

Part No. Type (shape) Photo current Tape and reel package Baggage package 1 SMD type AMS104Y 260 u A AMS302 Through-hole type AMS302T AMS402Y Chip type 20 µA* Carton: 3,000 pcs.; Case: 3,000 pcs. Standard packing: Tape and reel package SMD type: Tape and reel package Through-hole type: Carton: 2,000 pcs.; Case: 2,000 pcs. Baggage package Through-hole type: Carton: 500 pcs.: Case: 1.000 pcs. Carton: 3,000 pcs.; Case: 3,000 pcs. Tape and reel package Chip type: Notes: *Ev = 100 lx (Ev: Brightness, Fluorescent lamp is used as light source) ① Tape and reel package is standard packaging style for SMD and chip types. ("Y" and "T" at end of part number indicate packaging type.)

RATINGS

1. Absolute maximum ratings (Measuring condition: ambient temperature: 25°C 77°F)

Item	Symbol	① AMS104/AMS302	() AMS402	Remarks
Reverse voltage	VR	–0.5 to 8 V	–0.5 to 6 V	—
Photocurrent	l.	5 mA	1 mA	—
Power dissipation	Р	40 mW	6 mW	—
Operating temperature	Topr	-30 to +85°C -22 to +185°F	–30 to +85°C –22 to +185°F	Non-condensing at low temperatures
Storage temperature	Tstg	-40 to +100°C -40 to +176°F	-40 to +100°C -40 to +176°F	Non-condensing at low temperatures

2. Recommended operating condition

Item		Symbol	① AMS104/AMS302	① AMS402	Remarks	
Reverse voltage	Minimum	VR	1.5 V	1.5 V		
	Maximum		6 V	5.5 V		

TYPICAL APPLICATIONS

NaPiCa

SENSOR

SMD and Through-hole types

1. Brightness detection for LCD backlight control for LCD devices (LCDTVs, car navigation systems, and mobile PCs).

2. Brightness detection for circuits in residential lighting, lighting for security, and automatic lighting for bicycle.

3. Household applicances (day/night energy savings for air conditioners and electric hot water pots, etc.) 4. Brightness detection for wall clocks (radio clocks).

Chip type

1. Brightness detection for LCD backlight control for compact mobile devices (mobile phones and PDAs). 2. Brightness detection for controlling the keypad backlight in mobile phones.

() Light Sensor (AMS1, 3,4)

3. Electrical and optical characteristics (Measuring condition: ambient temperature: 25°C 77°F)

Item		Symbol	① AMS104, AMS302	① AMS402	Condition
Peak sensitivity wavelength	_	λρ	580 nm	560 nm	_
	Minimum		9.1 μA	0.7 μΑ	
Photocurrent 1	Typical	IL1	13 µA	1 μA	$\begin{array}{c} \textcircled{0} \\ \hline \textbf{AMS104} \\ \textbf{AMS302} \\ \textbf{V}_{R} = 5 \\ \textbf{V}, \\ \hline \textbf{Ev} = 5 \\ \textbf{X}^{*1} \\ \hline \textbf{AMS402} \\ \textbf{V}_{R} = 3 \\ \textbf{V}, \\ \hline \textbf{Ev} = 5 \\ \textbf{X}^{*1} \\ \hline \textbf{X}^{*1} \\ \hline \textbf{AMS402} \\ \textbf{V}_{R} = 3 \\ \textbf{V}, \\ \hline \textbf{Ev} = 5 \\ \textbf{X}^{*1} \\ \hline \textbf{X}^{*1}$
	Maximum	1	16.9 μA	1.3 μA	
	Minimum		182 μA	14 μA	
Photocurrent 2	Typical	IL2	260 μA	20 µA	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	Maximum		338 µA	26 µA	
Photocurrent 3	Typical	IL3	500 μA	35 μΑ	$ \underbrace{ 0 \\ AMS104 / AMS302: V_{R} = 5 V, E_{V} = 100 \ lx^{*2} \\ AMS402: V_{R} = 3 V, E_{V} = 100 \ lx^{*2} $
Dark current	Maximum	lo	0.3 μΑ	0.05 μΑ	$ \begin{array}{c} \textcircled{0} \\ \hline \textbf{AMS104} / \textbf{AMS302: } V_{\text{R}} = 5 \text{ V. } E_{\text{V}} = 0 \text{ Ix} \\ \hline \textbf{AMS402: } V_{\text{R}} = 3 \text{ V. } E_{\text{V}} = 0 \text{ Ix} \\ \end{array} $
Rise time	me Typical	tr	8.5 ms	1.2 ms	AMS104/AMS302: Vcc = 5.0 V, V₀ = 2.5 V, R∟ = 5 kΩ
Switching time Fall ti	ne Typical	tr	8.5 ms	1.2 ms	^(U) AMS104/AMS302: Vcc = 3.0 V, Vo = 1.5 V, R _L = 5 kΩ

Notes: *1. Fluorescent lamp is used as light source. Ev = Brightness *2. CIE standard illuminant 'A' is used as light source.

