

ACT510xQI Rev 2.0, 02-Jul-2018

23V Buck-Boost Converter with Integrated MOSFETs GENERAL DESCRIPTION

3.9V to 23V

BENEFITS and FEATURES

- Buck-Boost Converter with 4 Integrated Switches
- Wide VIN Range: 3.9V to 23V (No Dead Zone)
- Wide VOUT Range: 3.0V to 23V
- Supports QC3.0 / USB PD + PPS output levels and transition times
- Programmable Frequency: 125KHz, 250KHz, 500kHz, and 1MHz
- 2V ~ 5V/100mA Programmable Output LDO
- Precision 0.5% Voltage Reference
- +/-4% Output Constant Current Regulation
- Programmable Output Voltage and Currents via both IC pins and I²C
- Programmable Soft-Start
- Programmable Safety Timer
- Cycle-by-Cycle Current Limit
- Built in ADC for Temperature, Input and Output Voltage and Current monitoring
- Thermal Regulation and Protection
- 25mΩ FET from VIN to SW1
- 25mΩ FET from SW2 to VOUT
- 35mΩ FET from SW1 to PGND
- 35mΩ FET from SW2 to PGND
- Thermally Enhanced 32-Lead 4mx4mm QFN

APPLICATIONS

- Car Charger
- Power Bank
- 24V Industrial Applications
- Automotive Power Systems
- Multiple Power Source Supplies
- DC UPS
- Solar Powered Devices
- Solid-State Lighting

The ACT510x is a buck-boost converter with 4 integrated MOSFETs. It offers a high efficiency, low component count, compact solution for a wide input voltage:

The 4 internal low resistance NMOS switches minimize the size of the application circuit and reduce power losses to maximize efficiency. Internal high side gate drivers, which require only the addition of two small external capacitors, further simplify the design process. An advanced switch control algorithm allows the buckboost converter to maintain output voltage regulation with input voltages that are above, below or equal to the output voltage. Transitions between these operating modes are seamless and free of transients and subharmonic switching.

The ACT510x has been optimized to reduce input current in shipping, shutdown, and standby for applications which are sensitive to quiescent current draw, such as battery-powered devices.

The ACT510x output voltage can be set between 3V ~ 23V which can be configured by either I²C (ACT5101) or an external resistor divider (ACT5102). The output constant current limit and cord compensation makes it flexible for any kinds of protocols such as USB PD, QC 3.0/4.0 etc. The system can be monitored and configured by I²C as well. The build-in ADC can be read for the information of input/output voltages and currents, and the die temperature.

ACT510x integrates a 100mA LDO with OCP/UVLO protection to provide power for the MCU and other peripheral components inside the system.

The ACT510x operation frequency can be configured from 125 kHz to 1MHz, making the system design flexible for components size and efficiency optimization.

The ACT510x has been optimized to reduce input current for applications which are sensitive to quiescent current draw, such as battery-powered devices.

The AC510x is available in 32-pin, 4 x 4 mm FCOL QFN package.

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

PART NUMBER	Feedback	Default Output Voltage	Default LDO Voltage	Fsw	ADC Converter	PACKAGE
ACT5101QI102-T	Internal	5.1V	5.0V	500kHz	Yes	FCQFN4x4-32
ACT5102QI102-T	External	n/a	5.0V	500kHz	No	FCQFN4x4-32

Note 1: Standard product options are identified in this table. Contact factory for custom options, minimum order quantity required.

Note 2: All Active-Semi components are RoHS Compliant and with Pb-free plating unless specified differently. The term Pb-free means semiconductor products that are in compliance with current RoHS (Restriction of Hazardous Substances) standards.

Note 3: Package Code designator "Q" represents QFN

Note 4: Pin Count designator "I" represents 32 pins

Note 5: See the CMI Options section at the back of the datasheet for more information on each CMI's settings.

PIN CONFIGURATION

Figure 1: Pin Configuration – Top View – QFN4x4-32

PIN DESCRIPTIONS

PIN	NAME	DESCRIPTION					
1, 9, 32	AGND	Analog Ground. Kelvin connect AGND to the PGND plane.					
2	NC	No Connect. Connect this pin to AGND.					
3	INTBP	ternal Voltage Bypass - Connect a 100nF ceramic capacitor between INTBP and AGND					
4	VREG	Internal VREG LDO output. The output voltage is programmable from 2V to 5V. Connect a 1.0uF between VREG and AGND. The maximum current capability for this pin is 100mA.					
5, 20	PGND	Power Ground. Connect to large ground plane on PCB with thermal vias.					
6	SDA	I ² C Data Input and Output. Needs an external pull up resistor.					
7	SCL	I ² C Clock Input. Needs an external pull up resistor.					
8	EN	Enable Input. The converter is enabled when EN is pulled high and disabled when EN is pulled low.					
10	nIRQ	Interrupt Open-Drain Output. nIRQ goes low to indicate a fault condition. nIRQ is referenced to AGND.					
11	ILIM	Input current limit setting pin. Connect a resistor from ILIM to AGND to program the maximum input current.					
12	VINS	Input Voltage Sense Input – Kelvin connect to the input voltage input capacitors.					
13	ISRP	Input current sense resistor positive input.					
14	ISRN	Input current sense resistor negative input.					
15	HSB2	High Side Bias Boot-strap pin. This provides power to the internal high-side MOSFET gate driver circuitry. Connect a 47nF capacitor from HSB2 to SW2 pin					
16, 17	VIN	Power Input pins. Connect these pins to 22uF-100uF ceramic capacitors placed as close to the IC as possible.					
18, 19	SW2	Power switching output to external inductor.					
21, 22	SW1	Power switching output to external inductor.					
23, 24	VOUT	Output voltage pins. Place 22uF to 44uF decoupling capacitors between VOUT and PGND.					
25	HSB1	High Side Bias Boot-strap pin. This provides power to the internal high-side MOSFET gate driver circuitry. Connect a 47nF capacitor from HSB1 to SW1 pin					
26	OSRN	Output current sense resistor negative input					
27	OSRP	Output current sense resistor positive input.					
28	STAT	Open drain status output to indicate various IC operating conditions. A LOW indicates the converter is enabled and has a valid output. A HIZ indicates the converter is disabled for any reason					
29	OLIM	Output constant current limit setting pin. Connect a resistor from OLIM to AGND to program the output current.					
30 (ACT5101)	A2D	A2D input pin					
30 (ACT5102)	FB	Output voltage feedback pin.					
31	COMP	Error Amplifier Output. This pin is used to compensate the converter.					
Exposed Pad	PGND	Power Ground. Connect to large ground plane on PCB with thermal vias.					

ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUE	UNIT
VOUT	-0.3 to +24	V
OSRP, OSRN	-0.3 to VOUT + 0.3	V
VIN	-0.3 to +23	V
ISRP, ISRN	-0.3 to VIN + 0.3	V
VINS	-0.3 to ISRN + 0.3	V
SW1	-0.3 to VOUT + 0.3	V
SW2	-0.3 to VIN + 0.3	V
HSB1	V _{Sw1} - 0.3 to V _{Sw1} + 5.5	V
HSB2	V _{SW2} - 0.3 to V _{SW2} + 5.5	V
VREG	-0.3 to +6	V
SCL, SDA, VREG, STAT, EN, nIRQ, FB, COMP, ILIM, OLIM, A2D	-0.3 to +6	V
AGND to PGND	-0.3 to +0.3	V
Junction to Ambient Thermal Resistance (θ_{JA})	35	°C/W
Operating Junction Temperature (T _J)	-40 to 150	°C
Operating Ambient Temperature Range (T _A)	-40 to 85	°C
Store Temperature	-55 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C
lote1: Measured on Active-Semi Evaluation Kit	· ·	

Note1: Measured on Active-Semi Evaluation Kit

Note2: Do not exceed these limits to prevent damage to the IC. Exposure to absolute maximum rating conditions for long periods may affect IC reliability.

