Datasheet

Low power 60 GHz Doppler radar sensor with antennas in package

Features

- 60 GHz transceiver MMIC with one transmitter and one receiver unit
- Antennas in package (AIP) (6.7 \times 3.3 \times 0.56 $mm^3)$
- Pulsed Doppler mode of operation for low power consumption
- Autonomous mode
 - Integrated detector for motion and direction of movement
 - Direct output of motion detection signal
 - 15 configurable thresholds for target detection range
 - 16 configurations for detection status hold time
 - 4 configurable operating frequencies
 - 4 configurable pulse repetition rates
- High performance enabled from Infineon's BiCMOS technology
 - Fully integrated low phase noise VCO and PLL
 - Medium power amplifier with configurable output power and integrated power detector
 - Low noise variable gain baseband amplifiers
 - Fully ESD protected device

Potential applications

The BGT60LTR11AIP adds 'smartness' to traditional motion sensing applications and beyond:

- Smart home devices (thermostats, smoke detectors, smart speakers, etc.)
- Smart building (contactless switches, occupancy and proximity sensors, etc.)
- Smart appliances (service robots, washing machine, and kitchen appliances)
- Smart lighting systems and security systems including IP cameras
- Screen based systems (TVs, monitors, laptops, or tablets)

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Description

The BGT60LTR11AIP is a fully integrated millimeter wave Doppler motion sensor with antenna in package. The sensor detects the motion as well as the direction of a moving target. It supports the following two operation modes, which can be selected via hardware preset pins:

- Autonomous mode: the sensor configuration parameters, detection threshold and hold time are set via external resistors; the pulse repetition rate and the operation frequency are set via hardware preset pins
- SPI mode: it allows the SPI connection to a microcontroller for more real time sensor configurations, that can be written in the internal registers through SPI

The BGT60LTR11AIP integrates a medium power amplifier with configurable/adjustable output power, which can be controlled via SPI. The transmitted power is monitored by an integrated power detector. The packaged monolithic microwave integrated circuit (MMIC) features integrated broad-beam antennas for maximum area coverage.

Product type	Package	Marking	Ordering code	Description
BGT60LTR11AIP	PG-UF2BGA-42	L11E	BGT60LTR11AIPE6327XUMA2	Operates in the frequency band from 61 GHz to 61.5 GHz
BGT60LTR11BAIP	PG-UF2BGA-42	L11J	BGT60LTR11BAIPXUMA1	Operates in the frequency band from 60.5 GHz to 61 GHz (Japanese ISM band)
BGT60LTR11SAIP	PG-UF2BGA-42	S11E	BGT60LTR11SAIPXUMA1	BGT60LTR11AIP down-specified version with reduced detection range (autonomous mode) and operating temperature from -10 to +70°C

Table of contents

Table of contents

	Features
	Potential applications
	Product validation
	Description
	Table of contents 2
1	Electrical characteristics
1.1	Absolute maximum ratings
1.2	ESD integrity
1.3	Power supply
1.4	System parameters
1.5	PLL parameters
1.6	Frequency divider
1.7	Antenna characteristics
2	SPI interface
2.1	SPI timing requirements
3	Block diagram and pin description
3.1	Block diagram
3.2	Pin out
3.3	Pin definition and function
4	Package dimensions and footprint10
	Revision history
	Disclaimer

1 Electrical characteristics

1 Electrical characteristics

1.1 Absolute maximum ratings

Table 1 Absolute maximum ratings

 T_{OP} = -20°C ... 85°C for BGT60LTR11AIP and BGT60LTR11BAIP; T_{OP} = -10°C ... 70°C for BGT60LTR11SAIP; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified).

Parameter	Symbol Values		Unit	Note or Test		
		Min.	Тур.	Max.		Condition
Supply voltage	V _{DD}	-0.3	-	1.9	V	
Voltage applied to non-RF I/O pins	V _{DC,I/O}	-0.3	-	V _{DD} +0.3	V	
Total power dissipation	P _{DISS}	-	-	300	mW	
Storage temperature range	T _{STG}	-40	-	150	°C	
Operational temperature range (BGT60LTR11AIP and BGT60LTR11BAIP)	T _{OP}	-20	-	+85	°C	Temperature at package soldering point
Operational temperature range (BGT60LTR11SAIP)	T _{OP}	-10	-	+70	°C	Temperature at package soldering point
Thermal resistance of package	R _{th,P}	-	67	-	K/W	Represents bulk silicon to solder balls

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and lifetime. Functionality of the device might not be given under these conditions.

