

SANYO Semiconductors DATA SHEET

ві-смоз іс For Car Radio Single chip Tuner IC

Overview

The LV25700PM is a tuner IC for car radio, which incorporates an AM/FM Tuner, PLL, AM/FM Noise Canceller (NC), FM Stereo-decoder (MPX), Multipath-noise Rejection Circuit (MRC), and RDS Demodulator Logic-controller. The basic performance is based on the LV25210, and both adjustment-free operation and software control of the IF band variable filter are possible.

This IC enables easy configuration of a low-cost, high performance analog tuner for OEM.

Functions

• AM/FM + FE + PLL + IF + NC + MPX + MRC + RDS Demodulator + Logic-controller

Features

World-wide compatible tuners World-wide compatible tuners can be configured and supplied with a single tuner IC.
FM is compatible with U.S., European, Japanese and Weather bands, while AM is compatible with LW, MW and SW. High performance image cancel mixer incorporated in FM MIX.
PLL fast locking, RDS demodulator and AM/FM noise canceller incorporated
Self-contained type IF band variable filter incorporated

Detects any neighboring interfering FM stations and the modulation index, and enables various bandwidth settings of the IF bandpass filter by using the software incorporated in the IC.

Continued on next page.

- CCB is a registered trademark of SANYO Electric Co., Ltd.
- CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network Continued from preceding page.

• Auto alignment EEPROM not necessary. It is incorporated inside the IC

FM RF, VCO, Null-voltage, Mute-on, Mute-ATT, SNC, HCC, Separation, S-meter, AM/FM AGC sensitivity, AM/FM IF gain, SD sensitivity, I²C bus compatible

* This IC can be supplied in the adjusted state. Some adjustments are necessary depending on the specifications and external components.

• Other functions

Neighboring interference (Quality Out) RDS AF-search support I²C communication bus

Specifications

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, GND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} _H max		8.7	V
	V _{CC} _L max		5.7	V
	V _{DD} max		6.5	V
	V _{DDBUS} max		6.5	V
Maximum input current	V _{IN} max		6.5	V
Maximum output current	V _O max		6.5	V
Allowable power dissipation	Pd max	(Ta ≤ 85°C)	1040	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

Recommended Operating Conditions at $Ta = 25^{\circ}C$, GND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC} _H	PIN 1, 2, 15, 68, 80	8.0	V
	V _{CC} _L	PIN 53, 74	5.0	V
	V _{DD}	PIN 35	5.0	V
	V _{DDBUS}	PIN 34	5.0	V

Recommended Operating Conditions at $Ta = 25^{\circ}C$, GND = 0V

Decemeter	Cumbol	Conditions		Ratings		Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Operating supply voltage range	V _{DD}	PIN 35	4.5	5.0	5.5	V
	V _{DDBUS}	PIN 34 (*1)	3.0	5.0	5.5	V
	V _{COP} _H	PIN 1, 2, 15, 68, 80	7.5	8.0	8.5	V
	V _{COP} _L	PIN 53, 74	4.5	5.0	5.5	V
Logic operation, memory hold voltage range	VDDLOGIC	PIN 35	3.5		5.5	V
Internal supply	V _{REG}	PIN 36 V _{DDLOGIC} > 3.5V (*2)		3.0		V
Input High level voltage	VIH	PIN 31, 32, 33	0.8VDDBUS		VDDBUS	V
Input Low level voltage	VIL	PIN 31, 32, 33	0		0.2V _{DDBUS}	V
Input amplitude voltage	VIN	PIN 39	0.5		1.5	Vrms
Input frequencies	FIN	PIN 39		20.5		MHz
Input High level current	I _{IH} (1)	PIN 39, V _I = V _{DD} = 5.0V	2.0	5.0	15.0	μΑ
	I _{IH} (2)	PIN 31, 32, 33 V _I = V _{DD} = V _{DDBUS} = 5.0V			3.0	μA
Input Low level voltage	I _{IL} (1)	PIN 39, V _I = V _{DD} = V _{SS}	2.0	5.0	15.0	μA
	I _{IL} (2)	V _I = V _{SS}			3.0	μΑ
Hysteresis width	VH	PIN 31, 32, 33	0.1VDDBUS	0.2V _{DDBUS}		V
Output High level voltage	V _{OH} (1)	PIN 26, 27, 28, 29, 30 I _O = -1mA, V _{DD} = V _{DDBUS}	V _{DD} -1.0			V
	V _{OH} (2)	PIN 38 I _O = -200μA, V _{DD} = V _{DDBUS}	V _{REG} -1.0			V
	V _{OH} (3)	PIN 21, 22 I _O = -500μA, V _{DD} = V _{DDBUS}	V _{DD} -1.0			V

Descenter	Ourseland	Querte al	Ratings			
Parameter	Symbol	Conditions	min	typ	max	Unit
Output Low level voltage	V _{OL} (1)	PIN 26, 27, 28, 29, 30 I _O = -1mA, V _{DD} = V _{DDBUS}			1.0	V
	V _{OL} (2)	PIN 38 I _O = -200μA, V _{DD} = V _{DDBUS}			1.0	V
	V _{OL} (3)	PIN 21, 22 I _O = -500μA, V _{DD} = V _{DDBUS}			1.0	V
	V _{OL} (4)	PIN 31, 32 I _O = -5mA, V _{DD} = V _{DDBUS}			1.0	V
Output off leak current	loff(1)	PIN 26, 27, 28, 29, 30, 31, 32	-3		+3	μΑ
	loff(2)	PIN 21, 22	-100		+100	nA
RESET application time at power on.	tPOR	PIN 33	50			ms
RESET application time at instantaneous power failure.	tPDR	PIN 33	50			ms
Oscillation stabilization time after RESET input is completed	tCKR	PIN 36 (*2)	80			ms

(*1): Use with $V_{DD} < V_{DDBUS}$ is prohibited.

(*2): External access to LV25700, other than RESET or power supply, that results in V_{REG} = V_{DDLOGIC} during RESET application and until XIN oscillation stabilizes (tCKR), should wait until the tCKR time elapses after RESET is released.

Package Dimensions

unit : mm (typ)

3174A

In case the RESET pin is left open, perform pull-down or other pin treatment.

Reset Timing at Instantaneous Power Failure

Reset Timing at Power-OFF

GND_VSS

AC Characteristics

Operating Characteristics at Ta = 25°C, V_{CC} = 8.0V, V_{DD} = 5.0V, unless otherwise specified. Ratings for publications

* : These measurements are made using the Yamaichi Electronics IC51-0804-819-2 IC socket. An IHF bandpass filter is used as the audio filter.

[FM Characteristics] FM Front End Mixer Input

		1				
Parameter	Symbol Conditions		min	typ	max	Unit
Current drain-8V	ICCOF-8V	No input, FM mode 11+12+115+168+180	60	73	85	mA
Current drain-5V	ICCOF-5V	No input, FM mode I35+I53+I74	37	45	52	mA
Demodulation output	V _O -FM_1	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 49	400	550	700	mVrms
Detection output	V _O -FM_2	98.1MHz, 60dBµV, 1kHz, 100%mod, pin 60	280	380	480	mVrms
Channel balance	СВ	98.1MHz, 60dBµV, 1kHz, pins 49 and 50	-1	0	1	dB
Total harmonic distortion	THD-Fm mono (1)	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 49		0.2	1	%
Total harmonic distortion	THD-Fm mono (2)	98.1MHz, 60dBµV, 1kHz, 150%mod, pin 49		0.3	2.5	%
Signal to noise ratio (MONO)	S/N-FM-MONO	98.1MHz, 60dBµV, 1kHz, 100%mod, pin 49	60	70		dB
Signal to noise ratio (ST)	S/N-FM-ST	98.1MHz, 60dBμV, 1kHz, 100%mod, pin 49, L+R = 90%, pilot = 10%	58	65		dB
AM suppression ratio	AMR	98.1MHz, 60dBμV, 1kHz, 100%mod, 30% in AM mode, fm = 400Hz, pin 49	58	67		dB
Muting attenuation (1)	Att-1	98.1MHz, 60dB μ V, 1kHz, with V64 = 0 \rightarrow 2V, pin 49 attenuation (Mute ATT SW = 0)	-30	-25	-20	dB
Muting attenuation (2)	Att-2	(Mute ATT SW = 0) 98.1MHz, 60dB μ V, 1kHz, with V64 = 0 \rightarrow 2V, pin 49 attenuation (Mute ATT SW = 2)	-23	-18	-13	dB
Muting attenuation (3)	Att-3	98.1MHz, $60dB\mu V$, $1kHz$, with V64 = $0 \rightarrow 1V$, pin 49 attenuation (Mute ATT SW = 2)	-11	-6	-1	dB
Separation	Separation	98.1MHz, 60dBµV, mod = 100%, pilot = 10%, pin 49 output ratio Separation control adj	27	43		dB
Stereo ON level	ST-ON	Pilot demodulation at which V27 < 0.5V is established	1.5	3.8	5.5	%
Stereo OFF level	ST-OFF	Pilot demodulation at which V27 < 3.0V is established	1.2	3.2		%
Main distortion factor	THD-Main L	98.1MHz, 60dBµV, L+R = 90%, pilot = 10%, pin 49		0.5	1.2	%
SNC output attenuation	AttSNC	98.1MHz, 40dBµV, L-R = 90%, pilot = 10%, pin 49 (L→R)	5	10	15	dB
HCC output attenuation	FM HCC	98.1MHz, 60dB μ V, 10kHz, modulation = 30% reference, input level at which the output is down by -3dB		30	36	dBμV
Input limiting voltage	Vi-lim	98.1MHz, $60dB\mu$ V, 30% mod, MIX input at which the input reference output is down by -3dB, V42 = 0V, V29 = 0V, with MUTE = OFF		-1	4	dBμV
Muting sensitivity	Vi-mute	MIX input level at V64 = 0.7V, non-mod	0.1	5	9.9	dBµV
SD sensitivity	SD-senFM	MIX input level at which SD pin is ON, shifter- adj, non-mod	20	25	30	dBμV
IF count sensitivity	IF-count-sens. FM	IF count sensitivity at MIX input, non-mod			20	dBµV

Parameter	Symbol	Conditions	min	typ	max	Unit
S-meter DC output	VSMFM-1	No input, pin 44 DC output non-mod			0.5	V
	VSMFM-2	10dBμV, pin 44 DC output non-mod		0.85		V
	VSMFM-3	30dBμV, pin 44 DC output non-mod,	1.8	1.85	1.9	V
		S-meter shift-adj				
	VSMFM-4	$50 dB\mu V$, pin 44 DC output non-mod		3.0		V
	VSMFM-5	$80dB\mu V$, pin 44 DC output non-mod			4.5	V
S-meter AC pin DC output	VSMFM-A1	No input, pin 57 DC output non-mod			0.45	V
	VSMFM-A2	10dBµV, pin 57 DC output non-mod		0.63		V
	VSMFM-A3	30dBμV, pin 57 DC output non-mod	1.15	1.45	1.75	V
	VSMFM-A4	50dBµV, pin 57 DC output non-mod		2.45		V
	VSMFM-A5	80dBμV, pin 57 DC output non-mod			4.5	V
S-meter inclination standard - 1	S-curve1	Which was obtained by deducting (VSMFM-2) from VSM (VSMFM-3)	0.85 1.0		1.4	V
S-meter inclination standard - 2	S-curve2	Which was obtained by deducting (VSMFM-3) from VSM (VSMFM-4)	0.8 1.15		1.5	V
Mute drive output	VMUTE-60	60dBµV, pin 64 output DC output non-mod		0.15	0.3	V
Noise convergence - 1	FM NOISE-20	60dBµV.98.1MHz, 30%mod,	-12	-7	-3	dB
		input reference,				
		output level of the input -20dBµV,				
		MUTE = OFF (42pin = GND)				
N-AGC ON input	VNAGC	98.1MHz, non-mod, MIX input level at which	64	69	74	dBμV
		pin 13 becomes 0.6V or more				
W-AGC ON input	VWAGC	98.1MHz, non-mod,	80	88	96	dBμ
		pin 44 = 0V applied (Keyed on),				
		MIX input level at which pin 13 becomes 0.6V				
		or more				
Image obstruction ratio	IRR	Removal amount of 108.1M +21.4MHz (when IRR-DAC is used)	40			dB
SD bandwidth	BW-mute	98.1MHz, non-mod, 60dBμV,	70	100	130	kHz
		Bandwidth at which SD pin is turned ON				
Conversion gain (MIX+1 st IF AMP)	A.V.	98.1MHz, 60dBµV, non-mod, FECF output			101	dBμV

[FM IF Filter characteristics] FM IF input

Parameter	Symbol	Conditions	min	typ	max	Unit
IF variable filter gain FIL-Gain 10.7MHz, n		10.7MHz, non-mod, 70dBµV,		1.9		V
		pin 44-S-meter voltage				
		(FILTER TEST MODE). Narrow-Fix				
IF variable filter narrow-band	FIL-BW-N	10.7MHz±30kHz, non-mod, 70dBµ		0.3		V
characteristics		Pin 44 S-meter voltage				
		(Filter test mode).				
		Narrow-Fix mode.				
		Difference from Pin 44 voltage at 10.7 MHz				
IF variable filter wide-band	FIL-BW-W	10.7MHz±80kHz, non-mod, 70dBµ			0.5	V
characteristics		Pin 44 S-meter voltage				
		(Filter test mode).				
		Wide-Fix mode.				
		Difference from Pin 44 voltage at 10.7 MHz				

LV25700PM

[NC block] NC input (pin 59), S-meter AC input (pin 57)

Parameter	Symbol	Conditions	min	typ	max	Unit
FM NC gate time	FM τGATE	NC input, pulse cycle = 1kHz,	36	40	44	μs
		44pin = 2V applied, pulse width = 1μ s,				
		at 200mVp-o pulse input (after MPX-VCO				
		adjustment), measurement at pin 24.				
FM NC noise sensitivity	SN-DETOUT	NC input (pin 59), 44pin = 2V applied,	95	130	165	mVp-o
		measure the pulse input level at which the				
		noise canceller starts operation,				
		pulse cycle = 1kHz, pulse width = 1μ s				
FM NC noise sensitivity	SN-Vsm	S-meter (AC) input (pin 57), 44pin = 0V		90		mVp-o
		applied, measure the pulse input level at				
		which the noise canceller starts operation,				
		pulse cycle = 1kHz, pulse width = 1μ s				
AM NC gate time	AM τGATE (1)	S-meter (AC) input (pin 57),	270	390	510	μs
		pulse cycle = 1kHz, pulse width = 1 μ s,				
		measurement at pin 24. 44pin = 1.5V				
AM NC noise sensitivity	SN	S-meter (AC) input (pin 57), measure the		220		mVp-o
		pulse input level at which the noise canceller				
		starts operation, pulse cycle=1kHz,				
		pulse width=1µs				

[Multipath-noise rejection circuit] MRC input (pin 58)

Parameter	Symbol	Conditions	min	typ	max	Unit
MRC output	VMRC	Pin 56 voltage when 3.5 V is applied to V44	2.7	2.95	3.2	V
MRC operation level	MRC-ON	SG (AG5) out level when pin 44 = 3.5V and pin 56 = 2.6V, f = 70kHz	110	155	220	mVrms