SYSTEM CHARACTERISTICS

(VIN = 5V, $T_A = 25^{\circ}C$, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
nputs	1	1	1			
Input voltage Range	Vin		4		23	V
Input Over Voltage Threshold	V _{IN_OV}	Rising Measured at VINS Pin	22.75	23.5	24.25	V
Input Over Voltage Hysteresis	Vin_ov_hyst	VIN Falling Measured at VINS Pin		300		mV
VIN UVLO Threshold	Vin_uv	VIN Rising Measured at VINS Pin	-3.0	V _{IN_UV}	3.0	%
VIN UVLO Hysteresis	Vin_uvlo_hyst	VIN Falling Measured at VINS Pin	3	4	5	%
Input Current	lin	VIN=8.4V, V _{OUT} =5V		1		mA
Converter Operation	1		1			
Output Voltage	Vout_reg_acc	Internal Feedback Mode VOUT_I2C Register = 1 Converter output in PWM mode Measured at VOUT Pin	-1		1	%
FB Reference Voltage	Vout_ref_acc	ACT5102 IC only	1.99	2	2.01	V
Output Current Range	OUT_RANGE	With IOUT=100% register setting	0.5		5	А
Output Constant Current		I _{OUT_OCP} = 0.5A to 1A	-20	I _{OUT}	+20	%
(measured at OSRN and OSRP pins)	lout_ocp	I _{OUT_OCP} = 1A to 2A	-15	I _{OUT}	+15	%
		IOUT_OCP > 2A	-10	Іоит	+10	%
Output Constant Current Undervoltage Protection Threshold	Vout_uvp	VOUT Falling, Enters Hiccup Mode Measured at VOUT pin	2.62	2.72	2.82	V
Output Constant Current Undervoltage Protection Deglitch Time	tout_uvp	Vout Falling		7		us
Hiccup Mode Off Time	touт_ніссир	Off time after V_{OUT} falls below V_{OUT_UVP}		3		s
Over-Voltage Threshold		I ² C Feedback (ACT5101) Relative to the VOUT Register Setting	105	108	111	%
	Vout_ovp_ext	External Feedback (ACT5102) Voltage at FB Pin	2.18	2.24	2.30	V
Over-Voltage Threshold Hysteresis	Vout_ovp_hys	Falling Threshold		2		%
Soft Start Time	tour_ss	Relative to the factory default SOFT_START Register Setting. From 0 to 100%	-30	SOFT START Setting	30	%
Pulldown Current Source	OUT_PD	V _{OUT} Output > 2.0V	30	65	120	mA

Rev 2.0, 02-Jul-2018

Off Delay Current Timer	tout_off_dly	EN_DLY Enabled	-10	OFF_DL Y Setting	+10	%
Off Delay Current	OUT_OFF_LOAD	OFF_LOAD=1 Converter in Buck Mode Only V _{IN} > V _{OUT} + 0.5V	4	5	6	mA
Cord Compensation Accuracy	Vout_cc	CORD_COMP: 00: Disabled 01: 100mV 10: 200mV 11: 300mV Measured at VOUT Pin	-15	CORD_C OMP Setting	+15	%
Output Slew Accuracy	tout_slew	OUTPUT_SLEW 00: 1.0V/ms 01: 0.5V/ms 10: 0.3V/ms 11: 0.1V/ms Internal Feedback Only VOUT_I2C Register = 1	-20	OUTPUT _SLEW Setting	+20	%
		$I_{ILIM} = 0.5A$ to 1A	-20	I _{ILIM}	+20	%
Input Current ILIM	IILIM	I _{ILIM} = 1A to 2A	-15	I _{ILIM}	+15	%
		I _{ILIM} > 2A	-10	Iilim	+10	%
PWM OPERATION						
Frequency Range	fsw		125		1000	kHz
Operation Frequency Accuracy	fsw		-10%		+10%	kHz
Maximum PWM Duty Cycle	D _{MAX}			97		%
INPUT QUIESCENT CURRE	NTS					
	IIN_HIZ2	VIN=12V, Converter off, I ² C on, VREG on		35		μA
Input Current in HIZ	lin_hiz3	VBAT=12V, Converter off, I ² C on, VREG on, A2D Enabled, Fault Monitor Enabled		1100		μA
INTERNAL MOSFETS						
VOUT to SW1 FET Resistance	R _{DSONQ1}	T _J = 25C		25		mΩ
SW1 to PGND FET Resistance	Rdsonq2	T _J = 25C		35		mΩ
SW2 to PGND FET Resistance	Rdsonq3	T _J = 25C		35		mΩ
VIN to SW2 FET Resistance	Rdsonq4	T _J = 25C		25		mΩ
Cycle By Cycle Current Limit	FET_ILIM	FET_ILIM=0 Q1, Q2, Q3, or Q4 in any mode	6.5	8.5	10.5	A
		FET_ILIM=1 Q1, Q2, Q3, or Q4 in any mode	7.75	10	12.25	А

LDO

(VIN = 12V, VOUT = 7.6V, $T_A = 25^{\circ}$ C, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNIT
VREG Regulation Voltage	VREG		2		5.1	V
VREG Regulation Accuracy	VREGACC	At Default Factory Setting	-2		2	%
VREG Dropout	VREGDROPOUT	I _{OUT} = 100mA			300	mV
VREG UVLO Threshold	VREGUVLO	VREG Falling	84	88	93	%
VREG UVLO Hysteresis	VREGUVLO_HYST			2		%
VREG Current Limit	VREGILIM	$V_{VIN} = 12V, VREG = 5V$	100	175	250	mA
VREG Current Limit Deglitch	VREGILIM_DG	In current limit		50		us
VREG Current Limit Off Time	VREGILIM_OFF	After Deglitch Time		100		ms
VREG Soft Start	VREGss			250		us

THERMAL PROTECTION

(VIN = 12V, VOUT = 7.6V, $T_A = 25^{\circ}$ C, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNIT
Thermal Regulation and Shu	tdown					
Charger Mode Junction Temper- ature Regulation Accuracy	T _{REG}	00: Disabled 01: 80 °C 10: 100 °C 11: 120 °C	-20	T _{REG}	+20	°C
Thermal Shutdown Rising Tem- perature	Тѕнит	Temperature Increasing		160		°C
Thermal Shutdown Hysteresis	T _{SHUT_HYS}			30		°C

ADC CONVERTER

(VIN = 12V, VOUT = 7.6V, $T_A = 25^{\circ}$ C, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNIT
Total Error	A2D _{ERROR}	12 Bit Range			0.5	LSB
Conversion Time	A2D _{tCONV}	All 6 Channels			100	ms
Conversion Time	A2D _{tCONV}	1 Channel			15	ms
Input Capacitance	A2Dcin			5		pF
A2D Full Scale Input EXT_IN	A2D _{FS}			2.5		V
A2D Full Scale OUT	A2D _{VOUT}	Measurement input at VOUT pin	0		32.5	V
A2D Full Scale VIN	A2D _{VIN}	Measurement input at VIN Pin	1.5		25	V
A2D Full Scale OLIM, ILIM	A2D _{OLIM,} A2D _{ILIM}			2.5		V

