panasonic-ECG ERJ-6GEY0R00V

29 4 R8,R9 2.2K RES 2.2K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ222V

30 1 R13 100K RES 100K OHM 1/10W 5% 0402 SMD Panasonic - ECG ERJ-2GEJ104X

31 2 R26, R27 22E RES 22 OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF22R0V

32 1 R28 2.2K RES 2.2K OHM 1/8W 5% 0805 SMD Panasonic - ECG ERJ-6GEYJ222V

33 2 R29,R30 1.5K RES 1.5K OHM 1/8W 5% 0805 SMD Panasonic - ECG ERJ-6GEYJ152V

34 1 R31 330 ohm RES 330 OHM 1/8W 5% 0805 SMD Panasonic - ECG ERJ-6GEYJ331V

35 1 R35 232 ohm RES 232 OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF2320V

36 1 R36 120 ohm RES 120 OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF1200V

37 2 R37,R39 15K RES 15K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ153V

38 2 R38,R40 30K RES 30K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ303V

39 1 R42 1K RES 1K OHM 1/8W 5% 0805 SMD Panasonic - ECG ERJ-6GEYJ102V

40 1 R43 442 ohm RES 442 OHM 1/10W 1% 0603 SMD Panasonic - ECG ERJ-3EKF4420V

41 1 SW1
SW PUSHBUT-
TON

SWITCH TACTILE SPST-NO 0.05A
12V

Panasonic - ECG EVQ-PE105K

42 1 TP5 BLACK TEST POINT PC MINI .040"D Black Keystone Electronics 5001

43 2 TVS1,TVS2 5V 350W TVS UNIDIR 350W 5V SOD-323 Dioded Inc. SD05-7

44 1 U1
NCP1117DTAR
KG

NCP1117DTARKG ON Semiconductor NCP1117DTARKG

45 1 U2
PSoC 4 S0
(CY8C400)

24 QFN PSoC4 S0 target chip
Cypress Semiconduc-
tor

CY8C4014LQI-422

46 1 U3
PSoC 5LP
(CY8C5868LTI-
LP039)

68QFN PSoC 5LP chip for USB debug
channel and USB-Serial interface

Cypress Semiconduc-
tor

CY8C5868LTI-LP039

47 1 U4 F-RAM F-RAM with I2C interface
Cypress Semiconduc-
tor

FM24W256-G

No Load Components

48 1 BT1
Coin Cell Bat-
tery Holder

HOLDER CR2032 GOLD LEADS SMD MPD BU2032SM-BT-GTR

49 1 C5 10000 pFd CAP CER 10000PF 50V 5% NP0 0805 Murata GRM2195C1H103JA01D

50 2 C7,C30 0.1 uFd CAP .1UF 16V CERAMIC Y5V 0402 Panasonic - ECG ECJ-0EF1C104Z

51 1 J7
50MIL KEYED
SMD

CONN HEADER 10 PIN 50MIL KEYED
SMD

Samtec FTSH-105-01-L-DV-K

52 1 J11 2 PIN HDR
CONN HEADER FEMALE 2POS .1"
GOLD

Sullins Connector
Solutions

PPPC021LFBN-RC

53 1 J12 3X2 RECP
CONN HEADER .100 DUAL STR
12POS

Sullins Connector
Solutions

PBC06DFAN

No. Qty Reference Value Description Manufacturer Mfr Part Number

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 173

A.6.2 CY8CKIT-040 Trackpad Shield Board

54 7
R1,R2,R15,R17,
R19,R46,R56

ZERO RES 0.0 OHM 1/10W 0603 SMD Panasonic-ECG ERJ-3GEY0R00V

55 1 R6 ZERO RES 0.0 OHM 1/8W 0805 SMD Panasonic-ECG ERJ-6GEY0R00V

56 2 R10,R41 4.7K RES 4.7K OHM 1/10W 5% 0603 SMD Panasonic-ECG ERJ-3GEYJ472V

57 2 R20,R21 10K RES 10K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ103V