[AM characteristics] AM AMANT input

Parameter	Symbol	Conditions	min typ		max	Unit
Practical sensitivity	S/N-30	1MHz, 30dBµV, fm = 1kHz, 30%mod, pin 49	20			dB
Detection output	Vo-AM	1MHz, 74dBµV, fm = 1kHz, 30%mod, pin 49	130	180	250	mVrms
AGC-F.O.M	V AGC-FOM	1MHz, 74dBµV, output reference, input width at which the output decreases by 10dB, pin 49			60	dB
Signal-to-noise ratio	S/N-AM	1MHz, 74dBµV, fm = 1kHz, 30%mod	51	60		dB
Total harmonic distortion ratio - 1	THD-AM-1	1MHz, 74dBµV, fm = 1kHz, 80%mod		0.3	1	%
Total harmonic distortion ratio - 2	THD-AM-2	1MHz, 120dBµV, fm = 1kHz, 80%mod		0.5	1.5	%
AM HCC output attenuation	AM HCC	1MHz, 74dBµV, fm = 3kHz, 30%mod, V78 = 3V→0.6V, 25 pin	, -13		-5	dB
S-meter DC output	VSMAMDC-1	No input, 44 pin DC output	0	0.1	0.5	V
	VSMAMDC-2	1MHz, 30dB μ V, non-mod, 44 pin DC output	0.7	1.3	1.9	V
	VSMAMDC-3	1MHz, 120dB μ V, non-mod, 44 pin DC output	2.4	3.0	4.2	V
S-meter AC output	VSMAMAC-1	1MHz, -20dBμV, fm = 1kHz, 80%mod, 57 pin DC output		0	0.5	mVrms
	VSMAMAC-2	1MHz, 74dBµV, fm = 1kHz, 80%mod, 57 pin DC output	90	140	180	mVrms
Wide band AGC sensitivity	W-AGC.AM	1.4MHz, input at V6 = 0.7V	86	92	98	dBμV
SD sensitivity	SD-sen.AM	1MHz, ANT input level at which the SD pin is turned ON	25 30		35	dBμV
IF count sensitivity	IF-count-sens. AM	IF count sensitivity, 1MHz, non-mod			22	dBμV

Pin Function

			-		
Pin No.	Function name	Block	Pin No.	Function name	Block
1	MIX-OUT1	FE	41	RDS_LPF	IF
2	RF-V _{CC} _8V		42	F2	LOGIC
3	AM-MIX-IN2	AM	43	F1	LOGIC
4	AM-MIX-IN1	AM	44	S-METER	IF
5	AM-RFAGC	AM	45	AFC-OUT.	IF
6	AM-ATT	AM	46	AFC-C	IF
7	FM-RFDAC	FE	47	Noise-AGC	NC
8	AM-IFAGC/FM-RFAGC	AM/FM	48	GND	
9	FM-ANTDAC	FE	49	MPX Lch-OUT	MPX
10	FM-IN1	PLL	50	MPX Rch-OUT	MPX
11	FM-IN2	PLL	51	CHCC	MPX
12	RF-GND2	PLL	52	MPX_IN	MPX
13	FM-ANT-D	FE	53	NC-MPX-V _{CC}	
14	VCO-GND		54	Phase_dat	MPX
15	OSC-V _{CC}		55	Phase_dat	MPX
16	AM/FM-OSC(B)	FE	56	MRC-TIME	MRC
17	AM/FM-OSC(C)	FE	57	VSM-AC	IF
18	SIGNAL QUARITY	IF	58	MRC-IN	MRC
19	VT	PLL	59	NC-IN	NC
20	AM/FM FET	PLL	60	DET-OUT	IF
21	CPAM	PLL	61	VREG49	AM/FM
22	CPFM	PLL	62	AM-IF-IN1	AM
23	FET GND	PLL	63	AM-IF-IN2	AM
24	DC MONITOR	MPX	64	MUTE-CONT	IF
25	F3	LOGIC	65	IFAGC-LPF	FE
26	UL/IFEND/BUSY	LOGIC	66	AM_LC/Pilot-Det.	AM
27	SD_OUT/ST_IND		67	SepADJ	MPX
28	Q_OUT	MPX	68	AM-MIX2	AM
29	RD_DA	LOGIC	69	2 nd -MIXIN2	AM
30	RD_CL	LOGIC	70	2 nd -MIXIN1	AM
31	S_DA	LOGIC	71	ModDET	NC
32	s_ck	LOGIC	72	IF-GND	
33	RESET	LOGIC	73	1 st -IF-OUT	FM
34	BUS(TP34)	LOGIC	74	IF-V _{CC} -5V	
35	D_V _{CC} _5V		75	1 st -IF-IN1	FE
36	VREG_3V		76	1 st -IF-IN2	FE
37	D_GND		77	AM-RF-AGC	AM
38	XTAL_OUT	X'tal	78	HCC-CONT	AM/FM
39	XTAL_IN	X'tal	79	RFAGC-IN BYPASS	FE
40	 XTAL_GND		80	MIX-OUT2	FE

Block Diagram

No.A1709-10/68

		Disadation	
Pin name	Function	Discription	Internal Equivalent Circuit
1 80	MIXER OUT1 MIXER OUT1	FM/AM MIX OUT (common)	(1) 80 (1) 80
2	RF V_{CC}		V _{CC} = 8V
3 4	AM MIXER input 1 AM MIXER input 2	AM MIX IN Input impedance = 10kΩ	$RF_{-}V_{CC}(PIN2)$ 4 3 $2.5k\Omega \neq$ $10k\Omega \neq 110\Omega \neq 110\Omega$ $12k\Omega \neq$ 0
			が RF_GND(PIN2)
5	AM RF AGC	RF AGC rectifier capacitor Determination of distortion ratio during low-frequency modulation Increase C5; Distortion \rightarrow improved Response \rightarrow slow Decrease C5; Distortion \rightarrow worse Response \rightarrow quick	$RF_V_{CC}(PIN2)$ AGC_DEC $IK\Omega$ $IK\Omega$ $IK\Omega$ $IK\Omega$ $IK\Omega$ $IK\Omega$ $IF_GND(PIN72)$ $IF_GND(PIN72)$
6	AM ANT ATT	For pin diode drive I6 = 8mA ANT damping current	$RF_{CC}(PIN2)$

	from preceding page.	~	
Pin name 7	Function FM-RF-DAC	Discription FM RF tuning DAC	Internal Equivalent Circuit
			$RF_V_{CC}(PIN2)$
8	AM IF AGC FM RF AGC	IF AGC voltage: DC smoothing capacitor pin FM RF AGC voltage: Voltage = Hi (around 8V) with AGC OFF. The voltage lowers when a level is inserted into the AGC circuit. AGC is applied at the voltage of V _{CC} -Vbe.	FM_RF_AGC AM_IF_AGC AM_IF_AGC AM_IF_AGC 1kΩ 2kΩ 36kΩ 1kΩ 48kΩ 20kΩ 2kΩ 1kΩ 2kΩ 5000 2kΩ 2kΩ 2kΩ FR_CC(PIN2) 10kΩ 1kΩ 1kΩ 1
9	FM-ANT-DAC (IRR-DAC)	FM ANT tuning DAC Can be used as an IRR-DAC selected with a changeover switch.	$RF_{CC}(PIN2)$ $0.8mA$ $1k\Omega$ 7 $30k\Omega$ $100k\Omega$ 1 $133k\Omega$ $100k\Omega$ 1 1 1 1 1 1 1 1 1 1
10 11	FM MIXER IN1 FM MIXER IN2	FM MIX input	10 11 ↓↓↓↓ ↓↓↓↓↓ ↓↓↓↓↓ ↓↓↓↓↓↓ ↓↓↓↓↓↓↓ ↓↓↓↓↓↓
			が RF_GND(PIN12)

LV25700PM

Continued from preceding page.				
Pin name		Discription	Internal Equivalent Circuit	
19 20 21 22 23	VT LPFD CPAM CPFM FET_GND	LPFD: Internal FET drain output pin for PLL This pin is combined with CPFM/CPAM pins to form a low pass filter for PLL. CPFM, CPAM: Charge pump output pins These pins are placed in high-impedance state in BACKUP mode, at power-on-reset time, and in PLL stop state.	$\begin{array}{c} RF_V_{CC}(PIN2) \\ J_{A} L_{CC}(PIN35) \\ J_{CC}(PIN35) \\ $	
24	DC MONITOR	Adjustment mode Internal signal output monitor pin See BIT specifications. Normal mode: This pin outputs the SD signal.		
25 26 42 43	F3 UL/IFEND/BUSY F2 F1	F3 This pin must be left open. Output port UL/IFEND/BUSY: These pin generates the signal that identifies the Radio PLL-Unlock, IF count end, or I ² C BUS Busy state. F1, F2 These pins must be left open. Default pull-down ON.	UL/IFEND/BUSY, F3 pin 25 3 25 3 3 2 3 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3	
27 28 31 32	SD_OUT/ST_IND Q_OUT S_DA S_CK	SD_OUT/ST_IND SD, ST_IND signal output pin QOUT Quality-out signal output pin SDA, SCK I ² C interface pins. Both are of open drain type. External pull-up resistors are needed. Use the same power supply for the pull-up resistors and Pin 34 BUS. These pins are set to an input port at RESET time.	27 3 227 3 2131 1 2 231 1 2 231 1 2 231 1 2 231 1 2 231 1 2 231 1 2 3 231 1 2 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 231 1 2 3 2 3 231 1 2 3 2 3 231 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3	

	from preceding page.		
Pin name	Function	Discription	Internal Equivalent Circuit
29 30	RD_DA RD_CL	RDS demodulator signal output pins Output Low when the RDF is OFF.	29 <u>3</u> 2 1 RD_DA,RD_CL pin
33	RESET	System reset pin A low-level to this pin resets the system and PC starts executing the program from address 0. When power is turned on, it is necessary to apply low-level to this pin for 50ms or more after the 8V/5V power supply is stabilized (leaving this pin open is inhibited). See the RESET timing diagrams.	33 <u>1</u> 22
34 35 37	BUS D_V _{CC} _5V D_GND	 Power/GND pins BUS: Power supply for the main microcontroller interface pins. DV_{CC}5V, GDND: Main operating power supply 	
36	VREG_3V	Internal operating low-voltage output pin Connect a bypass capacitor to this pin.	
38 39 40	XTAL_OUT XTAL_IN XTAL_GND	Pins connected to the 20.5MHz oscillating element XTAL_GND: X'tal oscillator circuit GND	1 39 2 38 40 XTALGND(PIN40)
41	RDS_LPF	Low pass filter for RDS VCO Used to form an external low pass filter	D_V _{CC} _5V(PIN35) 41 3.3kΩ 3.3kΩ 41 3.3kΩ 3.3kΩ 58nF D_GND(PIN37) D_GND(PIN37)
44	AM/FM S_METER (DC)	Current drive type S-meter output Pin 44: Eliminates the AC component by external capacity. Pin 57: Leaves the AC components (Pin for NC noise extraction and for neighboring interfering noise extraction)	$\begin{array}{c c} IF_{-}V_{CC}(PIN74) & RF_{-}V_{CC}(PIN2) \\ & & & & & \\ FM Vsm(AC) \\ FM Vsm(CC) \\ AM Vsm(AC) \\ & & & & \\ S7 & IF_{-}GND(PIN72) \end{array} \\ \end{array} \\ \begin{array}{c} RF_{-}V_{CC}(PIN2) \\ & & & \\ AM Vsm(CC) \\ & & & \\ S7 & IF_{-}GND(PIN72) \end{array} \\ \end{array}$

	from preceding page.		· · · · · · · · · · · · · · · · · · ·
Pin name	Function	Discription	Internal Equivalent Circuit
51	HCC capacitor pin	 With pin 51 external capacity and internal resistor R, high-cut frequency characteristics are set. Internal resistance can be changed over with 3 bits (10kΩ, 30kΩ, 50kΩ, 70kΩ, 90kΩ, 110kΩ, 130kΩ, 150kΩ) (HCC cut off) 	$RF_{CC}(PIN2)$
52	MPX PLL input	LPF formed with internal resistance $30 k\Omega$	BB_V _{CC} (PIN53)
		and pin 34 eternal capacity ↓ HPF formed by subtracting the above LPS passage signal from the Composite signal. ↓ Supply to MPX PLL circuit	52 52 52 52 52 52 52 52 52 52
53	NC MPX V_{CC}	(NC, MPX, MRC)	$V_{CC} = 5V$
54 55	Phase-Comparator for MPX		BB_V _{CC} (PIN53) 10kΩ ≤ 13kΩ ≤ 10kΩ ≤ 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω
56	MRC TIME	The time constant for the Multipath-Noise Detector is determined with the following: 100Ω resistor and external capacity during discharge IConstant and external capacity during charge. IConstant can be changed over with 2bits (MRC time constant).	$RF_{CC}(PIN2)$

	I from preceding page.		
Pin name		Discription	Internal Equivalent Circuit
61	VREF 4.9V	Reference voltage	$RF_V_{CC}(PIN2)$ $1k\Omega$ $4.9V+Vbe$ $1k\Omega$ $51k\Omega$ $26k\Omega$ $IF_GND(PIN72)$
62 63	AM IF AMP input1 AM IF AMP input2	AM 450kHz AMP input Input impedance = 2kΩ	$\begin{array}{c} 62\\ \hline \hline \\ \hline \\$
64	MUTE CONT	Noise convergence adjustment Mute OFF function MUTE is turned OFF when pin 64 is short- circuited with GND.	LOGIC D/A BB_GND(PIN48)
65	IF AGC LPF	Time constant changeover at Seek switch diode	¥ ¥ ¥ 10Ω ≸100Ω 100Ω (65)
66		Frequency characteristics of unnecessary voice band of 100Hz or less is changed to produce the clear sound in the AM mode.	$RF_V_{CC}(PIN2)$ 400Ω IK_{Ω} $IF_GND(PIN72)$ $RF_V_{CC}(PIN2)$ $IF_COND(PIN72)$ $Continued on next page.$

	I from preceding page.		Γ
Pin name	Function	Discription	Internal Equivalent Circuit
67	SEPA ADJ	The input level of sub-decoder is varied through BIT control. (The output level of MONO and MAIN remains unchanged.) (Separation Control)	SUB 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω 500Ω
68	AM 2 nd MIXER output	The mixer coil connected to the pin 68 mixer output must be wired to V _{CC} = 8V.	RF_V _{CC} (PIN2) \$100Ω OSC OSC F COSC
69 70	FM 2 nd MIXER input1 FM 2 nd MIXER input2	FM 2 nd MIXER 10.7MHz → 450kHz FM AMP (10.7MHz) AMP for S-meter voltage AM MIXER input AMP for AM Noise AGC pickup	(6) (7)
71	Modulation INDEX	Set the detection output level as DC output. C71 is the smoothing capacitor.	BB_V _{CC} (PIN53)
			BB_GND(PIN48)

	from preceding page.		· · · · · · · · · · · · · · · · · · ·
Pin name	Function	Discription	Internal Equivalent Circuit
73	AM/FM 1st IF MIXER AMP output	Output impedance = 330Ω	$RF_V_{CC}(PIN2)$ 50Ω 300Ω $RF_GND(PIN12)$
74	IF V _{CC}	(IF)	V _{CC} = 5V
75 76	AM/FM 1st IF MIXER AMP input	AM/FM 450kHz AMP Input impedance = 330Ω	75 (16) 300Ω 300Ω 300Ω 300Ω 300Ω 300Ω 300Ω 300Ω 300Ω 16) 16) 16) 16) 16) 16) 16) 16)
77	AM RF AGC	RF AGC rectifier capacitor Determination of the distortion ratio during low-frequency modulation Increase C77: Distortion \rightarrow improved Response \rightarrow slow Decrease C77: Distortion \rightarrow worse Response \rightarrow quick * Same as pin 79.	$RF_{VCC}(PIN2)$
78	HCC control input pin	 With the Pin 78 input voltage, attenuation of the high pass component is controlled. ↓ At weak input, high pass is cut to reduce the noise feeling. Same control for FM/AM HCC. The f-characteristics are set by changing over the external capacity (Pin 51) and internal resistor. Threshold can be controlled with 5 bits. (FM/AM HCC DAC). 	RF_V _{CC} (PIN2)
79	AM RF AGC BYPASS MIXER OUT2	RF AGC rectifier capacitor Determination of the distortion ratio during low-frequency modulation Increase C77: Distortion \rightarrow improved Response \rightarrow slow Decrease C77: Distortion \rightarrow worse Response \rightarrow quick * Same as pin 77. * See pin 1 description.	