1.2 ESD integrity

Table 2 ESD integrity

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
ESD robustness HBM	V _{ESD-HBM}	-1	_	1	kV	All pins
ESD robustness CDM	V _{ESD-CDM}	-500	-	500	V	All pins

1 Electrical characteristics

1.3 Power supply

Table 3Power supply electrical characteristics

 T_{OP} = -20°C ... 85°C for BGT60LTR11AIP and BGT60LTR11BAIP; T_{OP} = -10°C ... 70°C for BGT60LTR11SAIP.

Parameter	Symbol	Symbol Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
Supply voltage	V _{DD}	1.45	1.5	1.6	V	
Current consumption in pulse-on phase	I _{Pulse_ON}	-	128	-	mA	
Current consumption in pulse-off phase	I _{Pulse_OFF}	-	0.8	-	mA	
Pulsed mode average power	P _{5/2000}	-	2.3	_	mW	Duty cycle of 5/2000 µs
consumption	P _{5/1000}	-	3.4	-	mW	Duty cycle of 5/1000 µs
	P _{5/500}	-	5.6	-	mW	Duty cycle of 5/500 µs
	P _{5/250}	-	10.3	-	mW	Duty cycle of 5/250 µs

1.4 System parameters

Table 4System parameters

 T_{OP} = -20°C ... 85°C for BGT60LTR11AIP and BGT60LTR11BAIP; T_{OP} = -10°C ... 70°C for BGT60LTR11SAIP.

Parameter	Symbol Values				Unit	Note or Test
		Min.	Тур.	Max.	_	Condition
Supply voltage	V _{DD}	1.45	1.5	1.6	V	
Transmitted frequency (BGT60LTR11AIP and BGT60LTR11SAIP)	f _{TX}	61	61.25	61.5	GHz	V _{tune} = V _{CPOUTPLL}
Transmitted frequency (BGT60LTR11BAIP)	f _{TX_B}	60.5	60.75	61	GHz	$V_{\text{tune}} = V_{\text{CPOUTPLL}}$
Output power (EIRP ¹⁾)	P _{TX}	-	+10	-	dBm	
Spurious emission < 40 GHz (EIRP)	P _{SPUR1}	-	-	-42	dBm	FCC 15.209
Spurious emission > 40 GHz and < 57 GHz (EIRP)	P _{SPUR2}	_	-	-20	dBm	ETSI EN 305 550
Spurious emission > 64 GHz and < 78 GHz (EIRP)	P _{SPUR3}	-	-	-20	dBm	ETSI EN 305 550
Spurious emission > 78 GHz (EIRP)	P _{SPUR4}	-	-	-30	dBm	ETSI EN 305 550
Frequency drift vs. temperature	$\Delta f / \Delta T$	-	-10	-	MHz/K	<i>T</i> _{OP} = -20°C +85°C
						<i>V</i> _{DD} = 1.5 V
						Free running VCO

1) Equivalent isotopic radiated power.

1 Electrical characteristics

1.5 PLL parameters

Table 5 PLL parameters

 T_{OP} = -20°C ... 85°C for BGT60LTR11AIP and BGT60LTR11BAIP; T_{OP} = -10°C ... 70°C for BGT60LTR11SAIP; V_{DD} = 1.45 V ... 1.6 V.

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
External crystal frequency	f _{CRY}	-	38.4	-	MHz	
PLL lock frequency (BGT60LTR11AIP and BGT60LTR11SAIP) ¹⁾	f _L	61	_	61.5	GHz	
PLL lock frequency (BGT60LTR11BAIP) ¹⁾	f _{L_B}	60.5	-	61	GHz	

1) Programmed through Reg5 (for more information refer to AN625). Keep a 50 MHz guard band each side from the band edge to avoid outside of ISM band emission.

Warning: Sensors operating in close vicinity at the same operating frequency can interfere!

1.6 Frequency divider

Table 6 Frequency divider electrical characteristics

 T_{OP} = -20°C .. 85°C for BGT60LTR11AIP and BGT60LTR11BAIP; T_{OP} = -10°C .. 70°C for BGT60LTR11SAIP; V_{DD} = 1.45 V .. 1.6 V, Freq = 61.25 GHz.

Parameter	Symbol Values				Unit	Note or Test
		Min.	Тур.	Max.		Condition
Divider output frequency 1	f _{DIV1}	-	9.6	-	MHz	Selectable via SPI (divided by 4 from crystal oscillator)
Dividing factor 2	D _{DIV1}	-	2^14	-	-	Selectable via SPI
Dividing factor 3	D _{DIV2}	-	2^17	-	-	Selectable via SPI
Dividing factor 4	D _{DIV3}	-	2^21	-	-	Selectable via SPI
Divider output voltage range	V _{DIV}	0	-	V _{DD}	V	
External capacitive load	C _{extLoad}	-	-	15	pF	

