

NTE6410 Unijunction Transistor (UJT)

Description:

The NTE6410 is a PN unijunction transistor in a TO92 type package designed for use in pulse and timing circuits, sensing circuits and thyristor trigger circuits.

Absolute Maximum Ratings: (T_A = +25°C unless other specified)

RMS Power Dissipation, P _D Derate Above 25°C	
RMS Emitter Current, I _E	
Peak–Pulse Emitter Current (Note 1), I _E	1.5A
Emitter Reverse Voltage, V _{B2E}	
Interbase Voltage (Note 2), V _{B2B1}	
Operating Junction Temperature Range, T _J	–65° to +125°C
Storage Temperature Range, T _{stg}	
Note 1. Duty cycle \leq 1%, PRR = 10 PPS	

Note 2. Based upon power dissipation at $T_A = +25^{\circ}C$

<u>Electrical Characteristics</u>: $(T_A = +25^{\circ}C \text{ unless other specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Intrinsic Standoff Ratio	η	V _{B2B1} = 10V, Note 3	0.70	-	0.85	
Interbase Resistance	R _{BB}		4.0	6.0	9.1	kΩ
Interbase Resistance Temperature Coefficient	αR_{BB}		0.1	-	0.9	%/°C
Emitter Saturation Voltage	V _{BE1(sat)}	$V_{B2B1} = 10V, I_E = 50mA, Note 4$	-	2.5	-	V
Modulated Interbase Current	I _{B2(Mod)}	$V_{B2B1} = 10V, I_E = 50mA$	-	15	_	mA
Emitter Reverse Current	I _{EB2O}	$V_{B2E} = 30V, I_{B1} = 0$	-	0.005	1.0	μΑ
Peak–Point Emitter Current	۱ _Р	V _{B2B1} = 25V	_	1.0	5.0	μA
Valley–Point Current	Ι _V	$V_{B2B1} = 20V, R_{B2} = 100\Omega$, Note 4	4.0	7.0	_	mA
Base–One Peak Pulse Voltage	V _{OB1}		5.0	8.0	_	V

Note 3. Intrinsic standoff ratio, is defined in terms of peak–point voltage, V_P, by means of the equation: V_P = η V_{B2B1} V_F, where V_F is approximately 0.49 volts at +25°C @ I_F = 10µA and decreases with temperature at approximately 2.5mV/°C. Components R₁, C₁, and the UJT form a relaxation oscillator, the remaining circuitry serves as a peak–voltage detector. The forward drop of Diode D₁ compensates for V_F. To use, the "call" button is pushed, and R₃ is adjusted to make the current meter, M₁, read full scale. When the "call" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0.

Note 4. Use pulse techniques: $PW \sim 300\mu s$, duty cycle $\leq 2.0\%$ to avoid internal heating, which may result in erroneous readings.