FM/AM level Diagram

FM IF

FM IF Filter (BPF)

1. Detection

The following types of detection are performed, and when there is a response to any detection, the IF filter bandwidth is reduced.

When there is no response, the bandwidth remains wide. (-3dB BW: 40 to 180kHz)

- (1) Modulation index detection: Detects the modulation index of the FM DET OUT block
- (2) Neighboring interference detection: Detects neighboring interference
- (3) AFC detection: Detects the AFC voltage of the FM DET block

2. Control

The sensitivity of each of the above detection functions is adjusted by BIT. Control is self-contained within AKAGI. The control voltage is generated from neighboring interference detection, modulation index detection, and AFC detection.

Thus, ultimately the IF filter band is adjusted using a single control voltage.

This control voltage varies only the IF filter band.

The control voltage can be fixed from the main microcontroller, so the 40 to 180kHz band can also be adjusted by main microcontroller control. (Fine adjustment is possible in approximately 50 steps.)

(1) IF filter modulation index detection

Detection output: Detects the audio signal level from NCIN (Pin 59)

LPF fc = 70kHz (1st order). The low pass filter is fixed inside the IC.

IC internal control is performed so that the modulation index detection function operates at a certain electric field strength or less. (The electric field threshold value can be changed by BIT.)

When modulation index detection operates, the IF filter bandwidth is reduced.

The modulation index detection function does not perform control to widen the IF filter bandwidth.

(2) IF filter neighboring interference detection

There are two detection block systems. The S-meter AC component is detected in the weak electric field (S-meter voltage = 2V or less), and neighboring interference is detected from DET OUT in the medium electric field or more (S-meter voltage = 2V or more).

The detection path is changed inside the IC according to the electric field.

S-meter AC component detection only or DETOUT block detection path only can also be changed by BIT at all electric fields.

The BPF consists of a HPF with fc = 100kHz (4th order) and an LPF with fc = 100kHz (1st order). The HPF can be selected from 50 or 100kHz, and the LPF fc can be lowered by adding a capacity to the S-meter AC (Pin 57).

(3) IF filter AFC detection

The IF filter band is controlled by changing the AFC voltage (Pin 45).

The AFC voltage is generated by converting the frequency offset relative to the IF frequency (450kHz) to a voltage. Neighboring interference detection responds even when the desired signal and the interference signal are the same level, but AFC detection responds when the interference signal level is higher than that of the desired signal. Therefore, AFC detection is used in an auxiliary manner for portions that cannot be detected by the neighboring interference detection path.

Signal Quality

Signal quality uses the same path as neighboring interference detection. (The path can be changed by BIT.)

- Detection block (Smeter_AC/DETOUT) switching inside the IC according to the electric field
- Smeter_AC detection fixed at all electric fields
- DETOUT detection fixed at all electric fields

There are two output systems as follows:

- The neighboring interference detection voltage is compared by the comparator to generate the quality output (Q-OUT: Pin 28).
- The neighboring interference detection voltage is output in a linear manner (Signal Quality: Pin 18).

Signal Quality (Pin 18) performs DC smoothing using the output impedance $(1k\Omega)$ and an external capacity. This pin voltage is also used to control the IF filter, so care must be taken as the IF filter response will become slow if the capacitance value is too large.

The S-meter path performs detection from before the BPF (IF filter), so there is no difference in the quality output due to filter band fluctuation.

The DET OUT (Pin 59) path performs detection from after the BPF (IF filter), so filter band fluctuation produces a difference in the quality output.

(The multipath signal is detected by Smeter_AC, so differences do not easily occur in Q-OUT.)

AM FE

1. AM RF AGC

The AM RF AGC system comprises two systems: N-AGC and W-AGC.

Narrow AGC: Picks up from the 2^{nd} MIX input.

The band to which AGC is applied is determined by the bands of the two front-end ceramic filters. Wide AGC: Picks up from the RF block, so AGC is applied to a wide bandwidth.

AM RF AGC band characteristics (reference characteristics)

delta frequency, kHz

2. AM high band cut and detection output level adjustment method The pin 60 AM and FM tuner output has an impedance of $12k\Omega$ in AM mode and a hundred and several tens of ohms in FM mode.

The high band is pre-adjusted by the internal low pass filter $(550k\Omega/80pF)$ and the AM detection output level is preadjusted by the internal resistor (voltage-divided by $28k\Omega$). To further lower the AM band, frequency characteristics can be adjusted with capacitor C60. To lower the AM detection output level, the level can be adjusted with resistor R60.

* The high band and the output level cannot be raised from the initial status.

3. AM low band cut adjustment method

The AM low band frequency characteristics can be adjusted with capacitor C66, which is inserted between pin 66 and GND.

$$Fc = 1/[2\pi \times 1k\Omega \times C56]$$

* In FM mode this is shared with PILOT DET, so a capacitance value less than 0.47µF cannot be set.

AM IF AGC

The AM IF AGC gain is controlled by the Pin 44 DC voltage.

IF AGC time constant switching circuit

This circuit prevents the system from erroneously stopping (or passing through) caused by S-meter oscillation due to transient response of IF AGC (2nd order filter) in seek mode.

Reception mode: 2nd order filter consisting of C at Pin 65 and Pin 66.

Seek mode: The internal transistor turns ON and a first order filter is formed by 110Ω and C65.

AM S-meter

The AM S-meter has two systems: AC and DC.

S-meter (AC): Picks up from the 10.7MHz path. The band is determined by the ceramic filter, and the S-meter is used as AM NC pulse detection. The output is Pin 57, and the AC component is determined by the external capacity value.

(In FM mode, S-meter operates linked to the FM NC, MRC and neighboring interference (IF filter).

S-meter (DC): Picks up from the 450kHz path. The band is determined by the 450kHz ceramic filter, and the Smeter is used for AM SD and AM HCC. The output is Pin 44, and the signal is converted to a DC voltage according to the external capacity value.

(In FM mode, S-meter operates linked to the FM SD, FM SNC, FM HCC and FM mute.)

The S-meter (AC) can be adjusted by S-meter Shift. At input levels above $20dB\mu$ the gain is lowered by a limiter amplifier to prevent AM NC detection errors. The recommended setting is 29.

Mixer/VCO/PLL

FM OSC Frequencies vs. Frequency Division Ratios

	. ,			
Destination	RF Frequency Range	Channel Step	Reference Frequency	Frequency Division Ratio
	(kHz)	(kHz)	(kHz)	
USA	87.9 to 108.1	200	100	2
EUROPE	87.5 to 108.0	50	100	2
EAST EUROPE	64 to 74	10	10	3
JAPAN	76 to 90	100	100	3
Weather Band	162.4 to 162.55	25	25	1

AM OSC

MW	RF Frequency Range	Channel Step	Reference Frequency	Frequency Division Ratio
	(kHz)	(kHz)	(kHz)	
USA	520 to 1710	10	10	20
				(AM/FM: 1/2 × AM: 1/10)
EUROPE	522 to 1611	9	10	20
				(AM/FM: 1/2 × AM: 1/10)
JAPAN	522 to 1629	9	10	20
				(AM/FM: 1/2 × AM: 1/10)

LW	RF Frequency Range	Channel Step	Reference Frequency	Frequency Division Ratio
	(kHz)	(kHz)	(kHz)	
EUROPE	146 to 281	1	10	20
				(AM/FM: 1/2 × AM: 1/10)

SW	RF Frequency Range	Channel Step	Reference Frequency	Frequency Division Ratio
	(kHz)	(kHz)	(kHz)	
SW1	2.28 to 6.23	5	5	12
				(AM/FM: 1/2 × AM: 1/6)
SW2	7.1 to 10.5	5	5	12
				(AM/FM: 1/2 × AM: 1/6)
SW3	10.55 to 18	5	5	12
				(AM/FM: 1/2 × AM: 1/4)

* The setting of the frequency division ratio may differ due to the varactor and coil used in OSC.

FM Noise cancellar

FM noise canceller detection is performed using two systems (Pin 57 (S-meter AC), Pin 59 (NC IN)) as a countermeasure against operation errors due to the weak electric field NC sensitivity setting. The detection path is switched according to the electric field by the S-meter (DC) (Pin 44). FM NC operation can be monitored by the Pin 24 trigger out.

Description of FM NC functions

SA : D		Recommended Setting	Description of Functions					
SA24	Nose-AGC Th.	[1]Force	0: Fixes the noise detection sensitivity.					
D2	Forced noise AGC	Noise AGC	1: Uses noise AGC in the forcibly applied state.					
			The noise detection sensitivity can be adjusted by DAC (SA09, D0 to D4) control.					
SA18	Noise-Sens.	[0]	The noise detection sensitivity is adjusted by switching the noise amplifier output					
D6-D7	NC load switching	15kΩ	load.					
SA10	AC S-Meter	[0]	Reduces the AC-S-meter internal load resistance value by approximately half.					
D1	NC sensitivity switching	54kΩ	$(54k\Omega //60k\Omega \rightarrow 27k\Omega //60k\Omega)$					
	(Fixed to normal)		0: Normal (Internal load = $54k\Omega/60k\Omega$)					
			1: ON (Internal load = $27k\Omega/60k\Omega$)					
			However, note that in FM mode the MRC and IF filter also operate by detecting					
			the AC component of the same pin (AC_Vsm), so these functions are affected by					
			this bit.					
SA09	NC SENS MAIN	[18]	This is valid only in reception mode.					
D0-D4	Adjusting the NC noise		However, it is invalid when SA24 D2 is set to OFF (normal).					
	detection sensitivity		When SA24 D2 is ON					
			Increasing the DAC setting increases the comparator threshold voltage, and					
			worsens the noise detection sensitivity.					
			Conversely, reducing the DAC setting enhances the detection sensitivity.					
			(However, reducing the DAC setting by too much increases the chances of					
			operation errors.)					

AM NC block

This block detects noise from the 10.7 MHz CF out, turns OFF the AM demodulated signal waveform only during the period affected by noise, and holds the DC. The detection path is the one system of Pin 40 (S-meter AC). AM NC operation can be monitored by the Pin 24 trigger out. The Pin 47 external constant is determined by the FM NC with priority.

SA:D		Recommended Setting	Description of Functions
SA24	Nose-AGC Th.	[1]Force	0: Fixes the noise detection sensitivity.
D2	Forced noise AGC	Noise AGC	1: Uses noise AGC in the forcibly applied state.
			The noise detection sensitivity can be adjusted by DAC (SA09, D0 to D4) control.
SA22	FIFGAIN	[9]	Sets the IF limiter amplifier gain.
D4-D7			Increasing the DAC setting increases the gain.
			Reducing the DAC setting reduces the gain.
SA11	S-meter Shift	[29]	Hides the noise detected by VsmAC.
D0-D4			Increasing the DAC setting increases the shift amount.
			Reducing the DAC setting reduces the shift amount.
			Reducing the shift amount enhances the effects during weak input, but also
			increases the chances of operation errors due to weak input noise.
SA10	AC S-Meter	[1]	Reduces the AC-S-meter internal load resistance value by approximately half.
D1	NC sensitivity switching	27kΩ	$(54k\Omega //60k\Omega \rightarrow 27k\Omega //60k\Omega)$
			0: Normal (Internal load = $54k\Omega/60k\Omega$)
			1: ON (Internal load = $27k\Omega/60k\Omega$)
			However, note that in FM mode the MRC and IF filter also operate by detecting the
			AC component of the same pin (AC_Vsm), so these functions are affected by this
			bit.
SA18	Noise-Sens.	[2]	The noise detection sensitivity is adjusted by switching the noise amplifier output
D6-D7	NC load switching	6kΩ	load.
SA09	NC SENS MAIN	[15]	This is valid only in reception mode.
D0-D4	Adjusts the NC noise		However, it is invalid when SA24 D2 is set to OFF (normal).
	detection sensitivity		When SA24 D2 is ON
			Increasing the DAC setting increases the comparator threshold voltage, and
			worsens the noise detection sensitivity.
			Conversely, reducing the DAC setting enhances the detection sensitivity.
			(However, reducing the DAC setting by too much increases the chances of
			operation errors.)
SA19	AM NC STOP	[31]	Can be set to operate only at weak input (forced OFF at strong input).
D0-D4			Increasing the DAC setting \rightarrow Operates up to strong input.
			Reducing the DAC setting \rightarrow Operates only at weak input.
SA20	AM NC gate	[12]	Can set the gate time.
D2-D7		430µsec	Increasing the DAC setting shortens the gate time.
		(Reference value)	Reducing the DAC setting lengthens the gate time.
SA24	AM NC OFF	[0]	Can forcibly set AM NC to OFF.
D6			$0 = ON \rightarrow Normal operation$
			1 = OFF \rightarrow Forcibly OFF

* AM NC ON/OFF can be set by the DAC [AM NC OFF].

* The NC sensitivity coarse adjustment can be set by the DAC [AC_Smeter Sw] and the DAC [Noise-Sens].

* The NC sensitivity fine adjustment can be set by the DAC [NC SENS MAIN], the DAC [S-Meter Shift] and the DAC [FM IF GAIN].

* The gate time can be set by the DAC [AM NC gate].

The ANT-IB-LEVEL range at which AM NC turns ON can be set by the DAC [AM NC stop]. (AM NC can be turned OFF at medium and strong input.)

Stereo Decoder

SA:D		Recommended Setting	Description of Functions
SA18	MPV VCO	FM:*	Optimum value: Set so that the free-running frequency (VCO frequency under no-
D0-D5			modulation conditions) is near 304kHz (adjust to within ±2kHz).
			* Set VCO ON (SA24: D4) to [1] during adjustment.
SA26 D6	Force MONO	[0]	0 = Normal: Normal mode, 1 = Force MONO: Forced monaural
SA17	Separation	Process adjustment	Optimum value: Adjust to maximize separation at the standard electric field input.
D0-D5	Control	required	
SA24	ST-Sens ADJ	FM:[0]	0 = OFF (normal), 1 = ON (ST ON sensitivity increased)
D3			When set to ON, the ST ON sensitivity (ON/OFF) is increased by approximately
			1% compared to when set to OFF.
SA17	Pi-Can(Pilot Cancel Level	FM:[0]	[Pi-Can]
D6-D7	Control)		Typical value: Center (process adjustment optional)
SA25	SNC DAC/AM-RF-AGC	FM:	[SNC DAC]
D0-D4	Amp threshold value		Adjust to the specified separation at medium electric field input.
	(steep slope side)	AM:[0]	
			[AM-RF-AGC]
			Optimum value: Fix to [0].
SA25	SNC slope		Small bit value: Gentle slope, Large bit value: Steep slope
D5-D6			* If the value is too small, SEP operation may be performed even at weak electric
			field input, resulting in a deteriorated ST S/N ratio.
SA26	De-emphasis		Set according to the destination.
D7			0: 50µsec [JPN], 1: 75µsec [US]
SA26	FM/AM	FM:*	Optimum value: Adjust to the specified frequency characteristics at weak electric
D0-D4	HCC DAC	AM:[12]	field input.
SA47	HCC SW	FM:[6]	The HCC frequency characteristics is set by the Pin 51 external capacity value and
D5		AM:[3]	the internal resistor (adjustable).
			Optimum value: FM mode = [6], AM mode = [3]
			FM mode = 6: HCC cutoff fc = 2.2kHz (when C51 = 2,200pF)
			AM mode = 3: HCC cutoff fc = 800Hz (when C51 = 2,200pF)
SA24	VCO ON	[0]	0: Normal mode, 1: MPX-VCO monitor test mode
D4			[Pin 24 frequency measurement]
			(In MPX-VCO monitor mode: Set DC SELECT SA09, D5 to D7 to SD/MPX VCO
			OUT.)