LOGIC PIN CHARACTERISTICS - EN, STAT, NIRQ

(VIN = 12V, VOUT = 7.6V, $T_A = 25^{\circ}C$, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	МАХ	UNIT
EN Input low threshold	V _{ILO}				0.4	V
EN Input high threshold	Vіні		1.25			V
STAT, nIRQ Output Low Volt- age	Vol	Sink Current = 5 mA			0.4	V
STAT, nIRQ High Level Leakage Current	Іон	Output = 5V			1	uA

I²C INTERFACE ELECTRICAL CHARACTERISTICS

(VIN = 12V, VOUT = 7.6V, $T_A = 25^{\circ}$ C, unless otherwise specified.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNIT
SCL, SDA Input Low	Vilo	V _{IO} = 1.8V			0.4	V
SCL, SDA Input High	Vihi	V _{IO} = 1.8V	1.25			V
SDA Leakage Current	I _{OH}	SDA = 5V			1	μA
SDA Output Low	Vol	lo∟ = 5mA			0.4	V
SCL Clock Frequency	fsc∟		0		1000	kHz
SCL Low Period	tscl_low		0.5			us
SCL High Period	tscl_ні		0.26			us
SDA Data Setup Time	ts∪		50			ns
SDA Data Hold Time	t _{HD}		0			ns
Start Setup Time	t _{s⊤}		260			ns
Stop Setup Time	t _{SP}		260			ns
Capacitance on SCL or SDA PIN	CIN				10	pF
Noise suppression on SCL and SDA	t _{DEGLITCH}				50	ns
I ² C Timeout Function	t _{out}	Total time required for I ² C communication to cause I ² C state machine to reset		100		ms

Note1: Comply with I²C timings for 1MHz operation - "Fast Mode Plus".

Note2: No internal timeout for I²C operations, however, I²C communication state machine will be reset when entering UV/POR State.

Note3: This is an I²C system specification only. Rise and fall time of SCL & SDA not controlled by the IC.

Note4: IC Address is factory configurable to 7'h24, 7'h66.

FUNCTIONAL DESCRIPTION

General

ACT510x is a buck-boost converter with integrated MOSFETs. It provides a high efficiency, low external component count, minimal size buck-boost power solution. Its wide input operating range of 3.9V to 23V allows operation from many input sources. The ACT5101 output voltage is set by internal registers. It has a built in A/D converter. The ACT5102 output voltage is set by an external resistor divider and does not have an A/D converter.

The ACT510x autonomously switches between buck, buck-boost, and boost modes depending on the input and output voltages. It is optimized for minimum quiescent current in shutdown and standby modes. This makes it ideal for battery powered applications.

The ACT510x can be operated in both stand-alone and host-controlled applications. External resistors set the input and output current limit. Using host controlled I²C operation, the user has full control over voltage, current, and fault settings.

I²C operation gives the host full control of operating parameters as well as full knowledge of the operating parameters and fault conditions. A built in ADC provides input voltage, output voltage, input current, output current, and die temperature. The ADC also has one general purpose input to measure an external analog signal.

The ACT510x is highly flexible and contains many I²C configurable functions. The IC's default functionality is defined by its default CMI (Code Matrix Index), but much of this functionality can be changed via I²C. I²C functionality includes OV and UV fault thresholds, switching frequencies, current limits, output voltage, slew rates, softstart time, and more. The CMI Options section shows the default settings for each available CMI option. Contact sales@active-semi.com for additional information about other configurations.

I²C Serial Interface

To ensure compatibility with a wide range of systems, the ACT510x uses standard I²C commands. It supports clock speeds up to 1MHz. The ACT510x always operates as a slave device, and can be factory configured to one of two 7-bit slave addresses. The 7-bit slave address is followed by an eighth bit, which indicates whether the transaction is a read-operation or a writeoperation. Refer to each specific CMI for the IC's slave address

Table	1:	AC ⁻	Г51	0x	l ² C	Addresses
-------	----	-----------------	-----	----	------------------	-----------

7-Bit Slav	7-Bit Slave Address		8-Bit Read Address
0x24h	010 0100b	0x48h	0x49h
0x66h	110 0110b	0xCCh	0xCDh

The I²C packet processing state machine has a 100ms timeout function for each I²C command. If there is greater than 100ms between a start bit and a stop bit, the ACT510x resets the I²C packet processing and sets the I²C_FAULT bit in register 0x06h. Any time the I²C state machine receives a start bit command, it immediately resets the packet processing, even if it is in the middle of a valid packet. The I²C functionality is operational in all states except RESET.

I²C commands are communicated using the SCL and SDA pins. SCL is the I²C serial clock input. SDA is the data input and output. SDA is open drain and must have a pull-up resistor. Signals on these pins must meet timing requirements in the Electrical Characteristics. For more information regarding the I²C 2-wire serial interface, refer to the NXP website: <u>http://www.nxp.com</u>.

I²C Registers

The ACT510x has an array of internal registers that contain the IC's basic instructions for setting up the IC configuration, output voltages, switching frequency, fault thresholds, fault masks, etc. These registers give the IC its operating flexibility. The two types of registers are described below.

Basic Volatile – These are R/W (Read and Write) and RO (Read only). After the IC is powered, the user can modify the R/W register values to change IC functionality. Changes in functionality include things like masking certain faults. The RO registers communicate IC status such as fault conditions. Any changes to these registers are lost when power is recycled. The default values are fixed and cannot be changed by the factory or the end user.

Basic Non-Volatile – These are R/W and RO. After the IC is powered, the user can modify the R/W register values to change IC functionality. Changes in functionality include things like output voltage settings, startup delay time, and current limit thresholds. Any changes to these registers are lost when power is recycled. The default values can be modified at the factory to optimize IC functionality for specific applications. Please consult sales@active-semi.com for custom options and minimum order quantities.

When modifying only certain bits within a register, take care to not inadvertently change other bits. Inadvertently changing register contents can lead to unexpected IC behavior.

STATE MACHINE

ACT510x contains an internal state machine with three internal states: RESET, HIZ, and POWER ON.

RESET State

The IC enters the RESET state when power is applied. All registers are reset to their default values. I²C is not functional in RESET. The IC transitions to the HIZ state when VIN goes above 3.9V

HIZ State

HIZ mode is a low power state with the switching converter disabled. In this mode, I^2C is active and the IC

configuration can be changed. The IC enters HIZ from RESET and then either stays in HIZ or transitions to the POWER ON state. Note that the HIZ Register overrides the EN pin settings and may hold the IC in HIZ mode. See the HIZ section for more details.

POWER ON State

In the POWER ON state, the ACT510x transfers power from VIN to VOUT to provide a regulated output voltage. The IC enters this state with the EN pin or the EN_OVERRIDE register. Once in POWER ON, the IC follows the separate POWER ON State Machine. See the POWER ON State machine for more details.

Figure 3: Operating Modes State Machine

ACT510xQI

Rev 2.0, 02-Jul-2018

POWER ON STATE MACHINE

The ACT510x has a dedicated POWER ON state machine. This state machine handles the startup, normal operation and fault conditions.

Reset State (RST)

The POWER ON state machine always starts from the RST state. All converter operation starts from this state. In this state, the switcher is disabled and the state machine is waiting for all the required conditions to move to the SS state.