58 2 R22,R23 2.2K RES 2.2K OHM 1/10W 5% 0603 SMD Panasonic - ECG ERJ-3GEYJ222V

59 3 TP1,TP2,TP6 RED TEST POINT PC MINI .040"D RED Keystone Electronics 5000

60 2 TP3,TP4 BLACK TEST POINT PC MINI .040"D Black Keystone Electronics 5001

Install on Bottom of PCB As per the Silk Screen in the Corners

61 4 N/A N/A
BUMPON CYLINDRICAL .312X.215
BLACK

3M SJ61A6

Special Jumper Installation Instructions

62 1 J9
Install jumper
across pins 1
and 2

Rectangular Connectors MINI
JUMPER GF 6.0MM CLOSE TYPE
BLACK

Kobiconn 151-8010-E

63 1 J13
Install jumper
across pins 1
and 2

Rectangular Connectors MINI
JUMPER GF 6.0MM CLOSE TYPE
BLACK

Kobiconn 151-8010-E

64 1 J14
Install jumper
across pins 1
and 2

Rectangular Connectors MINI
JUMPER GF 6.0MM CLOSE TYPE
BLACK

Kobiconn 151-8010-E

No. Qty. Reference Value Description Manufacturer Mfr Part Number

1
PCB, 53.34 mm x 53.34 mm, High Tg,
ENIG finish, 2 layer, Color = RED, Silk
= WHITE.

Cypress

2 2 J1,J4 CON8
CONN HEADER 8POS .100 STR
30AU

FCI 68001-108HLF

3 1 J2 CON6
CONN HEADER 6POS .100 STR
30AU

FCI 68001-106HLF

4 1 J3 CON10
CONN HEADER 10POS .100 STR
30AU

FCI 68001-110HLF

No. Qty Reference Value Description Manufacturer Mfr Part Number

174 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

A.7 Trackpad/Touchpad Sticker Details

A.8 Regulatory Compliance Information

The CY8CKIT-040 PSoC 4000 Pioneer Kit has been tested and verified to comply with the following
electromagnetic compatibility (EMC) regulations:

■ EN 55022:2010 Class A - Emissions

■ EN 55024:2010 Class A - Immunity

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 175

A.9 Migrating projects across different Pioneer series kits

All Cypress Pioneer series kits are Arduino Uno compatible and have some common on-board
peripherals such as RGB LED, CapSense and User Switch. However, the pin mapping in each of the
boards is different due to differences in pin functions of the PSoC device used. This guide lists the
pin maps of the Pioneer series kits to allow for easy migration of projects across different kits.

In some cases, the pins available on the Pioneer kit headers are a superset of the standard Arduino
Uno pins. For example J2 contains only 1 row of pins on the Arduino Uno pinout while it contains 2
rows of pins on many of the Pioneer series kits.

Figure A-1. Pioneer series kits pin map

Pioneer series kits

J1
J2

J3 J4

18 1

2

11 810

17

18

11

12

CY8CKIT-040

CY8CKIT-042-BLE

CY8CKIT-042 & CY8CKIT-044

6x1 header

6x2 header

9x2 header

Arduino compatible
I/O headers

Arduino compatible
power header

176 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

A.9.1 Arduino Uno Compatible Headers

J1 Arduino Compatible Header Pin Map

Pin # Arduino Pin
Pioneer series kits

CY8CKIT-042 CY8CKIT-040 CY8CKIT-042-BLE CY8CKIT-044

1 VIN VIN VIN VIN VIN

2 GND GND GND GND GND

3 GND GND GND GND GND

4 5V V5.0 V5.0 V5.0 V5.0

5 3.3V V3.3 V3.3 V3.3 V3.3

6 RESET RESET RESET RESET RESET

7 IOREF P4.VDD P4.VDD BLE.VDD P4.VDD

8 NC NC NC NC NC

J2 Arduino Compatible Header Pin Map

Pin # Arduino Pin
Pioneer series kits

CY8CKIT-042 CY8CKIT-040 CY8CKIT-042-BLE CY8CKIT-044

1 A0 P2[0] P0[0] P3[0] P2[0]

2 – P0[2]* – P2[0] P2[6]*

3 A1 P2[1] P0[1] P3[1] P2[1]

4 – P0[3]* – P2[1]* P6[5]*

5 A2 P2[2] P0[2]* P3[2] P2[2]

6 – P4_VDD – P2[2]* P0[6]*

7 A3 P2[3] P0[4]* P3[3] P2[3]

8 – P1[5]* – P2[3]* P4[4]*

9 A4 P2[4] P1[3] P3[4] P2[4]

10 – P1[4]* – P2[4]* P4[5]*

11 A5 P2[5] P1[2] P3[5] P2[5]

12 – P1[3]* – P2[5]* P4[6]*

13 – P0[0] – – P0[0]

14 – GND – – GND

15 – P0[1] – – P0[1]

16 – P1[2]* – – P3[4]*

17 – P1[0] – – P0[7]*

18 – P1[1]* – – P3[5]*

* These pins are also used for on-board peripherals. See the tables in the On-Board Peripherals section
below for details.