MRC

The MRC (Multipath Rejection Circuit) controls multipath noise by detecting the AC component of the IF S-meter (AC). It consists of a noise amplifier and a detection circuit.

• Noise amplifier gain

The noise amplifier gain of the Pin 58 input is determined by the R2 and R1 resistors. (The gain can be lowered by adding an external resistor.)

The gain can be further adjusted in four steps by the MRC Sens DAC. The high band frequency characteristics can be adjusted by C57.

SA:D		Recommended Setting	Description of Functions
SA21	MRC	*	Optimum value: According to the specifications.
D0-D1	Sensitivity		Setting a smaller value enhances the sensitivity and increases the MRC amplifier
			gain.
			Setting a larger value worsens the sensitivity and reduces the MRC amplifier gain.
SA21	MRC Time constant	*	Sets the recovery time constant when the multipath countermeasure circuit
D2-D3	(Attack/Release Time)		operates.
			(Time from the MONO status to ST recovery)
			Setting a smaller value shortens the recovery time, and setting a larger value
			lengthens the recovery time.

• Detection circuit MRC the time constant used to control separation is as follows.

Discharge: Determined by 100Ω and C56.

Charge: Determined by I56 and C56.

 \ast I56 can be set in four steps by the MRC time constant DAC.

MRC time constant ((reference values)
mile constant	(ioioioioo vuiuoo)

DAC	C56	Charge Time	Discharge Time					
MRC_Time_Constant = 0	1μF	360ms	0.63ms					
MRC_Time_Constant = 1	1μF	515ms	0.63ms					
MRC_Time_Constant = 2	1μF	890ms	0.63ms					
MRC_Time_Constant = 3	1μF	4.5s	0.63ms					
DAC	C56	Charge Time	Discharge Time					
MRC_Time_Constant = 0	0.47µF	215ms	0.5ms					
MRC_Time_Constant = 0	1μF	360ms	0.63ms					
MRC_Time_Constant = 0	2μF	790ms	0.9ms					

Bit Specifications

Slave address:

MSB							LSB	Function				
A7	A6	A5	A4	A3	A2	A1	A0	Function				
1	1	1	0	1	1	1	0	WRITE mode				
1	1	1	0	1	1	1	1	READ mode				

Sub address:

MSB							LSB	E contra				
A7	A6	A5	A4	A3	A2	A1	A0	Function				
0	0	0	0	0	0	0	1	SA1				
0	0	0	0	0	0	1	0	SA2				
0	0	0	0	0	0	1	1	SA3				
١	٤	٤	٤	٤	٤	٤	١					
0	1	0	1	1	1	0	1	SA93				
0	1	0	1	1	1	1	0	SA94				
0	1	0	1	1	1	1	1	SA95				

* Continuous write is possible from an arbitrary sub address (e.g. SA12 to SA23).

* Restart is prohibited: After the STOP condition is generated, always start again from the START condition.

SCL/SDA Bus Line Characteristics

Item	Symbol	Conditions	min	typ	max	unit
SCL clock frequency	fSCL		0		100	kHz
START condition hold time	tHD;STA		4.0			μs
STOP condition setup time	tSU;STO		4.0			μs
SCL clock Low period	tLOW		4.7			μs
SCL clock High period	tHIGH		4.0			μs
SDA and SCL signal rise time	tr				1000	ns
SDA and SCL signal fall time	tf				300	ns
Data hold time	tHD;DAT		0		2.7	μs
Data setup time	tSU;DAT		1			μs
Time from the previous STOP condition until the next START condition is generated	tBUF		BU	BUSY = 0 to output		
Low level input voltage	VIL		0		0.3V _{DD}	V
High level input voltage	VIH		0.7V _{DD}		V _{DD}	V

*1: The values specified by No.1 to No.9 are the values when operating at SCL = 100kHz.

*2: No.10 is limited to the case when SA7 D7 and D6 are set to "01" or "11".

*3: The V_{DD} noted in No.11 and No.12 indicates the Pin 34 BUSV_{DD}.

*4: I²C recommended operation: Using SA03 D1 bit I²C CK Low drive.

BIT	MAP(ES	9)							
SA	Sub Address	D7	D6	D5	D4	D3	D2	D1	D0
1	00000001	P15	P14	P13	P12	P11	P10	P9	P8
2	00000010	P7	P6	P5	P4	P3	P2	P1	P0
3	00000011	R3	R2	R1	R0	ULT	RDS_ON	I2C_SCK_LD	-
4	00000100	AMFM	WEATHER	OSC_DIV1	OSC_DIV0	SEEK1	SEEK0	TUNER_OFF	IQ_UP_LOW
5	00000101	RF_DAC7	RF_DAC6	 RF_DAC5	 RF_DAC4	RF_DAC3	RF_DAC2	RF DAC1	RF_DAC0
6	00000110	ANT_DAC7	ANT_DAC6	ANT_DAC5	ANT_DAC4	ANT_DAC3	ANT_DAC2	ANT_DAC1	ANT_DAC0
7	00000111	UL/IFEND	BUSY	DZ1	DZ0	CTE	GT2	GT1	GT0
8	00001000	-	-	-	-	-	-	-	DIV_SW
9	00001001	DCSELCT2	DCSELCT1	DCSELCT0	NC_SENS MAIN4	NC_SENS MAIN3	NC_SENS MAIN2	NC_SENS MAIN1	NC_SENS MAIN0
10	00001010	FIL_SENS3	FIL_SENS 2	FIL_SENS 1	FIL_SENS0	HPF_FC	IN_DETOFF	NCSENSE	DAC_90FF
11	00001011	IN_DETON	AMAGC_ON	FMAGC_ON	S_METER4	S_METER3	S_METER2	S_METER1	S_METER0
12	00001100	SIG_Q3	SIG_Q2	SIG_Q1	SIG_Q0	QDP_ADJ3	QDP_ADJ2	QDP_ADJ1	QDP_ADJ0
13	00001101	FIL_VSMON	-	CF_ADJ_D5	CF_ADJ_D4	CF_ADJ_D3	CF_ADJ_D2	CF_ADJ_D1	CF_ADJ_D0
14	00001110	-	-	BWD_ADJ_D5	BWD_ADJ_D4	BWD_ADJ_D3	BWD_ADJ_D2	BWD_ADJ_D1	BWD_ADJ_D0
15	00001111	KEY_AGC3	KEY_AGC2	KEY_AGC1	KEY_AGC0	IRR_VG3	IRR_VG2	IRR_VG1	IRR_VG0
16	00010000	NULL5	NULL4	NULL3	NULL2	NULL1	NULLO	0	0
17	00010001	PICAN1	PICAN0	SEPD5	SEPD4	SEPD3	SEPD2	SEPD1	SEPD0
18	00010010	NOISE_SEN1	NOISE_SEN0	MPXVCO_5	MPXVCO_4	MPXVCO_3	MPXVCO_2	MPXVCO_1	MPXVCO_0
19	00010011	-		-	_	_	_	_	 AM_NC_STOP0
20	00010100	MUTEATT5	MUTEATT4	MUTEATT3	MUTEATT2	MUTEATT1	MUTEATT0	MONI MODE	REV MODE
21	00010101	-	-	AMVSM_SHIFT1	AMVSM_SHIFT0	T CONST1	T CONSTO	MRCSENSE1	MRCSENSE0
22	00010110	FIFGAIN3	FIFGAIN2	FIFGAIN1	FIFGAIN0	 AMRFAGC3	 AMRFAGC2	AMRFAGC1	AMRFAGC0
23	00010111	W_AGC3	W_AGC2	W_AGC1	W_AGC0	N_AGC3	N_AGC2	N_AGC1	N_AGC0
24	00011000	MSLOPE	AM_NC_OFF	-	VCO_ON	_	FORCENOAGC	_	-
25	00011001	DTESTSW	SNCINC1	SNCINC0	SNC DAC4	SNC_DAC3	SNC_DAC2	SNC DAC1	SNC DAC0
26	00011010	DEEMPSW	MO ST SW	IRR SW	HCC DAC4	HCC_DAC3	HCC DAC2	HCC DAC1	HCC_DAC0
27	00011011	-	-	-	FM PIND OFF	_		_	IFT TRANS
28	00011100	-	-	-		SEEK_SD_ON3	SEEK SD ON2	SEEK SD ON1	
29		SEEK_SD_BW3	SEEK SD BW2	SEEK SD BW1			_	_	-
-	00011110		-			-	-	-	-
31			QO UNDDET 6	QO UNDDET 5	QO UNDDET 4	QO UNDDET 3	QO UNDDET 2	QO UNDDET 1	QO_UNDDET_0
32	00100000					QO_AFC_MAX_3			
33	00100001					QO_AFC_MIN_3			
34	00100010				MUTE_TC_UP_0			MUTE_TC_DOWN_1	
35	00100011					MUTE_SMR_SLC_3			
36	00100100					MUTE SMR ZERO 3			
37	00100101					BPF_MOD_MAX_3			
38	00100101	BPF_MOD_MIN_7		BPF_MOD_MIN_5			BPF_MOD_MIN_2		BPF MOD MIN 0
39	00100111	BPF_SMR_MAX_7			BPF_SMR_MAX_4			BPF_SMR_MAX_1	
40	00101000	BPF_SMR_MIN_7	BPF_SMR_MIN_6	BPF_SMR_MIN_5	BPF_SMR_MIN_4	BPF_SMR_MIN_3	BPF_SMR_MIN_2	BPF_SMR_MIN_1	BPF_SMR_MIN_0
41	00101000	BPF_LIMIT_7	BPF_LIMIT_6	BPF_LIMIT_5	BPF_LIMIT_4	BPF_LIMIT_3	BPF_LIMIT_2	BPF_LIMIT_1	BPF_LIMIT_0
42	00101001	BPF_FIX_7	BPF_FIX_6	BPF_FIX_5	BPF_FIX_4	BPF_FIX_3	BPF_FIX_2	BPF_FIX_1	BPF_FIX_0
43	00101011	BPF_FIX	BPF_TC_2	BPF_TC_1	BPF_TC_0				BPF_SLOPE_0
43	00101011	AFC_MAX_7	AFC_MAX_6	AFC_MAX_5	AFC_MAX_4	AFC_MAX_3	AFC MAX 2	AFC_MAX_1	AFC_MAX_0
44	00101100	AFC_MIN_7	AFC MIN 6	AFC_MIN_5	AFC_MIN_4	AFC_MIN_3	AFC_MIN_2	AFC_MIN_1	AFC_MIN_0
45	00101110	/ O_IVIIIN_/		74 0_WIN_0	74 0_WIN_4		74 0_WIN_2		74 <u>0_</u> WIN <u>U</u>
40	00101110	- RDS_AFC	-	- HCC_SW3	- HCC_SW2	- HCC_SW1			-
47	00110000		-	100_303	100_302	100_301	 S_METER_INT_P	- RF_INT_P	- IRR_INT_P
40 49	00110000			-		-			
49 50	00110001	- RDS QO UDET 7				- RDS QO UDET 3			
50	00110010	NUS_QU_UDEI_/	ND9_QO_ODE1_6	ND9_QO_UDE1_5	NUS_QU_UUE1_4	INDS_QU_UDE1_3			

SA	Sub	D7	D6	D5	D4	D3	D2	D1	D0				
51	Address 00110011							RF DAC P0 1					
52	00110110							RF_DAC_P0_1					
53	00110101							RF_DAC_P2_1					
54	00110110							RF_DAC_P3_1					
55	00110111							RF_DAC_P4_1					
56	00111000							RF_DAC_P5_1					
57	00111001							 RF_DAC_P6_1					
58	00111010							 RF_DAC_P7_1					
59	00111011	ANT_DAC_P0_7	ANT_DAC_P0_6	ANT_DAC_P0_5	ANT_DAC_P0_4	ANT_DAC_P0_3	ANT_DAC_P0_2	ANT_DAC_P0_1	ANT_DAC_P0_0				
60	00111100	ANT_DAC_P1_7	ANT_DAC_P1_6	ANT_DAC_P1_5	ANT_DAC_P1_4	ANT_DAC_P1_3	ANT_DAC_P1_2	ANT_DAC_P1_1	ANT_DAC_P1_0				
61	00111101	ANT_DAC_P2_7	ANT_DAC_P2_6	ANT_DAC_P2_5	ANT_DAC_P2_4	ANT_DAC_P2_3	ANT_DAC_P2_2	ANT_DAC_P2_1	ANT_DAC_P2_0				
62	00111110	ANT_DAC_P3_7	ANT_DAC_P3_6	ANT_DAC_P3_5	ANT_DAC_P3_4	ANT_DAC_P3_3	ANT_DAC_P3_2	ANT_DAC_P3_1	ANT_DAC_P3_0				
63	00111111	ANT_DAC_P4_7	ANT_DAC_P4_6	ANT_DAC_P4_5	ANT_DAC_P4_4	ANT_DAC_P4_3	ANT_DAC_P4_2	ANT_DAC_P4_1	ANT_DAC_P4_0				
64	01000000	ANT_DAC_P5_7	ANT_DAC_P5_6	ANT_DAC_P5_5	ANT_DAC_P5_4	ANT_DAC_P5_3	ANT_DAC_P5_2	ANT_DAC_P5_1	ANT_DAC_P5_0				
65	01000001	ANT_DAC_P6_7	ANT_DAC_P6_6	ANT_DAC_P6_5	ANT_DAC_P6_4	ANT_DAC_P6_3	ANT_DAC_P6_2	ANT_DAC_P6_1	ANT_DAC_P6_0				
66	01000010	ANT_DAC_P7_7	ANT_DAC_P7_6	ANT_DAC_P7_5	ANT_DAC_P7_4	ANT_DAC_P7_3	ANT_DAC_P7_2	ANT_DAC_P7_1	ANT_DAC_P7_0				
67	01000011	-	-	-	SMETER_P0_4	SMETER_P0_3	SMETER_P0_2	SMETER_P0_1	SMETER_P0_0				
68	01000100	-	-	-	SMETER_P1_4	SMETER_P1_3	SMETER_P1_2	SMETER_P1_1	SMETER_P1_0				
69	01000101	-	-	-	SMETER_P2_4	SMETER_P2_3	SMETER_P2_2	SMETER_P2_1	SMETER_P2_0				
70	01000110	-	-	-	SMETER_P3_4	SMETER_P3_3	SMETER_P3_2	SMETER_P3_1	SMETER_P3_0				
71	01000111	-	-	-	SMETER_P4_4	SMETER_P4_3	SMETER_P4_2	SMETER_P4_1	SMETER_P4_0				
72	01001000	-	-	-	SMETER_P5_4	SMETER_P5_3	SMETER_P5_2	SMETER_P5_1	SMETER_P5_0				
73	01001001	-	-	-	SMETER_P6_4	SMETER_P6_3	SMETER_P6_2	SMETER_P6_1	SMETER_P6_0				
74	01001010	-	-	-	SMETER_P7_4	SMETER_P7_3	SMETER_P7_2	SMETER_P7_1	SMETER_P7_0				
75	01001011	-	-	-	-	-	-	-	-				
76	01001100	-	-	-	-	-	-	-	-				
77	01001101	-	-	-	-	-	-	-	-				
78	01001110	-	-	-	-	-	-	-	-				
79	01001111	-	-	-	-	-	-	-	-				
80	01010000	AF_P15	AF_P14	AF_P13	AF_P12	AF_P11	AF_P10	AF_P9	AF_P8				
81	01010001	AF_P7	AF_P6	AF_P5	AF_P4	AF_P3	AF_P2	AF_P1	AF_P0				
82	01010010	AF_RFD7	AF_RFD6	AF_RFD5	AF_RFD4	AF_RFD3	AF_RFD2	AF_RFD1	AF_RFD0				
83	01010011	AF_ANTD7	AF_ANTD6	AF_ANTD5	AF_ANTD4	AF_ANTD3	AF_ANTD2	AF_ANTD1	AF_ANTD0				
84	01010100	-	-	-	-	-	-	-	-				
85	01010101	-	-	-	-	-	-	-	-				
86	01010110	-	-	-	-	-	-	-	-				
87	01010111	-	-	-	-	-	-	-	-				
88	01011000	-	-	-	-	-	-	-	-				
89	01011001	-	-	-	-	-	-	-	-				
90	01011010	-	-	-	-	-	-	-	-				
91	01011011	-	-	-	-	-	-	-	-				
92	01011100	-	-	-	-	-	-	-	-				
93	01011101	CUSTOM_CODE_7	CUSTOM_CODE_6	CUSTOM_CODE_5	CUSTOM_CODE_4	CUSTOM_CODE_3	CUSTOM_CODE_2	CUSTOM_CODE_1	CUSTOM_CODE_0				
94	01011110	AREA_CODE3	AREA_CODE2	AREA_CODE1	AREA_CODE0	ALIGN_NO3	ALIGN_NO2	ALIGN_NO1	ALIGN_NO0				
95	01011111	CHECK_SUM7	CHECK_SUM6	CHECK_SUM5	CHECK_SUM4	CHECK_SUM3	CHECK_SUM2	CHECK_SUM1	CHECK_SUM0				
Spec	Special Commands (SA248 and SA252 are 3 bytes, other commands have no data.)												
------	--	---	-------------------------	----------------	----------------	-----------------	-----------------	----	--	--	--	--	--
SA	Sub Address	D7	D7 D6 D5 D4 D3 D2 D1 D0										
248	11111000	WRITE_ID2 WRITE_ID1 WRITE_ID0 Flash Memory Write Mode Set											
249	11111001	RDS MUTE ON											
250	11111010	RDS MUTE OFF											
251	11111011				Flash Mem	ory Default							
252	11111100	WRITE_ID2	WRITE_ID1	WRITE_ID0		FI	lash Memory Wri	te					
253	11111101			Normal Frequen	cy Change(SA01	,SA02,SA05) for	RDS AF Search						
254	11111110	AF Frequency Change(SA80,SA81,SA82) for RDS AF Search											
255	11111111				Firmware Vers	ion Information							

