NOT RECOMMENDED FOR NEW DESIGNS

5V TTL-TO-DIFFERENTIAL PECL AND DIFFERENTIAL PECL-TO-TTL TRANSLATOR

SY10ELT28 SY100ELT28 FINAL

FEATURES

- Guaranteed AC parameters over temperature:
 - f_{MAX} > 160MHz (TTL)
 - < 5.5ns PECL-to-TTL propagation delay
 - < 1.5ns t_r / t_f; PECL output
 - < 1.3ns TTL-to-PECL propagation delay
- Wide temperature range: -40°C to +85°C
- 5V power supply
- Q_{TTL} output will default low with inputs left open or < 1.3V</p>
- Q_{ECL} output will default high with inputs left open
- Internal PECL input pulldown resistors
- Available in 8-pin MSOP and SOIC packages

DESCRIPTION

The SY10/100ELT28 is a differential PECL-to-TTL translator and a TTL-to-differential PECL translator in a single package. Because PECL (Positive ECL) levels are used, only +5V and ground are required. The small outline 8-pin package and the dual translation design of the ELT28 makes it ideal for applications which are sending and receiving signals across a backplane.

PIN CONFIGURATION/BLOCK DIAGRAM

(Available in MSOP or SOIC package)

PIN NAMES

Pin	Function					
DTTL	TTL Inputs					
QTTL	TTL Outputs					
DECL, /DECL	PECL Differential Inputs					
QECL, /QECL	PECL Differential Outputs					
V _{CC}	Positive Supply					
GND	Ground					

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating		Value	Unit
V _{CC}	Power Supply Voltage		-0.5 to +7.0	V
V _{IN}	Input Voltage		0 to +6.0	V
I _{OUT}	PECL Output Current	–Continuous –Surge	50 100	mA
T _A	Operating Temperature Range		-40 to +85	°C
T _{store}	Storage Temperature Range		-65 to +150	°C
θ_{JA}	Package Thermal Resistance (Junction-to-Ambient)	–Still-Air (SOIC) –500lfpm (SOIC)	160 109	°C/W
		–Still-Air (MSOP) –500lfpm (MSOP)	206 155	°C/W
θ_{JC}	Package Thermal Resistance (Junction-to-Case)	(SOIC) (MSOP)	39 39	°C/W

NOTE:

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = +5V \pm 10\%; V_{EE} = 0V$

		T _A = −40°C		T _A = +25°C			T _A = +85°C					
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{CC}	Power Supply Voltage	4.75	5.0	5.5	4.75	5.0	5.5	4.75	5.0	5.5	V	
I _{CC}	Power Supply Current	_	23	40	_	22	40	_	25	40	mA	
C _{IN}	Input Capacitance (SOIC) (MSOP)					0.75 1.1			_		pF pF	

NOTE:

10/100KELT circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is
in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output parameters vary 1:1 with
V_{CC}. V_{CC} can vary ±0.25V.

10K PECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = +5.0V \pm 10\%$

		1	$T_A = -40^{\circ}C$			_A = +25°	С	T	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{OH}	Output HIGH Voltage	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV	$50\Omega V_{CC}$ -2V
V _{OL}	Output LOW Voltage	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV	$50\Omega V_{CC}$ -2V
V _{IH}	Input HIGH Voltage (Single-Ended)	3770	—	4110	3870	—	4190	3940	_	4280	mV	
V _{IL}	Input LOW Voltage (Single-Ended)	3050	—	3500	3050	_	3520	3050		3555	mV	
V _{IHCMR}	Input HIGH Voltage Common Mode Range ⁽²⁾	1.2	_	V _{CC}	1.2	_	V _{CC}	1.2	_	V _{CC}	mV	

NOTES:

- 1. 10/100KELT circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
- 2. V_{IHCMR} (Min) varies 1:1 with GND, V_{IHCMR} (Max) varies 1:1 with V_{CC} .

100K PECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = +5.0V \pm 10\%$

		1	Γ _A = -40	°C	٦	r _A = +25	°C	T _A = +85°C				
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{OH}	Output HIGH Voltage	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV	50Ω V _{CC} -2V
V _{OL}	Output LOW Voltage	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV	$50\Omega V_{CC}$ -2V
V _{IH}	Input HIGH Voltage (Single-Ended)	3835	—	4120	3835	_	4120	3835	_	4120	mV	
V _{IL}	Input LOW Voltage (Single-Ended)	3190	—	3525	3190	—	3525	3190	_	3525	mV	
V _{IHCMR}	Input HIGH Voltage Common Mode Range ⁽²⁾	2.2	—	V _{CC}	2.2	—	V _{CC}	2.2	_	V _{CC}	V	

NOTES:

1. 10/100KELT circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

2. V_{IHCMR} (Min) varies 1:1 with GND, V_{IHCMR} (Max) varies 1:1 with V_{CC} .

TTL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

$V_{CC} = +5.0V \pm 10$	10%
-------------------------	-----

			_A = −40°	С	T	_A = +25°	С	Т	_A = +85°	С		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
I _{IH}	Input HIGH Current		10 —	20 100			20 100			20 100	μΑ μΑ	$V_{IN} = 2.7V$ $V_{IN} = V_{CC}$
I _{IL}	Input LOW Current	-	-	-600	_	-	-600			-600	μA	V _{IN} = 0.5V
V _{IH}	Input HIGH Voltage	2.0		_	2.0		_	2.0		_	V	
V _{IL}	Input LOW Voltage	—	—	0.8	_	_	0.8	—	_	0.8	V	
V _{IK}	Input Clamp Diode Voltage	_	_	-1.2	_	_	-1.2	—	_	-1.2	V	I _{IK} = -18mA
V _{OH}	Output HIGH Voltage	2.4	2.9	_	2.4	3.4	_	2.4	3.9	—	V	I _{OH} = -3.0mA
V _{OL}	Output LOW Voltage	—	0.29	0.5	_	0.26	0.5	—	0.27	0.5	V	I _{OL} = 24mA
I _{OSC}	Output Short-Circuit Current	-175	_	-60	-175	_	-60	-175	_	-60	μA	$V_0 = 0V$

NOTES:

1. 10/100KELT circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.

AC ELECTRICAL CHARACTERISTICS

 $V_{CC} = +5.0V \pm 10\%$

			T	_A = −40°	C	Т	_A = +25°	С	Т	_A = +85°	C		
Symbol	Para	ameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
f _{MAX}	MaximumFrequency ⁽¹⁾ PECL TTL		700 160	_		700 160	_	_	700 160		_	MHz MHz	
t _{PLH}	Propagation DECL→Q		1.5		5.5	1.5		5.5	1.5	_	5.5	ns	$C_L = 20 pF$
	Delay	DTTL → QECL	0.2	_	1.2	0.2	1.2	1.5	0.2	_	1.35	ns	50 Ω toV _{CC} –2V
t _{PHL}	Propagation	DEC L → QTTL	1.5	_	5.5	1.5	_	5.5	1.5	—	5.5	ns	$C_L = 20 pF$
	Delay	DTTL → QECL	0.2	_	1.2	0.2	1.2	1.5	0.2	_	1.35	ns	50Ω toV _{CC} –2V
V _{PP}	PECL Input VoltageSwing ⁽²⁾ (Single-Ended) ⁽³⁾		200	800	1000	200	800	1000	200	800	1000	mV	
t _r t _f	QECL Output Rise/Fall Times (20% to 80%)		0.15	—	1.5	0.15	0.3	1.5	0.15	_	1.5	ns	50Ω to V _{CC} –2V
	QTTL Output (10% to 90%)	Rise/Fall Times		1.0	_		0.80	_	_	0.7	_	ns	C _L = 20pF; TTL Output

NOTES:

1. f_{MAX} is defined as the maximum toggle frequency.

2. V_{PP} (Min) is the minimum input swing for which AC parameters are guaranteed.

3. See "Timing Waveform."

TIMING WAVEFORM

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range	Marking Code	Ordering Code	Package Type	Operating Range	Markir Code
SY10ELT28KC	K8-1	Commercial	XL28	SY10ELT28KI ⁽¹⁾	K8-1	Industrial	XL28
SY10ELT28KCTR*	K8-1	Commercial	XL28	SY10ELT28KITR* ⁽¹⁾	K8-1	Industrial	XL28
SY100ELT28KC	K8-1	Commercial	XL28	SY100ELT28KI ⁽¹⁾	K8-1	Industrial	XL28
SY100ELT28KCTR*	K8-1	Commercial	XL28	SY100ELT28KITR* ⁽¹⁾	K8-1	Industrial	XL28
SY10ELT28ZC	Z8-1	Commercial	XEL28	SY10ELT28ZI ⁽¹⁾	Z8-1	Industrial	XEL2
SY10ELT28ZCTR*	Z8-1	Commercial	XEL28	SY10ELT28ZITR*(1)	Z8-1	Industrial	XEL2
SY100ELT28ZC	Z8-1	Commercial	XEL28	SY100ELT28ZI ⁽¹⁾	Z8-1	Industrial	XEL2
SY100ELT28ZCTR*	Z8-1	Commercial	XEL28	SY100ELT28ZITR*(1)	Z8-1	Industrial	XEL2

*Tape and Reel

Note 1. Recommended for new designs.

TERMINATION RECOMMENDATIONS

Figure 1. +5V PECL Parallel Termination-Thevenin Equivalent

Figure 2. +5V PECL Three-Resistor "Y-Termination"

Notes:

- 1. Power-saving alternative to 4-resistor, Thevenin termination.
- 2. Place termination resistors as close to destination inputs as possible.
- 3. $\rm R_b$ resistor sets the DC bias voltage, equal to V_t. For 5.0V supply, $\rm R_b$ value is 110 $\Omega.$

8 LEAD MSOP (K8-1)

6

8 LEAD SOIC .150" WIDE (Z8-1)

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.