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 177

J3 Arduino Compatible Header Pin Map

Pin # Arduino Pin
Pioneer series kits

CY8CKIT-042 CY8CKIT-040 CY8CKIT-042-BLE CY8CKIT-044

1 D8 P2[6] P1[4] P0[5] P0[2]

2 D9 P3[6] P1[5] P0[4] P0[3]

3 D10 P3[4] P1[6] P0[2] P2[7]

4 D11 P3[0] P1[1]* P0[0] P6[0]

5 D12 P3[1] P3[1] P0[1] P6[1]

6 D13 P0[6] P1[7] P0[3] P6[2]

7 GND GND GND GND GND

8 AREF P1[7] NC VREF P1[7]

9 SDA P4[1] P1[3] P3[4] P4[1]

10 SCL P4[0] P1[2] P3[5] P4[0]

* These pins are also used for on-board peripherals. See the tables in the On-Board Peripherals section
below for connection details.

J4 Arduino Compatible Header Pin Map

Pin # Arduino Pin
Pioneer series kits

CY8CKIT-042 CY8CKIT-040 CY8CKIT-042-BLE CY8CKIT-044

1 D0 P0[4] P0[5] P1[4] P3[0]

2 D1 P0[5] P0[6] P1[5] P3[1]

3 D2 P0[7]* P0[7] P1[6] P1[0]

4 D3 P3[7] P3[2]* P1[7] P1[1]

5 D4 P0[0] P0[3] P1[3] P1[2]

6 D5 P3[5] P3[0] P1[2] P1[3]

7 D6 P1[0] P1[0] P1[1] P5[3]

8 D7 P2[7] P2[0]* P1[0] P5[5]

* These pins are also used for on-board peripherals. See the tables in the On-Board Peripherals section
below for connection details.

178 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

A.9.2 On-Board Peripherals

CapSense Pin Map

Pin # Description

Pioneer series kits

CY8CKIT-042

(Linear Slider)
CY8CKIT-040

CY8CKIT-042-BLE

(Linear Slider)

CY8CKIT-044

(Gesture Pad)

1 CSS1 P1[1] – P2[1] P4[4]

2 CSS2 P1[2] – P2[2] P4[5]

3 CSS3 P1[3] – P2[3] P4[6]

4 CSS4 P1[4] – P2[4] P3[4]

5 CSS5 P1[5] – P2[5] P3[5]

6 CMOD P4[2] P0[4] P4[0] P4[2]

7 CTANK P4[3] P0[2] P4[1] P4[3]

Proximity header Pin Map

Pin # Description
Pioneer series kits

CY8CKIT-042 CY8CKIT-040 CY8CKIT-042-BLE CY8CKIT-044

1
PROXIMITY

– P2[0] P2[0] P3[7]

2 – – – P3[6]

RGB LED Pin Map

Pin # Color
Pioneer series kits

CY8CKIT-042 CY8CKIT-040 CY8CKIT-042-BLE CY8CKIT-044

1 Red P1[6] P3[2] P2[6] P0[6]

2 Green P0[2] P1[1] P3[6] P2[6]

3 Blue P0[3] P0[2] P3[7] P6[5]

User Switch Pin Map

Pin # Description
Pioneer series kits

CY8CKIT-042 CY8CKIT-040 CY8CKIT-042-BLE CY8CKIT-044

1 SW2 P0[7] – P2[7] P0[7]

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 179

Revision History

Table 7-1. CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide Revision History

Document Title: CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide

Document Number: 001-91316

Revision ECN# Issue Date
Origin of
Change

Description of Change

** 4363580 04/21/2014 RKAD New kit guide.

*A 4681349 03/09/2015 SASH

Updated Introduction chapter on page 7:

Updated “Additional Learning Resources” on page 13:

Updated “Learning PSoC Creator” on page 10:

Updated Figure “Example Projects”.

Updated description.

Updated Figure “Starter Designs”.

Updated “Application Notes” on page 12:

Updated description.