Bit I	Bit Map (FM Initial Data)													
SA	Sub Address	D7	D6	D5	D4	D3	D2	D1	D0					
1	00000001	0	0	0	0	1	0	0	0					
2	00000010	1	0	0	0	0	0	0	0					
3	00000011	1	1	0	0	0	0	0	0					
4	00000100	0	0	0	0	0	1	0	0					
5	00000101	1	0	0	1	1	0	1	0					
6	00000110	*	*	*	*	*	*	*	*					
7	00000111	0	1	0	1	0	0	1	1					
8	00001000	0	0	0	0	0	0	0	0					
9	00001001	1	0	0	1	0	0	1	0					
10	00001010	0	1	0	1	0	0	0	0					
11	00001011	0	0	0	*	*	*	*	*					
12	00001100	1	0	1	0	0	1	1	0					
13	00001101	0	0	*	*	*	*	*	*					
14	00001110	0	0	*	*	*	*	*	*					
15	00001111	0	1	0	0	1	0	0	1					
16	00010000	*	*	*	*	*	*	0	0					
17	00010001	*	*	*	*	*	*	*	*					
18	00010010	0	0	*	*	*	*	*	*					
19	00010011	0	0	0	0	0	0	0	0					
20	00010100	1	1	1	1	1	1	0	0					
21	00010101	0	0	1	0	1	1	0	1					
22	00010110	1	0	1	0	1	1	0	0					
23	00010111	0	1	1	0	0	0	1	1					
24	00011000	0	0	0	0	0	1	0	0					
25	00011001	0	1	0	*	*	*	*	*					
26	00011010	1	0	0	0	1	1	1	0					
27	00011011	0	0	0	0	0	0	0	1					
28	00011100	0	0	0	*	*	*	*	*					
29	00011101	0	1	0	1	0	0	0	0					
30	00011110	0	0	0	0	0	0	0	0					
31	00011111	0	0	0	0	1	0	1	1					
32	00100000	1	0	1	0	0	1	1	0					
33	00100001	0	1	1	1	0	0	1	1					
34	00100010	0	0	0	0	0	0	0	0					
35	00100011	*	*	*	*	*	*	*	*					
36	00100100	*	*	*	*	*	*	*	*					
37	00100101	0	0	0	0	0	0	0	0					
38	00100110	0	0	0	0	0	0	0	0					
39	00100111	0	0	0	0	0	0	0	0					
40	00101000	0	0	0	0	0	0	0	0					
41	00101001	1	1	1	1	1	1	1	1					
42	00101010	0	0	0	0	0	0	0	0					
43	00101011	0	0	0	0	0	0	1	0					
44	00101100	1	0	1	0	0	1	1	0					
45	00101101	0	1	1	1	0	0	1	1					
46	00101110	0	0	0	0	0	0	0	0					
47	00101111	1	0	1	1	0	0	0	0					
48	00110000	0	0	0	0	0	0	0	0					
49	00110001	0	0	0	0	0	0	0	0					
50	00110010	0	0	0	0	1	0	1	1					

SA	Sub Address	D7	D6	D5	D4	D3	D2	D1	D0
51	00110011	0	0	0	0	0	0	0	0
52	00110100	0	0	0	0	0	0	0	0
53	00110101	0	0	0	0	0	0	0	0
54	00110110	0	0	0	0	0	0	0	0
55	00110111	0	0	0	0	0	0	0	0
56	00111000	0	0	0	0	0	0	0	0
57	00111001	0	0	0	0	0	0	0	0
58	00111010	0	0	0	0	0	0	0	0
59	00111011	0	0	0	0	0	0	0	0
60	00111100	0	0	0	0	0	0	0	0
61	00111101	0	0	0	0	0	0	0	0
62	00111110	0	0	0	0	0	0	0	0
63	00111111	0	0	0	0	0	0	0	0
64	01000000	0	0	0	0	0	0	0	0
65	01000001	0	0	0	0	0	0	0	0
66	01000010	0	0	0	0	0	0	0	0
67	01000011	0	0	0	0	0	0	0	0
68	01000100	0	0	0	0	0	0	0	0
69	01000101	0	0	0	0	0	0	0	0
70	01000110	0	0	0	0	0	0	0	0
71	01000111	0	0	0	0	0	0	0	0
72	01001000	0	0	0	0	0	0	0	0
73	01001001	0	0	0	0	0	0	0	0
74	01001010	0	0	0	0	0	0	0	0
75	01001011	0	0	0	0	0	0	0	0
76	01001100	0	0	0	0	0	0	0	0
77	01001101	0	0	0	0	0	0	0	0
78	01001110	0	0	0	0	0	0	0	0
79	01001111	0	0	0	0	0	0	0	0
80	01010000	0	0	0	0	0	0	0	0
81	01010001	0	0	0	0	0	0	0	0
82		0	0	0	0	0	0	0	0
83	01010011	0	0	0	0	0	0	0	0
84	01010100	0	0	0	0	0	0	0	0
85	01010101	0	0	0	0	0	0	0	0
86	01010110	0	0	0	0	0	0	0	0
87	01010111	0	0	0	0	0	0	0	0
88	01011000	0	0	0	0	0	0	0	0
89	01011001	0	0	0	0	0	0	0	0
90	01011010	0	0	0	0	0	0	0	0
91	01011011	0	0	0	0	0	0	0	0
92 93	01011100	0	0	0	0	0	0	0	0
93 94	01011101 01011110	0	0	0	1	0	0	1	1
		*	*	*	*	*	*	*	*
95	01011111	^							

Green	*: FM adjustment
Orange	: Users should readjust as necessary. Asterisks indicate items that are already adjusted in SANYO Semiconductor's tester process. Other parameters (SA) also require readjustment when used outside SANYO Semiconductor's recommended settings.
Gray	0: System reserved

Bit I	Map (AM	Initial Data)											
SA	Sub Address	D7	D6	D5	D4	D3	D2	D1	D0				
1	00000001	0	1	0	1	1	0	1	1				
2	00000010	0	1	1	0	1	0	0	0				
3	00000011	0	1	1	1	0	0	0	0				
4	00000100	1	0	0	0	0	1	0	0				
5	00000101	0	0	0	0	0	0	0	0				
6	00000110	0	0	0	0	0	0	0	0				
7	00000111	0	1	0	1	0	0	1	1				
8	00001000	0	0	0	0	0	0	0	0				
9	00001001	1	0	0	0	1	1	1	1				
10	00001010	0	0	0	0	0	0	1	0				
11	00001011	0	0	0	1	1	1	0	1				
12	00001100	0	0	0	0	0	0	0	0				
13	00001101	0	0	0	0	0	0	0	0				
14	00001110	0	0	0	0	0	0	0	0				
15	00001111	0	1	0	1	0	0	0	0				
16	00010000	0	0	0	0	0	0	0	0				
17	00010001	0	0	0	0	0	0	0	0				
18	00010010	1	0	0	0	0	0	0	0				
19	00010011	0	0	0	1	1	1	1	1				
20	00010100	0	0	1	1	0	0	0	0				
21	00010101	0	0	0	0	0	0	0	0				
22	00010110	1	0	0	1	1	1	0	0				
23	00010111	0	1	0	0	0	1	1	1				
24	00011000	0	0	0	0	0	1	0	0				
25	00011001	0	0	0	0	0	0	0	0				
26	00011010	1	0	0	0	1	1	0	0				
27	00011011	0	0	0	0	0	0	0	0				
28	00011100	0	0	0	*	*	*	*	*				
29	00011101	0	0	0	0	0	0	0	0				
30	00011110	0	0	0	0	0	0	0	0				
31	00011111	0	0	0	0	0	0	0	0				
32	00100000	0	0	0	0	0	0	0	0				
33	00100001	0	0	0	0	0	0	0	0				
34	00100010	0	0	0	0	0	0	0	0				
35	00100011	0	0	0	0	0	0	0	0				
36	00100100	0	0	0	0	0	0	0	0				
37	00100101	0	0	0	0	0	0	0	0				
38	00100110	0	0	0	0	0	0	0	0				
39	00100111	0	0	0	0	0	0	0	0				
40	00101000	0	0	0	0	0	0	0	0				
41	00101001	0	0	0	0	0	0	0	0				
42	00101010	0	0	0	0	0	0	0	0				
43	00101011	0	0	0	0	0	0	0	0				
44	00101100	0	0	0	0	0	0	0	0				
45	00101101	0	0	0	0	0	0	0	0				
46	00101110	0	0	0	0	0	0	0	0				
47	00101111	1	0	0	1	1	0	0	0				
48	00110000	0	0	0	0	0	0	0	0				
49	00110001	0	0	0	0	0	0	0	0				
50	00110010	0	0	0	0	0	0	0	0				

SA	Sub Address	D7	D6	D5	D4	D3	D2	D1	D0
51	00110011	0	0	0	0	0	0	0	0
52	00110100	0	0	0	0	0	0	0	0
53	00110101	0	0	0	0	0	0	0	0
54	00110110	0	0	0	0	0	0	0	0
55	00110111	0	0	0	0	0	0	0	0
56	00111000	0	0	0	0	0	0	0	0
57	00111001	0	0	0	0	0	0	0	0
58	00111010	0	0	0	0	0	0	0	0
59	00111011	0	0	0	0	0	0	0	0
60	00111100	0	0	0	0	0	0	0	0
61	00111101	0	0	0	0	0	0	0	0
62	00111110	0	0	0	0	0	0	0	0
63	00111111	0	0	0	0	0	0	0	0
64	01000000	0	0	0	0	0	0	0	0
65	01000001	0	0	0	0	0	0	0	0
66	01000010	0	0	0	0	0	0	0	0
67	01000011	0	0	0	0	0	0	0	0
68	01000100	0	0	0	0	0	0	0	0
69	01000101	0	0	0	0	0	0	0	0
70	01000110	0	0	0	0	0	0	0	0
71	01000111	0	0	0	0	0	0	0	0
72	01001000	0	0	0	0	0	0	0	0
73	01001001	0	0	0	0	0	0	0	0
74	01001010	0	0	0	0	0	0	0	0
75	01001011	0	0	0	0	0	0	0	0
76	01001100	0	0	0	0	0	0	0	0
77	01001101	0	0	0	0	0	0	0	0
78	01001110	0	0	0	0	0	0	0	0
79	01001111	0	0	0	0	0	0	0	0
80	01010000	0	0	0	0	0	0	0	0
81	01010001	0	0	0	0	0	0	0	0
82		0	0	0	0	0	0	0	0
83	01010011	0	0	0	0	0	0	0	0
84	01010100	0	0	0	0	0	0	0	0
85	01010101	0	0	0	0	0	0	0	0
86	01010110	0	0	0	0	0	0	0	0
87	01010111	0	0	0	0	0	0	0	0
88	01011000	0	0	0	0	0	0	0	0
89	01011001	0	0	0	0	0	0	0	0
90	01011010	0	0	0	0	0	0	0	0
91	01011011	0	0	0	0	0	0	0	0
92	01011100	0	0	0	0	0	0	0	0
93	01011101	0	0	0	0	0	0	0	0
94	01011110	0	0	0	1	0	0	1	1
95	01011111	*	*	*	*	*	*	*	*

Yellow	*: AM adjustment
Orange	: Users should readjust as necessary. Asterisks indicate items that are already adjusted in SANYO Semiconductor's tester process. Other parameters (SA) also require readjustment when used outside SANYO Semiconductor's recommended settings.
Gray	0: System reserved

SA1. PLL N V	SA1. PLL N Value Higher-order 8 bits												
D7	D1	D0											
P15	P14	P13	P12	P11	P10	P9	P8						

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Fulction
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	1	
0	0	0	0	0	0	1	0	
-	-	-	-	-	-	-	-	
1	1	1	1	1	1	0	0	
1	1	1	1	1	1	0	1	
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	

SA2. PLL N Value Lower-order 8 bits

_													
	D7	D6	D5	D4	D3	D2	D1	D0					
Γ	P7	P6	P5	P4	P3	P2	P1	P0					

MSB							LSB	Function					
D7	D6	D5	D4	D3	D2	D1	D0	Function					
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	1						
0	0	0	0	0	0	1	0						
-	-	-	-	-	-	-	-						
1	1	1	1	1	1	0	0						
1	1	1	1	1	1	0	1						
1	1	1	1	1	1	1	0						
1	1	1	1	1	1	1	1						

*SA1: D7 to D0 [P7 ot P0] = ALL High

	SA3. Reference Counter Setting, RDS Control, I ² C Format Switching, Flash Programming												
D7 D6 D5 D4 D3 D2 D1 D													
	R3	R2	R1	R0	ULT	RDS_ON	I ² C_SCK_LD	-					

MSB							LSB	-
D7	D6	D5	D4	D3	D2	D1	D0	Function
							0	Not used. Fixed at 0.
						0		SCK no L drive (normal mode)
						1		SCK L drive
								Hold SCL low until processing ends at the slave side.
					0			RDS power OFF
					1			RDS power ON
				0				PLL unlock detection time 0.39µs
				1				PLL unlock detection time 0.98µs
0	0	0	0					PLL stop
0	0	0	1					-
0	0	1	0					-
0	0	1	1					-
0	1	0	0					Ref = 5kHz
0	1	0	1					-
0	1	1	0					-
0	1	1	1					Ref = 10kHz
1	0	0	0					-
1	0	0	1					Ref = 25kHz
1	0	1	0					-
1	0	1	1					Ref = 50kHz
1	1	0	0					Ref = 100kHz