After all the following fault conditions are cleared, the IC starts the Enable Delay Timer. This timer is controlled by I²C bit EN_DLY[1:0] in register 0x0Fh. Once the timer has expired, the state machine moves to the SS state.

Reset Faults:

VIN UV Shutdown voltage: This fault is active when the input voltage is lower than the programmed VIN UV Shutdown voltage. This shutdown voltage is set by two I²C registers: VIN_UV in register 0x0Fh and VIN_UV_OFFSET in register 0x1Ah. The actual shutdown voltage is equal to the programmed VIN_UV_OFFSET voltage minus the programmed VIN_UV voltage. This fault self-clears when VIN is higher than the UV Shutdown voltage.

VREG LDO OK – This fault is set when an LDO fault is detected. This includes the 100msec timeout period. This fault automatically clears when the VREG LDO has exited the faulted condition. Note: This fault can be masked to allow the state machine to exit RST while there is a fault on the VREG LDO by using the I²C bit DIS_VREG_FLT in register 0x10 Bit 1.

Watchdog Timer Fault: This fault is active if the watchdog timer is enabled and the timer times out. This fault clears when the watchdog timer is reset or cleared. It can be reset by writing a 1 into the I^2C bit WATCH-DOG_RESET in register 0x00h. It can be cleared by disabling the watchdog timer by setting I^2C bits WATCHDOG[1:0] = 0x00h. **FET Overcurrent Fault**: This fault is set if a switching FET exceeds the cycle-by-cycle current limit for 8 (or 16) consecutive cycles. The FET_OC fault is latched. To clear this latch, the IC must exit the POWER ON state and enter HIZ mode. This is typically accomplished by toggling the EN pin or setting the HIZ register to 1.

VIN Overvoltage: This fault is set if VIN exceeds the V_{VIN_OV} voltage, 23.5V. The OV fault self-clears when VIN drops below V_{VIN_OV} and the IC exits the RST state.

Die Thermal Shutdown (TSD): This fault is active when die temperature exceeds the T_{SHUT} (160°C) temperature. This fault self-clears when the die temperature cools down by the temperature hysteresis, T_{SHUT_HYST} (30°C). This fault cannot be cleared or masked. The IC must cool down before exiting the RST state.

Softstart State (SS)

In this state, the IC enables the converter and softstarts the output voltage.

The state machine enters the SS state from the RST state when all faults are cleared. The state machine transitions to the REG state after the output is softstarted an in regulation.

The softstart time is controllable by the I^2C bit SS in register 0x0Eh. If a fault occurs during the softstart, the state machine jumps back to the RST state and disables the converter. Once the soft start is done, the IC jumps to the REG state.

Regulation State (REG)

The normal regulation occurs in the REG state. If a major fault occurs during operation the IC will jump back to the reset state and disable the converter. During this state, the converter can be disabled with a light load condition. Additionally, if the output drops below V_{OUT_UVP} (3.0V), the IC will go into a hiccup mode to protect the output in a shorted condition.

Figure 4: POWER ON State Machine Diagram

Light Load Disable State (LL_DIS)

In the state, the converter is disabled to minimize load on the input supply. This is especially useful in battery applications. It prevents the converter from switching with no load.

The state machine enters LL_DIS when it senses a light load for longer than the light load time out time. This time is set by I²C bit OFF_DLY[1:0] in register 0x0Eh. Note that the converter only enters LL_DIS when operating in buck mode. It does not enter LL_DIS when in boost or buck-boost mode.

The state machine can only exit LL_DIS when the IC exits the POWER ON state with the EN pin or HIZ register.

Hiccup / Vout Fault State (HICCUP)

This state is a fault state that minimizes overall IC power dissipation in extreme output overload conditions.

The state machine enters this state when the output cannot support the load. When the output reaches the maximum programmed output current, it clamps the current and the voltage starts to drop. If the load increases, the output voltage drops even further. If it drops below V_{OUT_UVP} (3.0V), the converter is disabled for 3s. After 3s, it automatically moves to RST and restarts. If there is a fault on the output, this cycle continues until the fault is removed.

PIN FUNCTIONS

VIN

VIN is the ACT510x input power pin. Input voltage sensing is measured at the VIN pin. Connect input bypass capacitors directly between VIN and PGND.

ISRP

ISRP is the positive sense pin for input current sensing. ISRP requires an input RC filter. Refer to the **Input Current Regulation** section for more details. ISRP must be Kelvin connected to the input current sense resistor. Connect the input current sense resistor between ISRP and ISRN.

ISRN

ISRN is the negative sense pin for input current sensing. ISRN requires an input RC filter. Refer to the **Input Current Regulation** section for more details. ISRN must be Kelvin connected to the input current sense resistor. Connect the input current sense resistor between ISRP and ISRN.

SW1, SW2

SW1 and SW2 are the switch nodes for the internal buck-boost converter. SW1 switches between VOUT and PGND when the IC operates in buck-boost and boost modes. SW2 switches between VIN and PGND when the IC operates in buck and buck-boost modes. Connect the inductor between the SW1 and SW2 pins.

HSB1, HSB2

HSB1 and HSB2 provide power to the internal high-side MOSFET gate driver circuitry. Connect a 47nF capacitor from HSB1 to SW1. Connect a 47nF capacitor from HSB2 to SW2.

VOUT

VOUT is the ACT510x output power pin. Connect output bypass capacitors directly between VOUT and PGND.

VINS

VINS is the input voltage sense pin. Kelvin connect input VINS to the input bypass capacitors.

OSRP

OSRP is the positive sense pin for the output current. OSRP requires an input RC filter. Refer to the **Setting Maximum Output Current** section for more details. OSRP must be Kelvin connected to the output current sense resistor. Connect the output current sense resistor between OSRP and OSRN.

OSRN

OSRN is the negative sense pin for the output current. OSRN requires an input RC filter. Refer to the **Setting Maximum Output Current** section for more details. OSRN must be Kelvin connected to the output current sense resistor. Connect the output current sense resistor between OSRP and OSRN.

ILIM

ILIM sets the maximum input current. Connect a resistor between ILIM and AGND to set the current limits. The ILIM current limit can be scaled using I²C. In some operating conditions, ILIM requires additional RC compensation. Refer to the **Input Current Regulation** section for more details.

OLIM

OLIM sets the maximum output current. Connect a resistor between OLIM and AGND to set the output current limit. The OLIM current limit can be scaled using I²C. In some operating conditions, OLIM requires additional RC compensation. Refer to the **Setting Maximum Output Current** section for more details.

INTBP

INTBP is the internal bias voltage output pin. INTBP is supplied by an internal linear regulator. Do not power external circuity from the INTBP pin. Connect a 100nF ceramic capacitor between INTBP and AGND.

VREG

VREG is the internal LDO output pin. The internal LDO is programmable between 2V and 5V. Its maximum output current capability 100mA. Connect a 1uF ceramic capacitor between VREG and AGND

EN

EN is the active high enable input. Pulling EN high enables the converter. The EN polarity is configurable via NVM to make it active low or active high. Active high is the default. EN is 5V compliant.

STAT

STAT is an open drain status pin. It indicates the state of the converter. It goes low to indicate the converter is enabled and has a valid output voltage. It goes HIZ to indicate the converter is disabled or that the converter is enabled but in a fault condition.