*3. Measuring method for switching time.

REFERENCE DATA

1. Power dissipation vs. ambient temperature characteristics

4. Photocurrent vs. brightness characteristics Light source: Fluorescent lamp Reverse voltage 3V (AMS402) 5V (AMS104. AMS302)

Ambient temperature: 25°C 77°F

2. Relative sensitivity vs. wavelength characteristics () Reverse voltage: 3V (AMS402) 5V (AMS104

AMS302) Ambient temperature: 25°C 77°F

5. Relative photocurrent vs. ambient temperature characteristics Light source: Fluorescent lamp, Brightness: 100 lx Reverse voltage: 3V (AMS402) 5V (AMS104,

3. Dark current vs. ambient temperature characteristics () \bigcirc Reverse voltage: 3V (AMS402), 5V (AMS104, AMS302)

6. Relative photocurrent vs. reverse voltage characteristics

Light source: Fluorescent lamp, Brightness: 100 lx Ambient temperature: 25°C 77°F

7. Switching time vs. resistive load characteristics Light source: White LED ① ① Power voltage 3V (AMS402) 5V (AMS104, AMS302) Resistive load voltage: [1.5V (AMS402), ① 2.5V (AMS104, AMS302) Ambient temperature: 25°C 77°F

2

(2.5)

(2.54)

(î)

2-□0.5

General Tolerance: ±0.5 ±.020

Light Sensor (AMS¹, 3, 4

SAFETY PRECAUTIONS

Be sure to obey the following in order to prevent injuries and accidents.

• Do not use the sensors under conditions that exceed the range of its specifications. It may cause overheating, smoke, or fire.

CAUTIONS FOR USE

1. Applying stress that exceeds the absolute maximum rating

If the voltage or current value for any of the terminals exceeds the absolute maximum rating, internal elements will deteriorate because of the excessive voltage or current. In extreme cases, wiring may melt, or silicon P/N junctions may be destroyed.

Therefore the design should ensure that the absolute maximum ratings will never be exceeded, even momentarily.

2. Deterioration and destruction caused by discharge of static electricity

This phenomenon is generally called static electricity destruction. Static electricity generated by various factors flows through the terminal and occurs to destroy internal elements. To prevent problems from static electricity, the following precautions and measures should be taken when using your device. 1) Person handling sensor should wear anti-static clothing and should be grounded through protective resistance of 500 k Ω to 1 M Ω .

2) A conductive metal sheet should be placed over the work table. Measuring instruments and jigs should be grounded.3) When using soldering irons, either use irons with low leakage current, or ground the tip of the soldering iron. (Use of low-voltage soldering irons is also recommended.)

- Connect terminals correctly by verifying the pin layout with the specifications diagram or other instructions.
 Erroneous connections may lead to unexpected operating errors, overheating, smoke, or fire.
- For an impotant and serious application in terms of safety, add protection circuit or any other protection method.

4) Devices and equipment used in assembly should also be grounded.
5) When packing printed circuit boards and equipment, avoid using high-polymer materials such as foam styrene, plastic, and other materials which carry an electrostatic charge.

6) When storing or transporting sensor, the environment should not be generated static electricity (for instance, the humidity should be between 45 and 60%), and sensor should be protected using conductive packing materials.
3. Just after supplying voltage, please note that current in the sensor will be not constant until internal circuit stability.

4. Storage

The sensors are transparent plastic packages. They are sensitive to moisture and come in moisture-proof packages. Observe the following cautions when storing.

1) After the moisture-proof package is unsealed, take the sensors out of storage as soon as possible (within 1 week \leq 30°C 86°F/60% R.H.).

2) If the devices are to be left in storage for a considerable period after the moisture-proof package has been unsealed, it is recommended to keep them in another moisture-proof bag containing silica gel (within 3 months at the most). 3) Storage under extreme conditions will cause soldering degradation, external appearance defects, and deterioration of the characteristics. The following storage conditions are recommended:

- Temperature: 0 to 30°C 32 to 86°F
- Humidity: Less than 60% R.H. (Avoid freezing and condensing)
- Atomosphere: No harmful gasses such as sulfurous acid gas, minimal dust.
- *When mounting with solder, if thermal stress is applied to sensors that have absorbed moisture, the moisture will vaporize, swelling will occur, and the inside of the package will become stressed. This may cause the package surface to blister or crack. Therefore, please take caution and observe the soldering conditions in the following section.