SA4. AM/FM/Weather, AM Frequency Division Setting, SEEK Mode, Tuner ON/OFF, FM Local Hi/Low

D7	D6	D5	D4	D3	D2	D1	D0
AMFM	WEATHER	OSC_DIV1	OSC_DIV0	SEEK1	SEEK0	TUNER_OFF	IQ_UP_LOW

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
							0	Upper Local OSC (for US/EU)
							1	Lower Local OSC (for JPN/East EU)
						0		Running
						1		Tuner OFF
				0	0			Not used.
				0	1			Receive
				1	0			Not used.
				1	1			SEEK/RDS
		0	0					AM OSC frequency division ratio setting: 1/20
		0	1					AM OSC frequency division ratio setting: 1/16
		1	0					AM OSC frequency division ratio setting: 1/12
		1	1					AM OSC frequency division ratio setting: 1/8
	0							AM/FM band
	1							Weather band (OSC = 1)
0								FM Mode
1								AM Mode

SA5. FM RF 8	SA5. FM RF 8bit DAC											
D7	D6	D5	D4	D3	D2	D1	D0					
RF_DAC7	RF_DAC6	RF_DAC5	RF_DAC4	RF_DAC3	RF_DAC2	RF_DAC1	RF_DAC0					

MSB							LSB	Function				
D7	D6	D5	D4	D3	D2	D1	D0					
0	0	0	0	0	0	0	0	RF DAC = 0.3V (min)				
0	0	0	0	0	0	0	1					
-	I	-	-	-	-	-	-	\rightarrow				
1	1	1	1	1	1	1	0					
1	1	1	1	1	1	1	1	RF DAC = 7.1V (max)				

SA6. FM ANT 8bit DAC (IRR_ADJ)

D7	D6	D5	D4	D3	D2	D1	D0
ANT_DAC7	ANT_DAC6	ANT_DAC5	ANT_DAC4	ANT_DAC3	ANT_DAC2	ANT_DAC1	ANT_DAC0

MSB							LSB	Function			
D7	D6	D5	D4	D3	D2	D1	D0	T dilution			
0	0	0	0	0	0	0	0	ANT DAC = 0.3V (min)			
0	0	0	0	0	0	0	1				
								\downarrow			
1	1	1	1	1	1	1	0				
1	1	1	1	1	1	1	1	ANT DAC = 7.1V (max)			

SA7. IF Count Time Setting & D0 Setting

D7	D6	D5	D4	D3	D2	D1	D0
UL/IFEND	BUSY	DZ1	DZ0	CTE	GT2	GT1	GT0

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
Di	DO	D5	D4	03				
					0	0	0	IF count gate time = 0.878048msec
					0	0	1	IF count gate time = 3.512195msec
					0	1	0	IF count gate time = 7.024390msec
					0	1	1	IF count gate time = 28.09756msec
					1	0	0	IF count gate time = 56.195123msec
					1	0	1	IF count gate time = 112.390244msec
				0				Counter Reset
				1				Count Start
		0	0					DZC-A
		0	1					DZC-B
		1	0					DZC-C
		1	1					DZC-D
0	0							Unlock detection: Unlock detection start = High, Lock = Low
•	1							BUSY signal: When the I ² C slave address is received = High
0								Idling = Low
1	0							IF count end signal: When D7, D6=10: High, IF count end: Low
1	1							UL BUSY signal: Logical OR of unlock detection signal and BUSY signal is output.

SA8.	1/2, 1/	3 Free	quency	Divis	ion Se	tting							
	D7 D6 D5			D4	D3	D2	D1	D0					
	-		-			-		-	-	-	-	DIV_SW	
MSB							LSB						
									Function				
D7	D6	D5	D4	D3	D2	D1	D0						
							0	AM/FM ban	d DIV 1/2 frequency	division (for US/EU	I/East EU/SW/Weat	ther)	
							1	FM band DIV 1/3 frequency division (for Japan)					
0	0	0	0	0	0	0		Not used. Fixed at 0.					

SA9. DC Monitor Select/SD Adjustment

		J					
D7	D6	D5	D4	D3	D2	D1	D0
DCSELCT2	DCSELCT1	DCSELCT0	NC_SENS	NC_SENS	NC_SENS	NC_SENS	NC_SENS
			MAIN4	MAIN3	MAIN2	MAIN1	MAIN0

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
			0	0	0	0	0	Receive mode: NC sensitivity threshold value = 0.25V (detection sensitivity increase)
			0	0	0	0	1	Receive mode: NC sensitivity threshold value = 0.32V
-	-	-	-	-	-	-	-	\downarrow
			1	1	1	1	0	Receive mode: NC sensitivity threshold value = 2.57V
			1	1	1	1	1	Receive mode: NC sensitivity threshold value = 2.65V (detection sensitivity decrease)
0	0	0						Select DC voltage output for the functions that are necessary during process adjustment. [The setting is valid when SA20: D0 = 1.] Vref 2.7V
0	0	1						Vafc
0	1	0						Undesired voltage
0	1	1						IF Filter BW OUT
1	0	0						SD/MPX VCO OUT [normally fixed bit]
1	0	1						Vsm
1	1	0						NC_GATE_OUT
1	1	1						D0 (not used)

SA10. IF Filter sens

D7	D6	D5	D4	D3	D2	D1	D0
FIL_SENS 3	FIL_SENS 2	FIL_SENS 1	FIL_SENS 0	HPF_FC	IN_DETOFF	NCSENSE	DAC_90FF

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
							0	RF-DAC OFF_SW = ON mode [normal: When RF/ANT-DAC is used]
							1	RF-DAC OFF_SW = OFF mode
						0		AC S-meter additional resistor = $54k\Omega$
						1		AC S-meter additional resistor = $27k\Omega$
					0			IF Filter pickup = Normal *(SA11_D7 = 0, SA10_D2 = 0)
					1			IF Filter pickup = Only VsmAC *(SA11_D7 = 0, SA10_D2 = 1)
				0				RDS HPF fc = 100kHz
				1				RDS HPF fc = 50kHz
0	0	0	0					Receive mode: IF filter sensitivity = High/at SEEK: SD bandwidth = Narrow
0	0	0	1					Receive mode: IF filter sensitivity =
								\downarrow
1	1	1	0					Receive mode: IF filter sensitivity =
1	1	1	1					Receive mode: IF filter sensitivity = Low/at SEEK: SD bandwidth = Wide

SA11. Signal N	Meter Adjustme	ent/AM/FM For	ced AGC ON				
D7	D6	D5	D4	D3	D2	D1	D0
IN_DETON	AMAGC_ON	FMAGC_ON	S_METER4	S_METER3	S_METER2	S_METER1	S_METER0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Fulction
			0	0	0	0	0	FM Vsm (30dBµ) = 2.293V
			0	0	0	0	1	FM Vsm (30dBµ) = 2.239V
								↓ [AM mode: Fixed at 1DH]
			1	1	1	1	0	FM Vsm (30dBµ) = 1.456V
			1	1	1	1	1	FM Vsm (30dBµ) = 1.427V
		0						FM forced RF AGC = OFF (normal)
		1						FM forced RF AGC = ON (ANT_D ON)
	0							AM forced RF AGC = OFF (normal)
	1							AM forced RF AGC = ON (ANT_D ON)
0								IF Filter pickup = Normal *(SA11_D7 = 0, SA10_D2 = 0)
1								IF Filter pickup = Only DETOUT *(SA11_D7 = 1, SA10_D2 = 0)

SA12. Signal Quality/FM DET PHASE

DITIE: DIG	iai Quantiji î în DE						
D7	D6	D5	D4	D3	D2	D1	D0
SIG_Q3	SIG_Q2	SIG_Q1	SIG_Q0	QDP_ADJ3	QDP_ADJ2	QDP_ADJ1	QDP_ADJ0

MSB							LSB	E utility
D7	D6	D5	D4	D3	D2	D1	D0	Function
				0	0	0	0	FM DET phase = -φ
				0	0	0	1	FM DET phase =
								\downarrow
				1	1	1	0	FM DET phase =
				1	1	1	1	FM DET phase = +φ
0	0	0	0					Signal Quality threshold value = 0.2V
0	0	0	1					Signal Quality threshold value = 0.34V
								\downarrow
1	1	1	0					Signal Quality threshold value = 2.36V
1	1	1	1					Signal Quality threshold value = 2.5V

SA13. Band V	ariable BPF (Co	enter Frequency	y)				
D7	D6	D5	D4	D3	D2	D1	D0
FIL_VSMON	-	CF_ADJ_D5	CF_ADJ_D4	CF_ADJ_D3	CF_ADJ_D2	CF_ADJ_D1	CF_ADJ_D0

MSB							LSB		
	1				1	1		Function	
D7	D6	D5	D4	D3	D2	D1	D0		
		0	0	0	0	0	0	303.6kHz (CF bit = 0) *Mim	* Reference value
		0	0	0	0	0	1	307.6kHz (CF bit = 1)	* Reference value
		0	0	0	0	1	0	439.6kHz (CF bit = 29)	* Reference value
		0	0	0	0	0	1	444.4kHz (CF bit = 30)	* Reference value
		0	1	1	1	1	1	450kHz (Center frequency) (CF bit = 31)	* Reference value
		1	0	0	0	0	0	450kHz (Center frequency) (CF bit = 32)	* Reference value
		1	0	0	0	0	1	454.4kHz (CF bit = 33)	* Reference value
		1	0	0	0	1	0	458.8kHz (CF bit = 34)	* Reference value
		1	1	1	1	1	0	589.2kHz (CF bit = 62)	* Reference value
		1	1	1	1	1	1	594kHz (CF bit = 63) *Max	* Reference value
	0							Not used. Fixed at 0.	
0								FILTER DC (Vsm) OUT OFF	
1								FILTER DC (Vsm) OUT ON	

SA14. Band Variable BPF (Band/Gain)

	,	í í					
D7	D6	D5	D4	D3	D2	D1	D0
-	-	BWD_ADJ_D5	BWD_ADJ_D4	BWD_ADJ_D3	BWD_ADJ_D2	BWD_ADJ_D1	BWD_ADJ_D0

MSB							LSB		
								Function	
D7	D6	D5	D4	D3	D2	D1	D0		
		0	0	0	0	0	0	Gain = -50dB (BW/G bit = 0) *Min	* Reference value
		0	0	0	0	0	1	Gain = dB (BW/G bit = 1)	
		0	0	0	0	1	0	Gain = dB (BW/G bit = 29)	
		0	0	0	0	0	1	Gain = dB (BW/G bit = 30)	
		0	1	1	1	1	1	Gain = 0dB (CF bit = 31)	* Reference value
		1	0	0	0	0	0	Gain = 0dB (CF bit = 32)	* Reference value
		1	0	0	0	0	1	Gain = dB (BW/G bit = 33)	
		1	0	0	0	1	0	Gain = dB (BW/G bit = 34)	
		1	1	1	1	1	0	Gain = dB (BW/G bit = 62)	
		1	1	1	1	1	1	Gain = +50dB (BW/G bit = 63) *Max	* Reference value
0	0							Not used. Fixed at 0.	

SA15. Keyed A	AGC/IQ Mix Pl	nase					
D7	D6	D5	D4	D3	D2	D1	D0
KEY_AGC3	KEY_AGC2	KEY_AGC1	KEY_AGC0	IRR_VG3	IRR_VG2	IRR_VG1	IRR_VG0

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
				0	0	0	0	FM IQ MIX phase =
				0	0	0	1	FM IQ MIX phase =
								\downarrow
				1	1	1	0	FM IQ MIX phase =
				1	1	1	1	FM IQ MIX phase =
0	0	0	0					FM Keyed AGC threshold value = 0.14V AM IF Gain = 63dB (AGC FOM)
0	0	0	1					FM Keyed AGC threshold value = 0.24V AM IF Gain = 62dB (AGC FOM)
								\downarrow
1	1	1	0					FM Keyed AGC threshold value = 2.07V AM IF Gain = 49.5dB (AGC FOM)
1	1	1	1					FM Keyed AGC threshold value = 2.2V AM IF Gain = 49dB (AGC FOM)

SA16. Null Voltage

D7	D6	D5	D4	D3	D2	D1	D0
NULL5	NULL4	NULL3	NULL2	NULL1	NULL0	-	-

MSB							LSB	
	-							Function
D7	D6	D5	D4	D3	D2	D1	D0	
						0	0	Fixed (not used)
0	0	0	0	0	0			FM Null Voltage Low 1step = +30mV
0	0	0	0	0	1			
1	1	1	1	1	0			
1	1	1	1	1	1			FM Null Voltage High

SA17. Pilot Cancel/Separation Adjustment

D7	D6	D5	D4	D3	D2	D1	D0
PICAN1	PICAN0	SEPD5	SEPD4	SEPD3	SEPD2	SEPD1	SEPD0

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
		0	0	0	0	0	0	Sub level = max
		0	0	0	0	0	1	
								\downarrow
		1	1	1	1	1	0	
		1	1	1	1	1	1	Sub level = min
0	0							Pilot cancel = Center
0	1							Pilot cancel = Low
1	0							Pilot cancel = High
1	1							Pilot cancel = OFF

SA18. Noise C	anceller Sensiti	ivity/MPX_VC	0				
D7	D6	D5	D4	D3	D2	D1	D0
NOISE_SEN1	NOISE_SEN0	MPXVCO_5	MPXVCO_4	MPXVCO_3	MPXVCO_2	MPXVCO_1	MPXVCO_0

MSB						LS	В	Function
D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	0	0	0	0	MPX VCO = 227kHz
		0	0	0	0	0	1	MPX VCO = 230kHz
								\downarrow
		1	1	1	1	1	0	MPX VCO = 369kHz
		1	1	1	1	1	1	MPX VCO = 373kHz
0	0							Noise sens = 15k
0	1							Noise sens = 20k Sens = Hi
1	0							Noise sens = 6k Sens = Low
1	1							Noise sens = 10k

SA19. AM NC STOP Sensitivity

D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	AM_NC_STOP4	AM_NC_STOP3	AM_NC_STOP2	AM_NC_STOP1	AM_NC_STOP0

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
			0	0	0	0	0	AM NC STOP = 0.3V (= Vsm)
			0	0	0	0	1	AM NC STOP = 0.51V (= Vsm)
			1	1	1	1	0	AM NC STOP = 4.06V (= Vsm)
			1	1	1	1	1	AM NC STOP = 4.19V (= Vsm)
0	0	0						Not used. Fixed at 0.