Table 2: STAT Pin State

State ST

STAT Output Pin

Output Enabled and Output Valid	LOW
Output Disabled	HIZ
Output Enabled In Fault, Hic- cup, or Light Load states	HIZ

COMP

COMP is the converter compensation pin. Connect the compensation components between COMP and AGND. See the Compensation section for details.

A2D/FB

This is a dual function pin. It is an A2D input for the ACT510x. Connect this pin directly to the voltage to be measured. Note that the ADC full scale input voltage is 2.5V. It is the output voltage feedback pin for the ACT5102.

nIRQ

ACT510x has an interrupt pin to inform the host of any fault conditions. In general, any IC function with a status bit asserts nIRQ pin low if the status changes. The status changes can be masked by setting their corresponding register bits. If nIRQ is asserted low, the fault must be read before the IC deasserts nIRQ. If the fault remains after reading the status bits, nIRQ remains asserted. Refer to the **nIRQ Interrupt Pin (nIRQ)** section for more details.

nIRQ is an open-drain output and should be pulled up to an appropriate supply voltage with a $10k\Omega$ or greater pull-up resistor. nIRQ is 5V compliant

SCL, SDA

SCL and SDA are the I²C clock and data pins to the IC They have standard I²C functionality. They are opendrain outputs and each require a pull-up resistor. The pull-up resistor is typically tied to the system's uP IO pins. The pullup voltage can range from 1.8V to 5.0V. SCL and SDA are open drain and are 5V compliant.

NC

This pin is not used and should be connected directly to AGND

PGND

The PGND pin is the buck-boost converters' power ground. The internal FETs connect directly to the PGND pins. The power supply input and output capacitors must connect to the PGND pins.

AGND

The AGND pin is the IC's analog ground pin. It is a "quiet" ground pin that is separate and isolated from the high power, high current carrying PGND ground plane. Connect the non-power components to AGND. AGND must be Kelvin connected to the PGND pin in a single location.

Exposed PAD

The Exposed pad is connected directly to the PGND pins and must be soldered to the top side ground plane. Place thermal vias under the Exposed PAD to improve the IC's thermal performance.

ACT510xQI

Rev 2.0, 02-Jul-2018

BUCK-BOOST OPERATION

The ACT510x is a monolithic buck-boost converter. Four internal, low resistance, NMOS switches minimize the application circuit size and reduce power losses to maximize efficiency. Internal high side gate drivers, which require only two small external capacitors, further simplify the design process. An advanced switch control algorithm allows the buck-boost converter to maintain constant output voltage regulation with input voltages that are above, equal to, or below the regulated output voltage. The ACT510x automatically transitions between these three operating modes, depending on the input to output voltage ratios.

Power Stage

Figure 5 shows the 4-switch, buck-boost power stage. The converter operates with current mode control. The internal control algorithm reconfigures the IC between a buck, a boost, and a buck-boost topology as needed. This reduces power dissipation and maximizes efficiency because only two FETs switch when in it operates in buck or boost mode. Table 3 shows the switch configuration in each topology. The voltage transition between buck to buck-boost and from buck-boost to boost modes is set by I²C bits XOVER ADJ BUCK and XOVER_ADJ_BOOST. With a fixed output voltage and a decreasing input voltage, the IC switches from buck mode to buck-boost mode when VIN - VOUT < XO-VER_AJD_BUCK, which is typically 1V. It switches from buck-boost to boost mode when VOUT - VIN > XO-VER_ADJ_BOOST, which is typically 2V. These values are set at the factory to optimize efficiency and performance for each CMI.

Q1-Q4 are all internal, N-ch MOSFETs to minimize size and maximize efficiency.

Figure 5: 4-Switch Buck-Boost Power Stage

Table 3	Buck-Boost Switc	h Configuration
---------	------------------	-----------------

	BUCK	BUCK- BOOST	BOOST
Q1	ON	SWITCHING	SWITCHING
Q2	OFF	SWITCHING	SWITCHING
Q3	SWITCHING	SWITCHING	OFF
Q4	SWITCHING	SWITCHING	ON

Figure 6 shows the power stage operating modes. A typical example of how the converter switches between modes can be explained with an example using a car charger cigarette lighter adapter (CLA) with a 12V input voltage and USB-PD3.0 + PPS compatible output voltages. When the CLA is first plugged in, the ACT510x operates in buck mode to generate 5V out (point A). If the downstream device requests a 9V (point B), the ACT510x still operates in buck mode. If the downstream device requests 12V (point C), the ACT510x operates in buck-boost mode. If the downstream device requests 15V or 20V (points D and E), the ACT510x operates in boost mode.

Figure 6: ACT510x Operating Modes

PFM/PWM Operation

At light loads, the ACT510x operates in the PFM (pulse skipping) mode to reduce switching losses. PFM mode can be disabled by the I²C bit DIS_PFM in register 0x10h. Setting this bit to 0 enables PFM mode. Setting this bit to 1 forces PWM mode.

Out-of-Audio Mode

When the IC operates in PFM mode, it reduces the switching frequency. At very light loads, the IC can switch in the audio range. The ACT510x features an Out-of-Audio mode that prevents switching below 31.25kHz. Set the I²C bit AudioFreqLimit = 1 to enable this feature.

GENERAL DESCRIPTION

Startup

When power is first applied, the ACT510x starts up in HIZ mode and all registers are reset to their default values. The internal LDO, VREG, is enabled and the IC can communicate via I²C. The ADC can be used at this time. If the EN pin is pulled high, the IC transitions to the POWER ON mode.

VREG LDO

The ACT510x contains a 100mA internal linear regulator that can be used to power other circuity in the system. VREG is enabled when the IC enters HIZ mode and input voltage stays above 3.9V.

 $I^{2}C$ bit VREG_DIS in register 0x01h = 0. This register bit can be programmed Hi or Low from the factory to match system level requirements.

The VREG output voltage is programmable between 2.0V and 5.1V in 100mV steps via I²C bits VREG[4:0] in register 0x11h.

 $V_{VREG} = 2.0V + 0.1V * VREG[4:0].$

Where VREG[4:0] is the decimal equivalent of the value in this register. For example, if VREG[4:0] = 01101b (13 decimal), the output voltage = 2.0V + 0.1V * 13 = 3.3V.

The VREG input can come from either the VIN pin or the VOUT pin. The ACT510x contains a Smart Diode Selector input that minimizes power dissipation by selecting the lower of these two input sources. The IC powers VREG from the lower of the VIN or VOUT pins. However, if the lower voltage pin cannot provide the headroom needed to regulate VREG, it selects the higher voltage pin.

The Smart Diode Selector can be overridden and manual control can be selected using the I^2C bits VREG_OVERRIDE and VREG_SELECT in register 0x0Bh. When VREG_OVERRIDE = 0, the Smart Diode Selector is active. When VREG_OVERRIDE = 1, the VREG input is determined by VREG_SELECT. When VREG_SELECT = 0, the input is VOUT. When VREG_SELECT = 1, the input is VIN. If VREG LDO is overloaded or not within spec, the buckboost converter shuts down, and I^2C fault bit VREG_OC_UVLO in register 0x05h is set to 1.

Additionally, if VREG is held in current limit for more than 90us, it shuts down for 100ms to prevent damage. It tries to restart after 100ms. It continues this cycle until the current limit condition is removed. VREG also contains UVLO detection, which is set to 88% of the programmed output voltage.