Updated Software Installation chapter on page 15:

Updated “Install Software” on page 15:

Removed figure “Kit Software Download Options”.

Updated Kit Operation chapter on page 19:

Updated “Kit USB Connection” on page 21:

Updated Table 3-1:

Updated entire table.

Updated Hardware chapter on page 31:

Updated “Board Details” on page 31:

Updated description.

Updated “Kit Component Details” on page 35:

Updated “CY8CKIT-040 Baseboard Components” on page 35:

Updated “Power Supply System” on page 38:

Updated Figure 4-5.

Updated description.

Revision History

180 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

*A (cont.) 4681349 03/09/2015 SASH

Updated Code Examples chapter on page 51:

Updated “Project: Blinking LED” on page 56:

Updated “Project Description” on page 57:

Updated “PSoC Creator Component Configuration” on page 57:

Updated Figure 5-10.

Updated “Hardware Connections” on page 58:

Updated Figure 5-12.

Updated “Project Description” on page 60:

Updated “Firmware Details” on page 63:

Updated description.

Updated “Hardware Connections” on page 68:

Updated Figure 5-18.

Updated “Project: CapSense Touchpad with I2C Tuner” on page 76:

Updated “Project Description” on page 78:

Updated “PSoC Creator Component Configuration” on page 78:

Updated Figure 5-29.

Updated “Hardware Connections” on page 80:

Updated Figure 5-32.

Updated “Verify Output” on page 81:

Updated “Launching Tuner Window” on page 81:

Updated Figure 5-34.

Updated Figure 5-35.

Updated “Verify Output” on page 83:

Updated Figure 5-38.

Updated Figure 5-39.

Updated Figure 5-40.

Updated “Project: Color Palette” on page 86:

Updated “Project Description” on page 86:

Updated “PSoC Creator Component Configuration” on page 86:

Updated Figure 5-42.

Updated “Hardware Connections” on page 100:

Updated Figure 5-54.

Table 7-1. CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide Revision History (continued)

Document Title: CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide

Document Number: 001-91316

Revision ECN# Issue Date
Origin of
Change

Description of Change

CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C 181

Revision History

*A (cont.) 4681349 03/09/2015 SASH

Updated Advanced Topics chapter on page 107:

Updated description.

Updated “Using PSoC 5LP as a USB-I2C Bridge” on page 107:

Updated Figure 6-1.

Updated Figure 6-4.

Updated Figure 6-5.

Updated Figure 6-6.

Updated Figure 6-7.

Updated “Using FM24W256 F-RAM” on page 115:

Updated “Example Firmware” on page 117:

Updated Figure 6-16.

Updated Figure 6-17.

Updated Figure 6-18.

Updated “Using PSoC 5LP as a USB-UART Bridge” on page 120:

Updated Figure 6-21.

Updated Figure 6-22.

Updated Figure 6-23.

Updated Figure 6-25.

Updated Figure 6-27.

Updated “Developing Applications for PSoC 5LP” on page 133:

Updated “Building a Bootloadable Project for PSoC 5LP” on page 134:

Updated description.

Updated Figure 6-42.

Updated Figure 6-43.

Updated Figure 6-48.

Updated Figure 6-49.

Updated Figure 6-50.

Updated “Building a Normal Project for PSoC 5LP” on page 142:

Updated Figure 6-53.

Updated “PSoC 5LP Factory Program Restore Instructions” on page 144:

Updated “PSoC 5LP Programmed with a Bootloadable Application” on
page 144:

Updated “Restore PSoC 5LP Factory Program Using USB Host Tool” on
page 148:

Updated description.

Added “Using µC/Probe Tool” on page 152.

Updated Appendix chapter on page 161:

Updated “KitProg Status LED States” on page 170:

Changed heading from “Error in Firmware/Status Indication in Status
LED” to “KitProg Status LED States”.

Updated entire section.

Table 7-1. CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide Revision History (continued)

Document Title: CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide

Document Number: 001-91316

Revision ECN# Issue Date
Origin of
Change

Description of Change

Revision History

182 CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide, Doc. # 001-91316 Rev. *C

*B 4665701 04/07/2015 SASH

Updated Introduction chapter on page 7:

Updated “Technical Support” on page 14:

Updated description.

Updated Software Installation chapter on page 15:

Updated “Install Software” on page 15:

Updated description.