1 Electrical characteristics

1.7 Antenna characteristics

Table 7 Antenna in package specifications

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
Operating frequency range (BGT60LTR11AIP and BGT60LTR11SAIP)	f _{op}	60.5	-	61.5	GHz	
Transmitter antenna gain	G _{TX}	-	6	-	dBi	@ Freq = 61.25 GHz
Receiver antenna gain	G _{RX}	-	6	-	dBi	@ Freq = 61.25 GHz
Horizontal -6dB beamwidth	H _{-6dBbw}	-	±50	-	deg	@ Freq = 61.25 GHz
Vertical -6dB beamwidth	E _{-6dBbw}	-	±70	-	deg	@ Freq = 61.25 GHz
Horizontal sidelobe level (H-SLL)		-	12	-	dB	@ Freq = 61.25 GHz
Vertical sidelobe level (V-SLL)		-	12	-	dB	@ Freq = 61.25 GHz
TX-RX isolation on antenna level		-	35	_	dB	@ Freq = 61.25 GHz

2 SPI interface

2 SPI interface

2.1 SPI timing requirements

The BGT60LTR11AIP is configured using a 4-wire SPI. It is used to configure the internal blocks of the BGT60LTR11AIP chip registers. The main tasks are to set the mode of operation of the TX and/or RX chain and the baseband section. Communication with an external microcontroller is possible through the four dedicated pins SPIDI, SPIDO, SPICS and SPICLK. Figure 1 demonstrates how the timing of the SPI behaves. The "working edge" is the rising edge of the clock SPICLK. The master application processor presents data for BGT60LTR11AIP at the falling edge on SPIDI, while BGT60LTR11AIP samples data at the rising edge. Read data is presented for the master on the rising edge on SPIDO. Asynchronous reset (SPIRSTN) must be de-asserted at least 10 ns before the falling edge of SPICLK. Refer to the application note AN625 for all details related to the SPI registers to control the MMIC.

Figure 1 SPI timing diagram

Table 8SPI timing requirements

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
SPI clock period	Т	20	-	-	ns	50 MHz, with <1% clock jitter
Clock high time	t _{ch}	9	_	_	ns	
Clock low time	t _{cl}	9	-	-	ns	
Setup time SPIDI	t _{mos}	5	-	-	ns	
Hold time SPIDI	t _{moh}	5	_	-	ns	
Setup time SPIDO	t _{mis}	5	-	_	ns	
Hold time SPIDO	t _{mih}	4	-	-	ns	

3 Block diagram and pin description

3 Block diagram and pin description

3.1 Block diagram

Figure 2 BGT60LTR11AIP block diagram

3.2 Pin out

BGT60LTR11AIP pin out (top view)

3 Block diagram and pin description

3.3 Pin definition and function

Table 9Pin definition and function

Pin number	Name	Function		
A1, N1, A3, B3, M3, N3, A4, B4, M4, N4, A6, N6	GND	Ground		
A2, B2	VDDRF	DC supply of 1.5 V to internal RF circuitry		
M2, N2	VDDPLL	DC supply of 1.5 V to internal PLL circuitry		
 M6	QS1	Quad state input 1 – voltage value		
N5	QS2	Quad state input 2 or analog input to configure detector threshold		
B1	QS3	Quad state input 3 or analog input to configure detector hold time		
M1	QS4	Quad state input 4		
A5	SPIRSTN	SPI reset, active low		
 B5	SPIDI	SPI data in		
B6	SPIDO	SPI data out		
C6	SPICLK	SPI clock		
D6	SPICS	SPI chip select, active low		
E6, F6	IFIAo, IFIAox	Complementary in phase down converter IF output		
J6, K6	IFQAo, IFQAox	Complementary quadrature phase down converter IF output		
G6, H6	IFIAix, IFIAi	Analog IF input PGA – complementary in phase		
L6, M5	IFQAix, IFQAi	Analog IF input PGA – complementary quadrature phase		
К1	IFQ	ABB output – Q Channel		
L1	IFI	ABB output – I Channel		
C1	Vtune	VCO tuning voltage		
D1	PDet	Detector output – direction of movement		
El	TDet	Detector output – motion		
F1	Div_O	Frequency divider output		
G1	PLL_Trig	"Advance mode" and "Basic mode" switch		
H1	Xosc_Ao	Internal oscillator quartz node		
J1	Xosc_Ai	Internal oscillator quartz node		

4 Package dimensions and footprint

Package dimensions and footprint

Package outline. Top, side and bottom view of PG-UF2BGA-42-1

Revision history

Revision history

Document version	Date of release	Description of changes
V2.4	2021-10-11	Updated preliminary datasheet
V2.5	2021-11-05	First formal release version
V2.6	2022-08-01	Support BGT60LTR11SAIP down-specified MMIC version

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-08-01 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-ell1628171994159

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.