If the VREG output is in current limit for 90usec, or the VREG voltage is below the UVLO threshold, the state machine moves to the RST state and the buck-boost converter stops switching. The buck-boost converter can be programmed to ignore an overvoltage or undervoltage fault with I²C bits DIS_VREG_FLT in register 0x10h. If this bit is set to 1, the IC continues to operate through the fault condition.

VREG requires a high quality, low-ESR, ceramic output capacitor. A 1uF is typically suitable, but this value can be increased without limit. The output capacitor should be a X5R, X7R, or similar dielectric. The effective output capacitance must be greater than 0.7uF to ensure LDO stability.

VREG contains a fixed 250us soft-start to reduce inrush current.

Interrupt Output Pin (nIRQ)

The nIRQ output pin can be used to signal a fault or other system effects. The conditions below can assert the nIRQ pin. All fault conditions can be individually masked using the I²C nIRQ Control Registers 0x1Eh, 0x1Fh, and 0x20h. To clear the interrupt and de-assert the nIRQ pin, write a 1 into I²C bit nIRQ_CLEAR in register 0x05h. nIRQ_CLEAR is a self-clearing register bit. nIRQ_CLEAR always returns a 0 when read, even after it is set to 1.

General nIRQ Fault Conditions

- 1. Watchdog Expired If the watchdog timer expires at any time, it asserts nIRQ. This is a level sensitive function. The watchdog timer must be reset or disabled and a 1 must be written into nIRQ_CLEAR to de-asserted nIRQ.
- 2. VREG LDO Overcurrent or Under-voltage Lockout - Any time the VREG LDO is in overcurrent or under-voltage lockout, nIRQ is asserted. This is a level sensitive function. VREG must be in regulation AND a 1 must be written into nIRQ_CLEAR to deassert nIRQ. If the VREG LDO is in the 100ms shutdown wait period, it will not clear the nIRQ output. This fault is detected in HIZ and POWER ON Modes.

- 3. Over Temperature Shut Down Any time the die temperature exceeds the T_{SHUT} (160°C) threshold, nIRQ is asserted. This is a level sensitive function. The die temperature must be below the T_{SHUT_HYST} AND a 1 must be written into nIRQ_CLEAR to deassert nIRQ. Die TSD is active in all modes.
- 4. FET Overcurrent Fault If the IC is disabled from switching because of a FET overcurrent fault, nIRQ is asserted. This is a level sensitive function. This fault is latched, so the latch must cleared by manually going into HIZ Mode AND a 1 must be written into nIRQ_CLEAR to deassert nIRQ.
- 5. ADC Data Ready If the ADC is enabled, and a conversion is completed, nIRQ is asserted. This is an edge triggered event. A 1 must be written into nIRQ_CLEAR to deassert nIRQ. This is active in all modes when the ADC is enabled.
- 6. HIZ Enter The ACT510x asserts nIRQ when it enters HIZ mode. This is an edge triggered event. 1 must be written into nIRQ_CLEAR to deassert nIRQ. The IC asserts nIRQ when entering HIZ mode to signal a fault or other condition that might have caused the IC to jump out POWER ON mode un-expectantly.
- 7. I²C Fault If an I²C command takes more than 100ms between the start bit and the stop bit, nIRQ is asserted. This is an edge triggered event. The I²C state machine clears out any partial data, resets, and waits for another start bit for another I²C command. The state machine clears and restarts the 100ms timer when it receives the next start bit.
- VIN Above V_{VIN_OV} (23.5V) If VIN is above V_{VIN_OV} (23.5V), nIRQ is asserted. This is a level triggered event. 1 must be written into nIRQ_CLEAR to deassert nIRQ. This fault is detected in both the HIZ state and the POWER ON state.
- 9. VIN UV Fault If the input voltage at the VINS pin is below the VIN_UV_OFFSET threshold, nIRQ is asserted. This is a level triggered event. VIN must be in the valid range AND 1 must be written into nIRQ_CLEAR to deassert nIRQ.
- **10. Light Load Disable State** Any time the IC enters the LL_DIS state, nIRQ is asserted. This is an edge triggered event. A 1 must be written into nIRQ_CLEAR to deassert nIRQ. The IC

does not need to exit the LL_DIS state to deassert nIRQ.

11. Hiccup Mode / Vout Fault State - Any time the IC enters the HICCUP state, nIRQ is asserted. This is an edge triggered event. A 1 must be written into nIRQ_CLEAR to deassert nIRQ.

Die Thermal Regulation

The ACT510x monitors the internal junction temperature, T_J, to avoid overheating When T_J exceeds the maximum thermal regulation limit set by l^2C bits TREG [1:0], the IC reduces the output current to lower the die temperature. It effectively reduces the output current limit value. If the load current is not reduced, the output voltage will drop and generate an undervoltage fault. The maximum operating junction temperature is programmable to 80°C, 100°C, or 120°C to allow the user to optimize their system thermal performance. This function can be disabled by setting TREG[1:0] = 00.

HIZ Mode

The ACT510x HIZ mode is a low power state where the buck-boost converter is disabled. The LDO can be enabled or disabled by I²C bit VREG_EN in register 0x01h. The IC always starts up in HIZ mode before going to POWER ON mode. If the IC is not enabled, it stays in the HIZ state indefinitely.

The IC enters HIZ mode from POWER ON mode when the converter is disabled or if a 1 is written into I^2C bit HIZ in register 0x00h.

Thermal Shutdown

The ACT510x has thermal shutdown protection that disables the buck-boost converter when IC junction temperature exceeds T_{SHUT} (160°C). The fault register TSD is set to 1 and latched when a TSD fault is detected. The converter restarts automatically after the junction temperature falls below $T_{SHUT} - T_{SHUT_HYST}$, or approximately 160°C - 30°C = 130°C. After the system restarts, the TSD bit is latched until it is read by I²C.

FET Over Current Protection

The ACT510x closely monitors the HSFETs and LSFETs currents for safe operation. If any FET exceeds the maximum cycle-by-cycle current limit threshold set by I²C bit FET_ILIMIT in register 0x01h, the FET is immediately turned off for that switching cycle. Three thresholds of 5.7A, 8.5A, and 10A are available. If a FET detects the current limit for eight continuous cycles, the buck-boost converter is latched off.

After FET Overcurrent protection is triggered, there are two ways to clear the fault to let the converter resume normal operation. First is to set I^2C bit

 $DIS_OCP_SHUTDOWN = 1$ in register 0x01h. It can also be cleared by putting the IC into HIZ mode. Simply toggle the EN pin low and back high.

Overcurrent protection can be disabled by setting the $I^{2}C$ bit DIS_OCP_SHUTDOWN = 1.

Watchdog Timer

The ACT510x contains a watchdog timer to detect system level communication failures. The watchdog timer requires the host to periodically write a 1 into I²C bit WATCHDOG_RESET in register 0x00h. If the host latches up or is unable to perform the write command before the watchdog timer times out, the IC enters FAULT mode and disables the switching converter. The timer resets after each write to WATCHDOG_RESET. WATCHDOG_RESET is an auto-clearing register. It automatically resets back to 0 after it is set to 1.

The timeout value is controlled by I^2C bit WATCH-DOG[1:0] in register 0x01h. It can be set between 80s and 320s. If the IC is used in stand-alone operation, the watchdog timer can be disabled by setting WATCH-DOG[1:0] = 00.

WATCHDOG is always disabled in HIZ Mode and cannot be enabled in HIZ. In addition, the timer is reset to 0 when entering HIZ mode and automatically starts counting when exiting HIZ mode.