SA20. FM Mute Adjustment (Noise Convergence Adjustment)

	D7	D6	D5	D4	D3	D2	D1	D0
Ν	MUTEATT5	MUTEATT4	MUTEATT3	MUTEATT2	MUTEATT1	MUTEATT0	MONI MODE	REV MODE

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	i uncuon
							0	Normal
							1	SMETER AD READ MODE (for test monitoring)
						0		DC SELECT switching 0: SD/ST pin output [normally fixed bit]
						1		DC SELECT switching 1: Each voltage output at the DC MONI pin. [SA9: D7-D5 setting enabled]
0	0	0	0	0	0			FM MUTE attenuation = 2.0dB AM NC Gate time = 1800µs (no input)
0	0	0	0	0	1			FM MUTE attenuation = 2.4dB AM NC Gate time = 1500µs (no input)
								↓ [Fixed value in AM mode: 0CH]
0	1	1	1	1	1			FM MUTE attenuation = dB AM NC Gate time = 630μs (no input)
1	0	0	0	0	0			FM MUTE attenuation = dB AM NC Gate time = 600μs (no input)
								\downarrow
1	1	1	1	1	0			FM MUTE attenuation = 25dB AM NC Gate time = 335μs (no input)
1	1	1	1	1	1			FM MUTE attenuation = 25dB AM NC Gate time = 330μs (no input)

SA21. MRC	Sensitivity, Time	e Constant/AM	S-meter				
D7	D6	D5	D4	D3	D2	D1	D0
-	-	AMVSM_SHIFT1	AMVSM_SHIFT0	T_CONST1	T_CONST0	MRCSENSE1	MRCSENSE0

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	. Function
						0	0	MRC sensitivity = Sens High
						0	1	
						1	0	
						1	1	MRC sensitivity = Sens Low
								MRC charge time = 360ms
				0	0			MRC discharge time = 0.63ms
								MRC charge time = 515ms
				0	1			MRC discharge time = 0.63ms
								MRC charge time = 890ms
				1	0			MRC discharge time = 0.63ms
								MRC charge time = 4.5s
				1	1			MRC discharge time = 0.63ms
								FM Mute SW mute_1V attenuation = 19dB
		0	0					AM S-meter shifter
								Input level = 30dBµ when Vsm = 1.5V
		0						FM Mute SW mute_1V attenuation = 13dB
		0	1					Input level = 38dBµ when Vsm = 1.5V
		4	0					FM Mute SW mute_1V attenuation = 8dB
		1	0					Input level = 46dBμ when Vsm = 1.5V
		1	1					FM Mute SW mute_1V attenuation = 6dB
		1	1					Input level = 55dBμ when Vsm = 1.5V
0	0							Not used. Fixed at 0.

SA22. AM REAGC/FM IF Gain

	D7	D6	D5	D4	D3	D2	D1	D0
FIF	GAIN3	FIFGAIN2	FIFGAIN1	FIFGAIN0	AMRFAGC3	AMRFAGC2	AMRFAGC1	AMRFAGC0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
				0	0	0	0	AM: RFAGC (hard) threshold value = 0.37V
				0	0	0	1	AM: RFAGC (hard) threshold value = 0.47V
								\downarrow
				1	1	1	0	AM: RFAGC (hard) threshold value = 1.94V
				1	1	1	1	AM: RFAGC (hard) threshold value = 2.04V
0	0	0	0					FM IF Gain = Gain Low
0	0	0	1					
								\downarrow
1	1	1	0					
1	1	1	1					FM IF Gain = Gain High

SA23. Wide/N	arrow AGC						
D7	D6	D5	D4	D3	D2	D1	D0
W_AGC3	W_AGC2	W_AGC1	W_AGC0	N_AGC3	N_AGC2	N_AGC1	N_AGC0

MSB							LSB	Function	
D7	D6	D5	D4	D3	D2	D1	D0		
				0	0	0	0	FM Narrow AGC ON = 67.8dBµ	* Reference value
				0	0	0	0	AM Narrow AGC ON = 68.0dBµ	* Reference value
				0	0	0	1	FM Narrow AGC ON = 68.0dBµ	* Reference value
				0	0	0	I	AM Narrow AGC ON = 68.5dBµ	* Reference value
								\downarrow	
				1	4	1	0	FM Narrow AGC ON = 80dBµ	* Reference value
				1	1	1	0	AM Narrow AGC ON = 82.7dBµ	* Reference value
				1	4		4	FM Narrow AGC ON = 81dBµ	* Reference value
				I	I	I	I	AM Narrow AGC ON = 83.6dBµ	* Reference value
0	0	0	0					FM Wide AGC ON = $94.5 dB\mu$	* Reference value
0	U	0	0					AM Wide AGC ON = 89.0dBµ	* Reference value
0	0	0	1					FM Wide AGC ON = 94.7dBμ	* Reference value
0	0	0	-					AM Wide AGC ON = 89.3dBµ	* Reference value
								\downarrow	
1	1	1	0					FM Wide AGC ON = 98.1dBµ	* Reference value
1			0					AM Wide AGC ON = 104.5dBµ	* Reference value
1	1	1	1					FM Wide AGC ON = 98.4dBµ	* Reference value
1		Т	.1					AM Wide AGC ON = 105.2dBµ	* Reference value

SA24.

D7	D6	D5	D4	D3	D2	D1	D0
MSLOPE	AM_NC_OFF	-	VCO_ON	ST_SENS_ADJ	FORCENOAGC	-	-

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
							0	Not used. Fixed at 0.
						0		Not used. Fixed at 0.
					0			Force Noise AGC = OFF
					1			Force Noise AGC = ON
				0				Stereo ON sensitivity adjustment = 3%
				1				Stereo ON sensitivity adjustment = 2% (ST sense up)
			0					MPX VCO monitor = Normal
			1					MPX VCO monitor = ON
		0						Not used. Fixed at 0.
	0							Normal
	1							AM_NC_OFF
								$SLOPE \times 2.0$: Change in Mute voltage with respect to change in S-meter voltage
0								The first slope is x1, the second slope is x4
								(Limiting is set to weak electric field, but cannot reduce the noise convergence.)
1								SLOPE \times 1.0: Change in Mute voltage with respect to change in S-meter voltage The first slope is x1, the second slope is x4
I								(normal)

SA25. SNC Th	SA25. SNC Threshold Value Adjustment										
D7	D6	D5	D4	D3	D2	D1	D0				
DTESTSW	SNCINC1	SNCINC0	SNC_DAC4	SNC_DAC3	SNC_DAC2	SNC_DAC1	SNC_DAC0				

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
			0	0	0	0	0	SNC starting point threshold value = 0.7V AM RF AGC (soft) threshold value = 0.7V
			0	0	0	0	1	SNC starting point threshold value = 0.73V AM RF AGC (soft) threshold value = 0.73V
								\downarrow
			1	1	1	1	0	SNC starting point threshold value = 1.80V AM RF AGC (soft) threshold value = 1.80V
			1	1	1	1	1	SNC starting point threshold value = 1.83V AM RF AGC (soft) threshold value = 1.83V
	0	0						SNC slope = Gentle
								\downarrow
	1	1						SNC slope = S teep
0								DAC TEST = Normal
1								DAC TEST = DAC TEST MODE

SA26. De-emphasis Switching/HCC Threshold Value Adjustment

D7	D6	D5	D4	D3	D2	D1	D0
DEEMPSW	MO_ST_SW	IRR_SW	HCC_DAC4	HCC_DAC3	HCC_DAC2	HCC_DAC1	HCC_DAC0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
			0	0	0	0	0	HCC starting point threshold value = 0.50V
			0	0	0	0	1	HCC starting point threshold value = 0.53V
								\downarrow
			1	1	1	1	0	HCC starting point threshold value = 0.47V
			1	1	1	1	1	HCC starting point threshold value = 1.50V
		0						Image rejection fine adjustment OFF [when SA6: ANT-DAC is used]
		1						Image rejection fine adjustment ON [when SA6: IRR-DAC is used]
	0							Forced monaural = OFF
	1							Forced monaural = ON
0								De-emphasis = 50µsec
1								De-emphasis = 75µsec

SA27. FM RF Automatic Adjustment Mode Setting

D7	D6	D5	D4	D3	D2	D1	D0
-	-	USR_RF_TUNE	FM_PIND_OFF	USR_NRML	-	-	IFT_TRANS

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	i uncuon
							0	Not used.
							1	MIX TRANS mode (FM normal)
				0	0	0		Not used. Fixed at 0.
			1					FM PIN diode forced OFF (for experimentation)
			0					Default setting
0	0	0						Not used. Fixed at 0.

* D5: Auto Tune [0: ON/1:OFF], D4: Pin D [0: Normal/1: OFF = Auto tune], D3: Counter [0: ON = At auto tune/1: OFF]

SA28. At SEEI	K: SD Adjustm	ent					
D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	SEEK_SD_ON4	SEEK_SD_ON3	SEEK_SD_ON2	SEEK_SD_ON1	SEEK_SD_ON0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	At SEEK: SD ON Sensitivity = High
0	0	0	0	0	0	0	1	\downarrow
								\downarrow
0	0	0	1	1	1	1	0	\downarrow
0	0	0	1	1	1	1	1	At SEEK: SD ON Sensitivity = Low

SA29. At SEEK: SD Bandwidth

D7	D6	D5	D4	D3	D2	D1	D0
SEEK_SD_BW3	SEEK_SD_BW2	SEEK_SD_BW1	SEEK_SD_BW0	-	-	-	-

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	i dictori
0	0	0	0	0	0	0	0	At SEEK: SD bandwidth = Narrow
0	0	0	1	0	0	0	0	\downarrow
								\downarrow
1	1	1	0	0	0	0	0	\downarrow
1	1	1	1	0	0	0	0	At SEEK: SD bandwidth = Wide

SA30. Reserved

BIISO. Rebeive	u .						
D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	-	-	-	-	-

MSB			LSB					Function
D7	D6	D5	D4	D3	D2	D1	D0	
							System reserved area	

SA31. Signal Quality Sensitivity Setting

D7	D6	D5	D4	D3	D2	D1	D0
QO_UNDDET_7	QO_UNDDET_6	QO_UNDDET_5	QO_UNDDET_4	QO_UNDDET_3	QO_UNDDET_2	QO_UNDDET_1	QO_UNDDET_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	Signal Quality sense = High (threshold value low)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	Signal Quality sense = Low (threshold value high)

SA32. IF Band	32. IF Band Variable AFC Control (+ Side)											
D7	D6	D5	D4	D3	D2	D1	D0					
QO_AFC_MAX_7	QO_AFC_MAX_6	QO_AFC_MAX_5	QO_AFC_MAX_4	QO_AFC_MAX_3	QO_AFC_MAX_2	QO_AFC_MAX_1	QO_AFC_MAX_0					

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	Q_AFC sense = High [+side] (threshold value low) * Provide hysteresis with respect to the SA33 settings.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	Q_AFC sense = Low [+ side] (threshold value high)

SA33. IF Band Variable AFC Control (- Side)

D7	D6	D5	D4	D3	D2	D1	D0
QO_AFC_MIN_7	QO_AFC_MIN_6	QO_AFC_MIN_5	QO_AFC_MIN_4	QO_AFC_MIN_3	QO_AFC_MIN_2	QO_AFC_MIN_1	QO_AFC_MIN_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	Q_AFC sense = High [- side] (threshold value low) * Provide hysteresis with respect to the SA32 settings.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	Q_AFC sense = Low [- side] (threshold value high)

SA34. FM MUTE Time Constant Setting/Signal Quality Band Control

D7		D6	D5	D4	D3	D2	D1	D0
QO_AFC	JSE	MUTE_TC_UP_2	MUTE_TC_UP_1	MUTE_TC_UP_0	-	MUTE_TC_DOWN2	MUTE_TC_DOWN1	MUTE_TC_DOWN0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0								Uses no AFC voltage information for the quality-out output.
1								Uses AFC voltage information for the quality-out output.
	0	0	0					MUTE time constant (UP)_ 2ms/1 step
	0	0	1					MUTE time constant (UP)_ 8ms/1 step
	0	1	0					MUTE time constant (UP)_ 16ms/1 step
	0	1	1					MUTE time constant (UP)_ 32ms/1 step
				0				Not used. Fixed at 0.
					0	0	0	MUTE time constant (DOWN)_ 2ms/1 step
					0	0	1	MUTE time constant (DOWN)_ 8ms/1 step
					0	1	0	MUTE time constant (DOWN)_ 16ms/1 step
					0	1	1	MUTE time constant (DOWN)_ 32ms/1 step

SA35. FM Lin	niting Sensitivit	y Adjustment 2	2				
D7	D6	D5	D4	D3	D2	D1	D0
MUTE_SMR_SLC_7	MUTE_SMR_SLC_6	MUTE_SMR_SLC_5	MUTE_SMR_SLC_4	MUTE_SMR_SLC_3	MUTE_SMR_SLC_2	MUTE_SMR_SLC_1	MUTE_SMR_SLC_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	FM limiting sensitivity adjustment 2 Adjusting the threshold value (second start point: Mute voltage slope x 2) at which noise convergence is to be achieved. 0: Threshold value Low (weak electric field)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	255: Threshold value High (strong electric field)

SA36. FM Limiting Sensitivity Adjustment 1

D7	D6	D5	D4	D3	D2	D1	D0
MUTE_SMR_ZERC	_7 MUTE_SMR_ZERO_6	MUTE_SMR_ZERO_5	MUTE_SMR_ZERO_4	MUTE_SMR_ZERO_3	MUTE_SMR_ZERO_2	MUTE_SMR_ZERO_1	MUTE_SMR_ZERO_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	FM limiting sensitivity adjustment 1 Adjusting the threshold value (first start point: Mute voltage slope x 1) at which -3 dB sensitivity adjustment is to be performed. 0: Threshold value Low (weak electric field)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	255: Threshold value High (strong electric field)

SA37. Modulation Index Detection Sensitivity (+ Side)

D7	D6	D5	D4	D3	D2	D1	D0
BPF_MOD_MAX_7	BPF_MOD_MAX_6	BPF_MOD_MAX_5	BPF_MOD_MAX_4	BPF_MOD_MAX_3	BPF_MOD_MAX_2	BPF_MOD_MAX_1	BPF_MOD_MAX_0

MSB							LSB	
								Function
D7	D6	D5	D4	D3	D2	D1	D0	
								IF filter modulation index detection threshold value [+ side] = Low
0	0	0	0	0	0	0	0	* Provide hysteresis with respect to the Narrow/SA38 settings if the threshold value is
								exceeded.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
								IF filter modulation index detection threshold value [+ side] = High
1	1	1	1	1	1	1	1	* Provide hysteresis with respect to the Narrow/SA38 settings if the threshold value is
								exceeded.

SA38. Modulat	tion Index Dete	ection Sensitivit	y (- Side)				
D7	D6	D5	D4	D3	D2	D1	D0
BPF_MOD_MIN_7	BPF_MOD_MIN_6	BPF_MOD_MIN_5	BPF_MOD_MIN_4	BPF_MOD_MIN_3	BPF_MOD_MIN_2	BPF_MOD_MIN_1	BPF_MOD_MIN_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Fulction
0	0	0	0	0	0	0	0	IF filter modulation index detection threshold value [- side] = Low * Provide hysteresis with respect to the Narrow/SA37 settings if the threshold value is exceeded.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	IF filter modulation index detection threshold value [- side] = High * Provide hysteresis with respect to the Narrow/SA37 settings if the threshold value is exceeded.