Updated Kit Operation chapter on page 19:

Updated “Kit USB Connection” on page 21:

Updated description.

Removed figure “KitProg Driver Installation”.

Updated Advanced Topics chapter on page 107:

Updated “Using FM24W256 F-RAM” on page 115:

Updated “Example Firmware” on page 117:

Updated Figure 6-17.

Updated Figure 6-18.

Updated “Using PSoC 5LP as a USB-UART Bridge” on page 120:

Updated Figure 6-25.

Updated Figure 6-27.

Updated “Developing Applications for PSoC 5LP” on page 133:

Updated “Building a Bootloadable Project for PSoC 5LP” on page 134:

Updated description.

Added Figure 6-47.

Updated Figure 6-50.

Updated “Using µC/Probe Tool” on page 152:

Updated description.

Updated Appendix chapter on page 161:

Added “Migrating projects across different Pioneer series kits” on
page 175.

*C 4802100 06/18/2015 MSUR

Updated Introduction chapter on page 7:

Updated “PSoC Creator” on page 9:

Updated entire section.

Updated “Additional Learning Resources” on page 13:

Updated entire section.

Updated Code Examples chapter on page 51:

Renamed “Example Projects” with “Code Examples” in chapter heading.

Updated “Overview” on page 51:

Updated description.

Added “ADC in PSoC 4000” on page 104.

Table 7-1. CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide Revision History (continued)

Document Title: CY8CKIT-040 PSoC® 4000 Pioneer Kit Guide

Document Number: 001-91316

Revision ECN# Issue Date
Origin of
Change

Description of Change

	PSoC® 4000 Pioneer Kit Guide
	Contents
	Safety Information
	Regulatory Compliance
	General Safety Instructions

	1. Introduction
	1.1 Kit Contents
	1.2 PSoC Creator
	1.2.1 PSoC Creator Code Examples
	1.2.2 Kit Code Example
	1.2.3 PSoC Creator Help

	1.3 Getting Started
	1.4 Additional Learning Resources
	1.5 Technical Support
	1.6 Documentation Conventions

	2. Software Installation
	2.1 Before You Begin
	2.2 Install Software
	2.3 Install Hardware
	2.4 Uninstall Software

	3. Kit Operation
	3.1 Kit Overview
	3.2 Kit USB Connection
	3.3 Programming and Debugging PSoC 4000
	3.3.1 Using the Onboard PSoC 5LP Programmer and Debugger
	3.3.2 Using the CY8CKIT-002 MiniProg3 Programmer and Debugger

	3.4 USB-I2C Bridge
	3.5 USB-UART Bridge
	3.6 Updating the Onboard Programmer Firmware

	4. Hardware
	4.1 Board Details
	4.2 Block Diagram
	4.3 Kit Component Details
	4.3.1 CY8CKIT-040 Baseboard Components
	4.3.1.1 PSoC 4
	4.3.1.2 PSoC 5LP
	4.3.1.3 Power Supply System
	4.3.1.4 Programming Interface
	4.3.1.5 Arduino Compatible Headers (J1, J2, J3, J4, and J12)
	4.3.1.6 PSoC 5LP GPIO Header (J8)
	4.3.1.7 CapSense Circuit
	4.3.1.8 Board LEDs
	4.3.1.9 Push Buttons
	4.3.1.10 Cypress Ferroelectric RAM (F-RAM)

	4.3.2 CY8CKIT-040 CapSense Trackpad Shield Board

	5. Code Examples
	5.1 Overview
	5.1.1 Programming the Example Projects

	5.2 Project: Blinking LED
	5.2.1 Project Overview
	5.2.2 Project Description
	5.2.2.1 PSoC Creator Component Configuration
	5.2.2.2 Firmware Details
	5.2.2.3 Hardware Connections

	5.2.3 Verify Output

	5.3 Project: CapSense Proximity and UART
	5.3.1 Project Overview
	5.3.2 Project Description
	5.3.2.1 PSoC Creator Component Configuration
	5.3.2.2 Firmware Details
	5.3.2.3 Hardware Connections

	5.3.3 Verify Output
	5.3.3.1 UART Data Viewing

	5.4 Project: CapSense Touchpad with I2C Tuner
	5.4.1 Project Overview
	5.4.2 Project Description
	5.4.2.1 PSoC Creator Component Configuration
	5.4.2.2 Firmware Details
	5.4.2.3 Hardware Connections