CONVERTER OPERATION

Enable / Disable

The ACT510x is enabled and disabled from HIZ mode. When enabled, the converter operates in the POWER ON mode. When disabled, the IC operates in the HIZ mode. The EN pin is the typical method to enable and disable the IC. If I²C on/off control is required, the system microprocessor can enable and disable the IC via the EN and EN_OVERRIDE bits in register 0x0Eh. Set EN_OVERRIDE = 1 to override the EN pin input. Then set EN = 1 to enable the converter and set EN = 0 to disable the converter. Figure 7 shows both the hardware and I²C conditions required to enter turn the converter on.

Note that in all cases, the I^2C bit HIZ in register 0x00h must be = 0 to enter enable the converter. When HIZ = 1, the IC is forced into HIZ mode.

ACT510xQI

Rev 2.0, 02-Jul-2018

Figure 7: Conditions to Enter the POWER ON State from the HIZ State

After the IC is enabled and in the POWER ON mode, the conditions to exit POWER ON mode (disable the converter) change. When the converter is disabled, the IC state machine must go to HIZ mode. There are several ways to transition from POWER ON mode to HIZ mode.

- 1. Set the I^2C HIZ bit = 1
- 2. Set the I^2C EN bit = 0
- 3. Pull the EN pin LOW and set the I^2C EN_OVERRIDE bit = 0.
- 4. The IC also exits POWER ON mode if there is an overvoltage condition for longer than 100ms.

Figure 8: Conditions to Enter HIZ State from POWER ON State

Output Voltage Setting

The output voltage is programmable between 2.96V and 23.42V in 20mV steps via by I²C bits VOUT[9:0] in registers 0x13h and 0x14h.

 $V_{OUT} = 2.96V + 20mV * VOUT[9:0]$

Where VOUT[9:0] is the decimal equivalent of the value in this register. For example, if VOUT[9:0] = 0111000100b (452 decimal), the output voltage = 2.96V+ 0.02V * 452 = 12.00V.

When changing from one output voltage to another, the slew rate is programmable between 1V/ms and 0.1V/ms by I²C bits OUTPUT_SLEW[1:0] in register 0x10h. This allows the output to conform to QC2.0/QC3.0/USB PD/USB PD + PPS functions for higher output voltages.

The input voltage must always stay above the minimum allowable input voltage. This voltage is defined by registers VIN_UV_OFFSET in register 0x1Ah and VIN_UV

in register 0x0Fh. The minimum allowable input voltage is the VIN_UV_OFFSET voltage minus the VIN_UV voltage. If the input voltage drops below this value, the IC turns off the output and goes to the RST state.

Active Discharge

When changing the output voltage to a higher level, the switcher ramps the output voltage by the programmed slew rate. When the output voltage is programmed from a higher to a lower voltage, the voltage drops at a rate determined by the output capacitance and the load current. To minimize the fall time in no-load conditions, the ACT510x can provide a 70mA sink when the output is transitioning to a lower output voltage. Enable this feature by writing 1 into I²C bit PULLDOWN_RAMP. The 70mA load turns on until the output voltage goes into regulation.

Enable Delay

Once the IC has the valid conditions for startup, the Enable Delay timer is enabled. The timer options allow a 0ms to 1s delay. The startup delay is controlled by the I²C bits EN_DLY[1:0]

Soft Start

After the Enable Delay has completed, the IC starts the output using a soft start function programmable by the I²C bits SOFT_START in register 0x0Eh. The softstart time is independent of the output voltage setting.

Setting Maximum Output Current

The maximum output current, I_{OUT_MAX} , is set by a combination of a current sense resistor, an OLIM resistor, and a scaling factor defined by I²C bits CC[6:0] in register 0x17h. The maximum allowable output current is 5A. Figure 9 shows the hardware circuitry that sets IoLIM. IoLIM is the maximum output current set by hardware. The actual output current limit, IoUT, can be scaled from 1% to 100% of IoLIM in 1% steps. The following equation defines the final maximum output current.

$$I_{OUT_MAX} = I_{OLIM} * CC[6:0]$$

Where I_{OLIM} is the hardware programmed output current limit and CC[6:0] is the scaling factor. CC[6:0] is the decimal equivalent value in this register. For example, if I_{OLIM} , is programmed to 4A and CC[6:0] = 1001011b (75% decimal), the final maximum output current = 4A * 0.75 = 3A.

Note that CC[6:0] is a 7 bit register and can be programmed between 0x00h and 0x7Fh (0% and 127%). If a value of 0x00h is written to the register, the register retains 0x00h, but the IC sets the maximum output current to 1%. If a value above 0x64h (100%) is written to the register, the IC retains the written value, but sets the maximum output current to 100%.

Figure 9: Output Current Limit Circuitry

The current sense resistor and OLIM resistor set the $I_{\mbox{\scriptsize OLIM}}$ current.

$$I_{OLIM} = \frac{1000 \frac{V^2}{A}}{R_{OLIM} * R_{CS_OUT}}$$

Where R_{OLIM} is the resistor from the OLIM pin to AGND in ohms and R_{CS_OUT} is the current sense resistor value in ohms. The term 1000V^2/A is a constant with the units volts^2/Ampere.

The current sense resistor, R_{CS_OUT}, value should be chosen to give a maximum current sense voltage between 20mV and 50mV. 50mV is the absolute maximum allowable voltage. Using lower voltages reduces the resistor's power dissipation, but decreases accuracy. At lower output currents, additional RC compensation must be placed in parallel with R_{OLIM}. Table 4 gives recommended resistor values for different values of I_{OLIM} current. Contact sales@active-semi.com for compensation information if other configurations are required.

ACT510xQI Rev 2.0, 02-Jul-2018

Table 4: Output Current Component Selection

	Switching Frequency = 125kHz							
І _{оцім} (А)	Rcs (mΩ)	R _{oLIM} (kΩ)	Rcs_comp (kΩ)	Ccs_сомр (nF)				
5	10	20	NA	NA				
4	10	25	NA	NA				
3	10	33	10	330				
2	10	50	10	330				
1.5	20	33	10	330				
1	20	50	10	330				
Switch	ing Freque	ency = 250)kHz, 500k⊦	Hz, 1MHz				
IOLIM	Rcs	Rolim	Rcs_comp	Ccs_comp				
(A)	(mΩ)	(kΩ)	(kΩ)	(nF)				
5	10	20	NA	NA				
4	10	25	NA	NA				
3	10	33	NA	NA				
2	10	50	15	56				
1.5	20	33	10	100				
1	20	50	10	100				

To eliminate noise in the current measurement circuit, the current sense voltage must be filtered. The recommended values are $R_{OSRP} = R_{OSRN} = 30.1$ ohm and $C_{OSR} = 100$ nF. These values can be scaled up or down, but R_{OSRP} must be between 20ohm and 50ohm, and the resulting filter cutoff frequency must be between 20kHz and 30kHz.

The actual output current can be measured with the OLIM pin. The OLIM voltage is directly proportional to the output current. The following equation calculates the actual output current.

$$I_{OUT} = I_{OLIM} \frac{V_{OLIM}}{2V}$$

Where I_{OLIM} is the hardware programmed 100% output current limit in amps and V_{OLIM} is the voltage measured at the OLIM pin.

Constant Output Current Regulation

When the output current tries to increase above I_{OUT_MAX} , the converter transitions from constant output voltage regulation to constant output current regulation. The output voltage will drop to maintain a constant output current.