SA39. Modulation Index Detection Operation Start Point (+ side)

1					,			
	D7	D6	D5	D4	D3	D2	D1	D0
	BPF_SMR_MAX_7	BPF_SMR_MAX_6	BPF_SMR_MAX_5	BPF_SMR_MAX_4	BPF_SMR_MAX_3	BPF_SMR_MAX_2	BPF_SMR_MAX_1	BPF_SMR_MAX_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	IF filter modulation index detection function OFF threshold value [+ side] = Low Turns off the modulation detection function above a certain electric field strength (compared with S-meter value) or stronger. * Provide hysteresis with respect to the SA40 settings.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	IF filter modulation index detection function OFF threshold value [+ side] = High

SA40. Modulation Index Detection Operation Start Point (- side)

D7	D6	D5	D4	D3	D2	D1	D0
BPF_SMR_MIN_7	BPF_SMR_MIN_6	BPF_SMR_MIN_5	BPF_SMR_MIN_4	BPF_SMR_MIN_3	BPF_SMR_MIN_2	BPF_SMR_MIN_1	BPF_SMR_MIN_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	IF filter modulation index detection function OFF threshold value [- side] = Low Turns off the modulation detection function above a certain electric field strength (compared with S-meter value) or stronger. * Provide hysteresis with respect to the SA39 settings.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	IF filter modulation index detection function OFF threshold value [- side] = High

SA41. IF F	ilter Band Limitat	ion					
D7	D6	D5	D4	D3	D2	D1	D0
BPF_LIMIT	_7 BPF_LIMIT_6	BPF_LIMIT_5	BPF_LIMIT_4	BPF_LIMIT_3	BPF_LIMIT_2	BPF_LIMIT_1	BPF_LIMIT_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	Limits the narrow band of the IF filter. [Wide band is as is = 180kHz.] 0: 180kHz (narrow band 180kHz = No band control)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	255:40kHz

SA42. IF Filter band Fixing

D7	D6	D5	D4	D3	D2	D1	D0
BPF_FIX_7	BPF_FIX_6	BPF_FIX_5	BPF_FIX_4	BPF_FIX_3	BPF_FIX_2	BPF_FIX_1	BPF_FIX_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	Fixes the band of the IF filter. [Enabled when SA43 D7 = 1] 0: 180kHz (forced wide band)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	255: 40kHz (forced narrow band)

SA43. IF Filter Time Constant/Detection Sensitivity

D7	D6	D5	D4	D3	D2	D1	D0
BPF_FIX	BPF_TC_2	BPF_TC_1	BPF_TC_0	-	-	BPF_SLOPE_1	BPF_SLOPE_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
						0	0	Adjusts the sensitivity of the IF filter (coarse adjustment). \times 0.5: Detection sensitivity low
						0	1	× 1.0:
						1	0	imes 2: Detection sensitivity high
				0	0			Not used. Fixed at 0.
	0	0	0					IF Filter sampling time = 2.19 ms
	0	0	1					IF Filter sampling time = 8.78ms
	0	1	0					IF Filter sampling time = 17.56ms
	0	1	1					IF Filter sampling time = 35.12ms
0								IF Filter band forced mode switch 0: IF Filter band auto mode (normal)
1								1: IF Filter band forced mode [SA42 settings enabled]

SA44. IF Band	Variable AFC	Control (+ Side	e)				
D7	D6	D5	D4	D3	D2	D1	D0
AFC_MAX_7	AFC_MAX_6	AFC_MAX_5	AFC_MAX_4	AFC_MAX_3	AFC_MAX_2	AFC_MAX_1	AFC_MAX_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	T unction
0	0	0	0	0	0	0	0	IF Filter AFC control threshold value [+ side] = 0: Threshold value Low (sensitive to interference Δf small) * Provide hysteresis with respect to the SA45 settings.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	IF Filter AFC control threshold value [+ side] = 255: Threshold value High (sensitive to interference Δf large)

SA45. IF Band Variable AFC Control (- Side)

D7	D6	D5	D4	D3	D2	D1	D0
AFC_MIN_7	AFC_MIN_6	AFC_MIN_5	AFC_MIN_4	AFC_MIN_3	AFC_MIN_2	AFC_MIN_1	AFC_MIN_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
0	0	0	0	0	0	0	0	IF Filter AFC control threshold value [- side] = 0: Threshold value Low (sensitive to interference Δf small) * Provide hysteresis with respect to the SA44 settings.
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	IF Filter AFC control threshold value [- side] = 255: Threshold value high (sensitive to interference Δf large)

SA46. Reserved

D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	-	-	-	-	-

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
								System reserved area

SA47. HCC Cut-off Frequency/Automatic Interpolation Setting/Others									
D7	D6	D5	D4	D3	D2	D1	D0		
RDS_AFC	INT_ATT_ON	HCC_SW3	HCC_SW2	HCC_SW1	-	-	-		

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
Di	00	00	04	00	0	0	0	Not used. Fixed at 0.
		0	0	0				HCC cut-ff adjustment: fc = 400Hz (when C51 = 2200pF)
		0	0	1				HCC cut-ff adjustment: fc = 500Hz (when C51 = 2200pF)
		0	1	0				HCC cut-ff adjustment: fc = 600Hz (when C51 = 2200pF)
		0	1	1				HCC cut-ff adjustment: fc = 800Hz (when C51 = 2200pF) * Recommended for AM
		1	0	0				HCC cut-ff adjustment: fc = 1kHz (when C51 = 2200pF)
		1	0	1				HCC cut-ff adjustment: fc = 1.4kHz (when C51 = 2200pF)
		1	1	0				HCC cut-ff adjustment: fc = 2.2kHz (when C51 = 2200pF) * Recommended for FM
		1	1	1				HCC cut-ff adjustment: fc = 5.5kHz (when C51 = 2200pF)
	0							Not used. Fixed at 0.
0								AF search time constant switching: AF search mode
1								AF search time constant switching: Receive/at SEEK

SA48. DAC Interpolation Selection

STITE BILLE							
D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	-	-	S_METER INT_P	RF_INT_P	IRR_INT_P

MSB							LSB	
	-	-		-			-	Function
D7	D6	D5	D4	D3	D2	D1	D0	
							0	IRR-ADJ automatic interpolation disabled (no interpolation by internal firmware)
							1	IRR ADJ automatic interpolation enabled
						0		RF-DAC automatic interpolation disabled (no interpolation by internal firmware)
						1		RF-DAC automatic interpolation enabled
					0			S_METER_SHIFT automatic interpolation disabled (no interpolation by internal firmware)
					1			S_METER_SHIFT automatic interpolation enabled
0	0	0	0	0				System reserved area

SA49. Reserved

D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	-	-	-	-	-

MSB	MSB LSB						LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
								System reserved area

SA50. RDS Signal Quality Sensitivity Setting									
D7	D6	D5	D4	D3	D2	D1	D0		
RDS_QO_UDET_7	RDS_QO_UDET_6	RDS_QO_UDET_5	RDS_QO_UDET_4	RDS_QO_UDET_3	RDS_QO_UDET_2	RDS_QO_UDET_1	RDS_QO_UDET_0		

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	Signal Quality sense = High (threshold value low)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	Signal Quality sense = Low (threshold value high)

SA51 to 58. FM RF 8-bit DAC Point Values

D7	D6	D5	D4	D3	D2	D1	D0
RF_DAC_POINT_7	RF_DAC_POINT_6	RF_DAC_POINT_5	RF_DAC_POINT_4	RF_DAC_POINT_3	RF_DAC_POINT_2	RF_DAC_POINT_1	RF_DAC_POINT_0

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	i diodon
0	0	0	0	0	0	0	0	RF DAC = 0.3V (min)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	RF DAC = 7.1V (max)

SA59 to 66. FM ANT 8-bit DAC Point Values (IRR_POINT)

1						50		
	D7	D6	D5	D4	D3	D2	D1	D0
ŀ								
	ANT_DAC_POINT_7	ANT_DAC_POINT_6	ANT_DAC_POINT_5	ANT_DAC_POINT_4	ANT_DAC_POINT_3	ANT_DAC_POINT_2	ANT_DAC_POINT_1	ANT_DAC_POINT_0

MSB							LSB	Function			
D7	D6	D5	D4	D3	D2	D1	D0				
0	0	0	0	0	0	0	0	ANT DAC = 0.3V (min)			
0	0	0	0	0	0	0	1				
								\downarrow			
1	1	1	1	1	1	1	0				
1	1	1	1	1	1	1	1	ANT DAC = 7.1V (max)			

SA67 to 74. Signal meter Point Values

D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	S_METER4	S_METER3	S_METER2	S_METER1	S_METER0

MSB							LSB	Function				
D7	D6	D5	D4	D3	D2	D1	D0					
			0	0	0	0	0	FM Vsm (30dBµ) = 2.293V				
			0	0	0	0	1	FM Vsm (30dBμ) = 2.239V				
								\downarrow				
			1	1	1	1	0	FM Vsm (30dBµ) = 1.456V				
			1	1	1	1	1	FM Vsm (30dBµ) = 1.427V				
0	0	0						Not used. Fixed at 0.				

The point frequencies are fixed as shown in the table below. The place of destination is selected using the area code [SA94 D7-D4] and Align number [SA94 D3-D0].

Area	JAPAN		USA	USA	+ Weather	E	urope	Euro	pe + OIRT	
Area code [SA94 D7-D4]	0000		0001		0100		0010		0011	
Align number [SA94 D3-D0]	0011	0011	0101	0011	0101	0011	0101	0011	0101	
Point0	76	87.9	87.9	87.9	87.9	87.5	87.5	65	65	
Point1	83	98.1	90.1	98.1	90.1	98	90	70	70	
Point2	90	108.1	98.1	108.1	98.1	108	98	74	74	
Point3			106.1	162.4	106.1		106	87.5	87.5	
Point4			108.1	162.55	108.1		108	98	90	
Point5					162.4			108	98	
Point6					162.55				106	
Point7									108	

SA75 to 79, SA83 to 92. Reserved

D7	D6	D5	D4	D3	D2	D1	D0
-	-	-	-	-	-	-	-

MSB					LSB		LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
								System reserved area

SA80. AF Search PLL N Value Higher-order 8 Bits

D7	D6	D5	D4	D3	D2	D1	D0
AF_P15	AF_P14	AF_P13	AF_P12	AF_P11	AF_P10	AF_P9	AF_P8

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	1	
0	0	0	0	0	0	1	0	
-	-	-	-	-	-	-	-	
1	1	1	1	1	1	0	0	
1	1	1	1	1	1	0	1	
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	

SA81. AF Sear	rch PLL N Valu	ie Lower-order	8 Bits							
D7 D6 D5 D4 D3 D2 D1 D0										
AF_P7	AF_P6	AF_P5	AF_P4	AF_P3	AF_P2	AF_P1	AF_P0			

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	1	
0	0	0	0	0	0	1	0	
-	-	-	-	-	-	-	-	
1	1	1	1	1	1	0	0	
1	1	1	1	1	1	0	1	
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	

* SA1: D7 to D0 [P7 to P0] = ALL High

SA82. AF Search RF 8-bit DAC

D7	D6	D5	D4	D3	D2	D1	D0
AF_RFD7	AF_RFD6	AF_RFD5	AF_RFD4	AF_RFD3	AF_RFD2	AF_RFD1	AF_RFD0

MSB						L	SB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	RF DAC = 0.3V (min)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	RF DAC = 7.1V (max)

SA83. AF Search ANT 8-bit DAC (Not used when used as IRR_ADJ)

				- /			
D7	D6	D5	D4	D3	D2	D1	D0
AF_ANTD7	AF_ANTD6	AF_ANTD5	AF_ANTD4	AF_ANTD3	AF_ANTD2	AF_ANTD1	AF_ANTD0

MSB LSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	ANT DAC = 0.3V (min)
0	0	0	0	0	0	0	1	
								\downarrow
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	1	1	ANT DAC = 7.1V (max)

SA93. Custom Code	
-------------------	--

D7	D6	D5	D4	D3	D2	D1	D0
CUSTOM_CODE_7	CUSTOM_CODE_6	CUSTOM_CODE_5	CUSTOM_CODE_4	CUSTOM_CODE_3	CUSTOM_CODE_2	CUSTOM_CODE_1	CUSTOM_CODE_0

* Used to store information about anything other than the place of destination

SA94. Place of Destination Selection

D7	D6	D5	D4	D3	D2	D1	D0
AREA_CODE_3	AREA_CODE_2	AREA_CODE_1	AREA_CODE_0	ALIGN_NO_3	ALIGN_NO_2	ALIGN_NO_1	ALIGN_NO_0

MSB	MSB LS						LSB	
					1		1	Function
D7	D6	D5	D4	D3	D2	D1	D0	
				0	0	1	1	POINT Data count 3 (See the above POINT Frequency Chart for details.)
				0	1	0	1	POINT Data count 5 (See the above POINT Frequency Chart for details.)
0	0	0	0					For Japan
0	0	0	1					For USA and Canada
0	0	1	0					For Europe
0	0	1	1					For Europe and OIRT
0	1	0	0					For USA, Canada plus Weather band

SA95. Checksum

D7	D6	D5	D4	D3	D2	D1	D0
CHECK_SUM_7	CHECK_SUM_6	CHECK_SUM_5	CHECK_SUM_4	CHECK_SUM_3	CHECK_SUM_2	CHECK_SUM_1	CHECK_SUM_0

MSB							LSB	Function				
D7	D6	D5	D4	D3	D2	D1	D0					
								Checksum area				

Special Commands

SA 248. Flash Write Mode Set (3 Bytes)

DATA2	DATA1	DATA0
ID2	ID1	ID0

This sets the flash memory write mode. Set arbitrary values other than 000000H or FFFFFFH in the 3 ID bytes. This command sets the flash memory to write mode. Actual write to the flash memory is performed by transmitting SA252 within 150ms after transmitting this command, and then executing write.

SA 249. RDS Mute ON

This mute command (DET OUT attenuation factor = 40dB) is used for AF search and other operations in RDS mode. * This command consists of only a slave address and sub address, and there is no data.

SA 250. RDS Mute OFF

This command is used to set the above-noted RDS mute to OFF. RDS mute is automatically set to OFF during reset, when switching the SA04 FM/AM bit, and when executing SA252 Flash Write.

* This command consists of only a slave address and sub address, and there is no data.

SA 251. Flash Default

This command reads the SA01 to SA95 data for the current band (FM or AM) from the LV25700 internal flash memory. It is used to discard the adjustment data, or when performing verification after executing flash write by SA252.

During reset the LV25700 automatically reads the FM data from the flash memory. In addition, when switching the band, the LV25700 also automatically reads the FM data from the flash memory, so execution of this command is not necessary in these cases.

* This command consists of only a slave address and sub address, and there is no data.

SA 252. Flash Write (3 Bytes)

<u>517 252. Flash write (5 Dytes)</u>								
DATA2	DATA1	DATA0						
ID2	ĪD1	ĪDO						

This command writes the SA01 to SA95 data in the flash memory. This command is used as a set together with SA248 to prevent write errors. When this command is transmitted within 150ms after transmitting SA248 and the IDs match, the SA01 to SA95 setting values for the current band (FM or AM) are written in the LV25700 internal flash memory. This command should be executed after all the adjustment data is set and the SA95 checksum data is transmitted.

Note that the FM and AM setting values are written in separate areas of the flash memory. Set the inverse value of the ID transmitted by SA248 in the $3 \overline{\text{ID}}$ bytes.

SA 253. Switching the Normal Frequency

This command switches the frequency and RF DAC value switched by SA254 to the normal (designated by SA1, SA2 and SA5) frequency and RF DAC value.

* This command consists of only a slave address and sub address, and there is no data.

SA 254. Switching the AF Frequency

This command switches to the frequency and RF DAC value designated by SA80, SA81 and SA82.

* This command consists of only a slave address and sub address, and there is no data.

SA 255. Firmware Information

After this command is sent, the LV25700 enters the firmware information send wait status.

The firmware information can be read by reading 8 bytes.

For further details, refer to IIC-DATA-OUTPUT (FIRMWARE INFORMATION).

* This command consists of only a slave address and sub address, and there is no data.

I²C-DATA-OUTPUT

Number	Description
(1)	Calls the data inside the IC.
(1)	Current SD only
	Data obtained by latching the contents of the IF count counter (20-bit binary counter).
(2)	C19: Binary counter MSB
	C0: Binary counter LSB

I²C-DATA-OUTPUT (SA DATA OUTPUT)

This is used to notify the host microcontroller of the LV25700 sub address setting information.

Set the slave address (write), and load the sub address (01 to 95) with the information to be acquired with D7 set to 1. Next set the slave address (read) and read 8 bytes (fixed to 8 bytes).

8 bytes of sub address information can be read starting from the sub address n designated by the slave address (write) to n + 7.95 (0x5F) and subsequent data are unpredictable.

I²C-DATA-OUTPUT (FIRMWARE INFORMATION)

This is used to notify the host microcontroller of the LV25700 firmware information. Designate 0xff as the sub address to be acquired, and get 8 bytes of data with SA DATA OUT as follows (fixed to 8 bytes).

Data other than each firmware information is undetermined.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2010. Specifications and information herein are subject to change without notice.