	5.4.3 Verify Output
	5.4.3.1 Launching Tuner Window
	5.4.3.2 Verify Output

	5.5 Project: Color Palette
	5.5.1 Project Overview
	5.5.2 Project Description
	5.5.2.1 PSoC Creator Component Configuration
	5.5.2.2 Firmware Details
	5.5.2.3 Hardware Connections

	5.5.3 Verify Output

	5.6 ADC in PSoC 4000
	5.6.1 Using PSoC Creator Code example: ADC_VoltageInput

	6. Advanced Topics
	6.1 Using PSoC 5LP as a USB-I2C Bridge
	6.2 Using FM24W256 F-RAM
	6.2.1 Address Selection
	6.2.2 Write/Read Operation
	6.2.3 Example Firmware

	6.3 Using PSoC 5LP as a USB-UART Bridge
	6.4 Developing Applications for PSoC 5LP
	6.4.1 Building a Bootloadable Project for PSoC 5LP
	6.4.2 Building a Normal Project for PSoC 5LP

	6.5 PSoC 5LP Factory Program Restore Instructions
	6.5.1 PSoC 5LP Programmed with a Bootloadable Application
	6.5.1.1 Restore PSoC 5LP Factory Program Using PSoC Programmer
	6.5.1.2 Restore PSoC 5LP Factory Program Using USB Host Tool

	6.5.2 PSoC 5LP Programmed with a Standard Application

	6.6 Using µC/Probe Tool

	A. Appendix
	A.1 CY8CKIT-040 Schematics
	A.1.1 CapSense Touchpad Shield Board

	A.2 Pin Assignment Table
	A.2.1 Arduino Compatible Headers (J1, J2, J3, J4, and J12)
	A.2.2 PSoC 5LP GPIO Header (J8)

	A.3 Program and Debug Headers
	A.3.1 PSoC 4 Direct Program/Debug Header (J6)
	A.3.2 PSoC 5LP Direct Program/Debug Header (J7)

	A.4 Use of Zero-ohm Resistors and No Load
	A.5 KitProg Status LED States
	A.6 Bill of Materials
	A.6.1 CY8CKIT-040 Baseboard
	A.6.2 CY8CKIT-040 Trackpad Shield Board

	A.7 Trackpad/Touchpad Sticker Details
	A.8 Regulatory Compliance Information
	A.9 Migrating projects across different Pioneer series kits
	A.9.1 Arduino Uno Compatible Headers
	A.9.2 On-Board Peripherals

	Revision History

/***

* File Name: main.c

*

* Version: 1.10

*

* Description:

* This is an example of how to access/share a F-RAM device through a PSoC 4 device

*	

*	The project demonstrates a simple scenario of shared F-RAM between PSoC 4 and

*	Bridge Control Panel (BCP). In the example, based on a status variable

*	present in the F-RAM (0x0000), PSoC 4 performs a simple invert operation of a BYTE

*	present in another location (0x0001). With the example, the user will also get

*	acquainted with 'how to use' F-RAM with SCB I2C block. The same can be

*	expanded to implement an extended non-volatile RAM area through I2C.

*

*

**

* Copyright 2014, Cypress Semiconductor Corporation. All rights reserved.

* This software is owned by Cypress Semiconductor Corporation and is protected

* by and subject to worldwide patent and copyright laws and treaties.

* Therefore, you may use this software only as provided in the license agreement

* accompanying the software package from which you obtained this software.

* CYPRESS AND ITS SUPPLIERS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

* WITH REGARD TO THIS SOFTWARE, INCLUDING, BUT NOT LIMITED TO, NONINFRINGEMENT,

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

***/

#include <project.h>

/* Slave address of the I2C slave */

#define I2C_SLAVE_ADDR 	(0x50)

/* Data bytes to be accessed */

#define DATA_SIZE 		(0x02u)

/* Size of RAM address in bytes */

#define RAM_ADDRESS_SIZE	2

/* Buffer size for read or write */

#define BUFFER_SIZE (RAM_ADDRESS_SIZE + DATA_SIZE)

#define RAM_ADDRESS_MSB		0

#define RAM_ADDRESS_LSB		1

#define START_ADDRESS	0

/* I2C master read and write buffers */

uint8 i2cMasterReadBuf[DATA_SIZE];

uint8 i2cMasterWriteBuf[BUFFER_SIZE] = {0x00u, 0x00u, 0x03u, 0x04u};

uint16 framWriteDataAddress = START_ADDRESS;

uint16 framReadDataAddress = START_ADDRESS;

int main()