Discontinued: SMD type and Chip type Last time buy: September 30, 2013

5. Recommended soldering conditions

() <SMD/Chip type>

- 1) Recommended condition
- (1) IR (Infrared reflow) soldering method

2) Do not do flow soldering.

<Through-hole type>

1) Recommended condition

(1) Double wave soldering method

 $T_2 = 260^{\circ}C 500^{\circ}F$ or less $t_1 = 120$ s or less t2+t3= 6 s or less (2) Soldering iron method Tip temperature: 350 to 400°C 662 to 752°F Wattage: 30 to 60 W Soldering time: within 3 s

2) The soldered position on leads should not be closer than 3mm .118inch to the molding resin of this sensor.

6. Notes for mounting

1) Temperature rise in the lead portion is highly dependent on package size. If multiple different packages are mounted on the same board, please check your board beforehand in an actual product, ensuring that the temperature of the solder area of the sensor terminals falls within the temperature conditions of item 5.

2) If the mounting conditions exceed the recommended solder conditions in item 5, resin strength will fall and the mismatching of the heat expansion coefficient of each constituent material will increase markedly, possibly causing cracks in the package, disconnections of bonding wires, and the like. For this reason, please inquire with us about whether this use is possible.

7. Cleaning solvents compatibility We recommend dip cleaning with an organic solvent for removal of solder flux etc. If you cannot avoid using ultrasonic cleansing, please ensure that the following conditions are met, and check beforehand for defects.

- Frequency: 27 to 29 kHz
- Ultrasonic power: No greater than 0.25W/cm²
- Cleaning time: No longer than 30 s
- Cleanser used: Asahiklin AK-225
- Other:

Submerge in solvent in order to prevent the PCB and sensors from being contacted directly by the ultrasonic vibrations.

Note: Applies to unit area ultrasonic power for ultrasonic baths.

Light Sensor (AMS1, 3, 4)

8. Transportation

Extreme vibration during transport will warp the lead or damage the sensor. Handle the outer and inner boxes with care.

9. Avoid using the sensor in environments containing excessive amounts of steam, dust, corrosive gas, or where organic solvents are present.

10. Lead forming and cutting of through-hole type

1) Lead forming must be done at normal temperature before soldering 2) The bent and cut position on leads should not be closer than 3mm .118inch to the base of leads.

3) Lead forming and cutting must be done while fixing the base of leads. 4) Avoid mounting with stress at the base of leads.

Light Sensor (AMS⁰, 3, 4)

2) Through-hole type tape and reel (mm inch)

Symbol	Symbol	Dimensions	Remarks
Feed hole pitch	Po	12.7±0.3 .500±.012	
Product interval pitch	Р	12.7±1.0 .500±.039	
Product distance	P ₂	6.35±1.3 .250±.051	
Product bottom distance	н	20.5±1.0 .807±.039	
Lead interval	F	2.54±0.5 .100±.020	
Product slant	Δh	0±1.0 0±.039	
Product tilt	Δр	0±1.0 0±.039	
Tape width	W	18.0 ^{+1.0} -0.5 .709 ^{+.039}	
Holding tape width	Wo	13.0±0.3 .512±.012	
Feed hole position	W 1	9.0 ^{+0.75} -0.5 .354 ^{+.030}	
Holding tape distance	W2	0 to 0.5 0 to .020	
Feed hole diameter	D₀	3.8±0.2 .150±.008	
Tape thickness	t	0.5±0.2 .020±.008	Included holding tape thickness
Defective product cutoff position	L	Max.: 11.0 .433	

Light Sensor NaPiCa terminology

Term	Symbol	Explanation	
Reverse voltage	VR	The applied voltage between the cathode and anode.	
Photocurrent	١L	The current that flows between the cathode and anode when light is applied.	
Power dissipation	Р	The electric power loss that occurs between the cathode and anode.	
Operating temperature	Topr	The workable ambient temperature range at which normal operation is possible under the condition prescribed allowable loss.	
Storage temperature	Tstg	The ambient temperature range at which the sensor can be left or stored without applying voltage.	
Peak sensitivity wavelength	λρ	The wavelength of light at which sensitivity is at its maximum.	
Dark current	lo	The current between the cathode and anode when reverse voltage is applied during darkness.	
Rise time	tr	Time required for the output waveform to rise from 10% to 90% when light is applied.	
Fall time	tr	Time required for the output waveform to fall from 90% to 10% when light is cut.	