{	

 /* Start I2C master (SCB mode) */

 I2C_M_Start();

 CyGlobalIntEnable;

 for(;;)

 {		

		/* Check if the bus is free */

		if(I2C_M_I2CMasterStatus() != I2C_M_I2C_MSTAT_ERR_ARB_LOST)

		{

			/* In order to do a read from a specific RAM address - do a write operation with the memory address bytes alone */

			/* Initialize the Memory/RAM address bytes in the write buffer from framReadDataAddress having the memory from which data should be read */

			i2cMasterWriteBuf[RAM_ADDRESS_MSB] = (uint8)(framReadDataAddress >> 8);

			i2cMasterWriteBuf[RAM_ADDRESS_LSB] = (uint8)(framReadDataAddress);

			

			/* Write memory address bytes alone to initialize the pointer */

	 		I2C_M_I2CMasterWriteBuf(I2C_SLAVE_ADDR, (uint8 *) i2cMasterWriteBuf,

	 RAM_ADDRESS_SIZE, I2C_M_I2C_MODE_COMPLETE_XFER);

	 while(0u == (I2C_M_I2CMasterStatus() & I2C_M_I2C_MSTAT_WR_CMPLT))

	 {

	 /* Wait until master complete write */

	 }

	

	 /* Clear I2C master status */

	 (void) I2C_M_I2CMasterClearStatus();

	 /* Read the data from the F-RAM into ReadBuf */

	 I2C_M_I2CMasterReadBuf(I2C_SLAVE_ADDR, (uint8 *) i2cMasterReadBuf,

	 DATA_SIZE, I2C_M_I2C_MODE_COMPLETE_XFER);

	 while(0u == (I2C_M_I2CMasterStatus() & I2C_M_I2C_MSTAT_RD_CMPLT))

	 {

	 /* Wait until master complete reading */

	 }

	

	 /* Clear I2C master status */

	 (void) I2C_M_I2CMasterClearStatus();

			

			/* If the status flag byte is set, get the data written by BCP and invert it in the same location */

			if(i2cMasterReadBuf[0] == 1)

			{

				i2cMasterReadBuf[0] = 0;

				/* Write data to the slave

				Note: the first two bytes written to the F-RAM slave device (after the slave address byte)

					is the Memory's address to/from which data has to be written/read */

				

				/* Initialize the Memory/RAM address bytes in the write buffer from the Write data address variable */

				i2cMasterWriteBuf[RAM_ADDRESS_MSB] = (uint8)(framWriteDataAddress >> 8);

				i2cMasterWriteBuf[RAM_ADDRESS_LSB] = (uint8)(framWriteDataAddress);

				

				/* Clear the status Byte set by another master */

				i2cMasterWriteBuf[2] = 0;

				

				/* Processing the data given by BCP/other master - Invert operation */

				i2cMasterWriteBuf[3] = i2cMasterReadBuf[1] ^ 0xFF;

				

				/* Write the data to the F-RAM device in the memory pointed by framWriteDataAddress */

		 I2C_M_I2CMasterWriteBuf(I2C_SLAVE_ADDR, (uint8 *) i2cMasterWriteBuf,

		 RAM_ADDRESS_SIZE + DATA_SIZE, I2C_M_I2C_MODE_COMPLETE_XFER);

		 while(0u == (I2C_M_I2CMasterStatus() & I2C_M_I2C_MSTAT_WR_CMPLT))

		 {

		 /* Wait until master complete write */

		 }

		

		 /* Clear I2C master status */

		 (void) I2C_M_I2CMasterClearStatus(); 	

			}

		}		

		/* A delay to lose arbitration */

		CyDelay(250);

 }

}

/* [] END OF FILE */

;------------------------------F-RAM Data write format------------------

; w SLAVE_ADDR MEMORY_ADDR_MSB MEMORY_ADDR_LSB DATA_BYTE_0 DATA_BYTE_1

; DATA_BYTE_N

;--

w 50 00 00 01 02

;--

; Set MEMORY_ADDR for read operation first (F-RAM memory from which read

; must be performed

;

;------------------------------F-RAM Data Read format-------------------

; w SLAVE_ADDR MEMORY_ADDR_MSB MEMORY_ADDR_LSB r SLAVE_ADDR

; DATA_BYTE_0 DATA_BYTE_1

;--

w 50 00 00 r 50 x x

/***

* File Name: main.c

*

* Version: 1.00

*

* Description:

* This example demonstrates how to communicate using PSoC 4 I2C with

*	Bridge Control Panel (BCP)

*	

**

* Copyright 2014, Cypress Semiconductor Corporation. All rights reserved.

* This software is owned by Cypress Semiconductor Corporation and is protected

* by and subject to worldwide patent and copyright laws and treaties.

* Therefore, you may use this software only as provided in the license agreement

* accompanying the software package from which you obtained this software.

* CYPRESS AND ITS SUPPLIERS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

* WITH REGARD TO THIS SOFTWARE, INCLUDING, BUT NOT LIMITED TO, NONINFRINGEMENT,

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

***/

#include <project.h>

int main()

{

	uint8 wrBuf[10];/* I2C write buffer */

	uint8 rdBuf[10];/* I2C read buffer */

	uint8 indexCntr;

	uint32 byteCnt;

	

	/* Enable the Global Interrupt */

	CyGlobalIntEnable;

	/* Start I2C Slave operation */

	I2C_1_Start();

	/* Initialize write buffer */

	I2C_1_I2CSlaveInitWriteBuf((uint8 *) wrBuf, 10);

	/* Initialize read buffer */

	I2C_1_I2CSlaveInitReadBuf((uint8 *) rdBuf, 10);

	

	for(;;) /* Loop forever */

	{

		/* Wait for I2C master to complete a write */

		if(0u != (I2C_1_I2CSlaveStatus() & I2C_1_I2C_SSTAT_WR_CMPLT))

		{

			/* Read the number of bytes transferred */

			byteCnt = I2C_1_I2CSlaveGetWriteBufSize();

			/* Clear the write status bits*/

			I2C_1_I2CSlaveClearWriteStatus();

			

			/* Move the data written by the master to the read buffer so that the master

			can read back the data */

			for(indexCntr = 0; indexCntr < byteCnt; indexCntr++)

			{

				/* Loop back the data to the read buffer */

				rdBuf [indexCntr] = wrBuf[indexCntr];

			}

			/* Clear the write buffer pointer so that the next write operation will

			start from index 0 */

			I2C_1_I2CSlaveClearWriteBuf();

			

			/* Clear the read buffer pointer so that the next read operations starts

			from index 0 */

			I2C_1_I2CSlaveClearReadBuf();

		}

		

		/* If the master has read the data, reset the read buffer pointer to 0 and

		clear the read status */

		if(0u != (I2C_1_I2CSlaveStatus() & I2C_1_I2C_SSTAT_RD_CMPLT))

		{

			/* Clear the read buffer pointer so that the next read operations starts

			from index 0 */

			I2C_1_I2CSlaveClearReadBuf();

			/* Clear the read status bits */

			I2C_1_I2CSlaveClearReadStatus();

		}

	}

}

/* [] END OF FILE */

/***

* File Name: main.c

*

* Version: 1.00

*

* Description:

* This example demonstrates how to use USB-UART bridge on CY8CKIT-040 with an

*	external PSoC 4200 board.

*	

**

* Copyright 2014, Cypress Semiconductor Corporation. All rights reserved.

* This software is owned by Cypress Semiconductor Corporation and is protected

* by and subject to worldwide patent and copyright laws and treaties.

* Therefore, you may use this software only as provided in the license agreement

* accompanying the software package from which you obtained this software.

* CYPRESS AND ITS SUPPLIERS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,

* WITH REGARD TO THIS SOFTWARE, INCLUDING, BUT NOT LIMITED TO, NONINFRINGEMENT,

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

***/

#include <project.h>

int main()

{

	uint8 ch;

	/* Start SCB UART TX+RX operation */

	UART_Start();

	/* Transmit String through UART TX Line */

	UART_UartPutString("CY8CKIT-040 USB-UART");

	

	for(;;)

	{

		/* Get received character or zero if nothing has been received yet */

		ch = UART_UartGetChar();

		

		if(0u != ch)

		{

			/* Send the data through UART. This functions is blocking and waits until

			there is an entry into the TX FIFO. */

			UART_UartPutChar(ch);

		}

	}

}

/* [] END OF FILE */