I²C bit OUTPUT_CC in register 0x20h indicates if the converter is operating in constant voltage or current regulation. When this bit = 0, the IC is regulating in constant voltage mode. When this bit = 1, the IC is regulating in constant current mode. If the output drops below 3V, the

IC assumes an output fault has occurred and disables the output for 3s. This is the HICCUP state. After 3s, the state machine goes to RST and restarts. If a short or high current fault is present after the restart, the IC cycles back to HICCUP and RST. This cycle continues indefinitely until the converter is disabled or the fault is removed.

Input Current Regulation

At all times during operation, the IC monitors the current across the input current sense resistor (ISRP and ISRN) to provide input current protection. This provides compatibility with USB input current limitations and avoids over loading weak input voltage sources.

Figure 10 shows that the input current limiting circuitry is identical to the output current setting circuitry. When the input current reaches current limit, the ACT510x control circuitry starts regulating the maximum input current. This can cause the output voltage to drop if the load resistance continues to decrease. The maximum allowable input current is 5A. The actual input current limit, I_{IN_LIM} can be scaled to 150% or 200% of I_{ILIM} . The following equation defines the final input current limit.

$$I_{IN \ LIM} = I_{ILIM} * INPUT_ILIM[1:0]$$

Where I_{ILIM} is the hardware programmed current limit and INPUT_ILIM[1:0] is the scaling factor. INPUT_ILIM can be 150% or 200% of I_{ILIM} . When INPUT_ILIM is programmed to 00, input current limiting is disabled.

Figure 10: Input Current Circuitry

The current sense resistor and ILIM resistor set the $\mathsf{I}_{\mathsf{ILIM}}$ current.

$$I_{ILIM} = \frac{1000 \frac{V^2}{A}}{R_{ILIM} * R_{CS_IN}}$$

Where R_{ILIM} is the resistor from the ILIM pin to AGND and R_{CS_IN} is the current sense resistor value in ohms. The term 1000V^2/A is a constant with the units volts^2/Ampere.

The current sense resistor, $R_{CS_{-}N}$, has the same limitations as $R_{CS_{-}OUT}$. At lower maximum input currents, additional RC compensation must be placed in parallel with R_{ILIM} . Table 4 is also valid for the input current limit circuitry.

The input current limit circuitry, $R_{ISRP} = R_{ISRN} = 30.1$ ohm and C_{ISR} also have the same input filter requirements as the output current circuitry.

The actual input current can also be externally measured with the ILIM pin. The ILIM voltage is directly proportional to the input current. The following equation calculates the actual input current.

$$I_{IN} = I_{ILIM} \frac{V_{ILIM}}{2V}$$

Table 5: I²C Input Current Limit Setting

INPUT_ILIM[1:0] Register Setting	Input Current Scaling Factor
00	Disabled
01	150% of IILIM
10	200% of IILIM
11	150% of I _{ILIM}

VOUT Over-Voltage Protection

To detect a possible plug in of a higher voltage supply on VOUT, the IC detects an overvoltage condition on VOUT and immediately stops switching. The output overvoltage threshold is fixed at 108% of the programmed output voltage. If the OV condition lasts for more than 100ms, the IC exits POWER ON Mode and enters HIZ Mode.

Cord Compensation

ACT510x provides cord compensation at the output. This feature compensates for system level voltage drops due to PCB, connector, and wiring resistances. These resistances reduce the output voltage at the load.

The ACT510x features Cord Compensation which allows the user to compensate for these system level resistances by increasing the voltage regulation set point proportional to the output current. The output voltage increases linearly with increasing load current. The I²C CORD_COMP[1:0] bits in register 0x0F set the Cord Comp value. The Cord Compensation value is normalized to R_{CS_OUT} = 10m Ω and a 2.4A load current. It scales linearly with changes in current sense resistance or load current.

$$V_{Cord_Comp} = V_{CORD_COMP} * \frac{I_{OUT}}{2.4A} * \frac{R_{CS_OUT}}{0.01\Omega}$$

Where V_{CORD_COMP} is the I²C Cord Compensation value of 100mV, 200mV, or 300mV per Table 6, I_{OUT} is the actual output current in Amperes, and R_{CS_OUT} is the current sense value in Ohms.

CORD_COMP[1:0] Setting	Cord Comp Value	Equivalent System Resistance
00	0 (Disabled)	0mΩ
01	100mV	41.7mΩ
10	200mV	83.3mΩ
11	300mV	125.0mΩ

Light Load Disable

The ACT510x includes a Light Load Disable function. This function maximizes battery life when the IC is powered from a battery. It turns off the output and puts the IC into HIZ mode when the load drops very low. This condition typically happens when the ACT510x output supplies power to a charging portable device. When the portable device is fully charged, the output current drops to 0A. Light Load Disable minimizes battery current (the input to the ACT510x) consumption and extends battery life when the output is not needed.

Light Load Disable is available when the IC is operating in buck mode, VIN is higher than VOUT by a minimum of 0.5V, and the Output Voltage is less than 6V. Enable Light Load Disable by setting l^2C bit OFF_LOAD_EN in register 0x0Eh = 1. Setting this bit = 0 disables the feature. The minimum current is set to 5mA typical. The current must be low for longer than the time set in l^2C bit OFF_DLY[1:0]. This time can programmed to 10s, 20s, or 30s.

Once the state machine has detected a light load condition, it enters the LL_DIS state. The IC must exit POWER ON mode and re-enter POWER ON mode to restart the converter. This is typically accomplished by toggling the EN pin, but can also be accomplished via I²C.

Output Voltage DVS (ACT5101 only)

The ACT5101 is ideally suited for many industry standard charging protocols such as USB PD3.0, QC2.0,

QC3.0, etc. This includes USB PD3.0 + PPD. To achieve this compatibility, the output voltage can be dynamically changed. VOUT in can be dynamically changed by writing to the VOUT[10:0] register. The OUTPUT SLEW[1:0] register controls the slew rate between settings when the VOUT[10:0] is changed. When the voltage is increased, the internal ramp and regulator can compensate and increase the voltage. However, when the voltage is decreased, and there is no external load on the output, the output voltage may not decrease fast enough to the meet the requirements. To speed up the transition time from higher to lower output voltages, set PULLDOWN RAMP=1. This turns on an internal 70mA load when the output voltage is stepped to a lower voltage using the VOUT[10:0] register. The 70mA load turns off when the voltage goes into regulation.

The ACT5101 also has a pulldown current that goes active during any output overvoltage condition. Enable this feature by setting the I^2C bit PULLDOWN_OV = 1.

POWER ON State Machine Status

The I²C bits STATUS[2:0] in register 0x20h provide the user with real time status of the POWER ON state machine. These bits are always 000 when the IC is not in POWER ON mode.

Table 7: POWER ON State Machine Status

STATUS[2:0]	State Machine State
000	RST
001	SS
010	REG
011	HICCUP
100	LL_DIS
101-111	Not Valid

Frequency

The ACT510x can operate at 125kHz, 250kHz, 500kHz, or 1MHz. The switching frequency is set by the factory and is not user programmable. The default frequency is 500kHz to give the best tradeoff between size and efficiency, but can be programmed to the other options with a custom CMI. Note that the external component value requirements change with different switching frequencies. Contact sales@active-semi.com for additional information about other configurations.

Input Capacitor Selection

The input is connected directly to the VIN pins. The capacitor should be dedicated high quality, low-ESR, ceramic capacitor that is optimally placed to minimize the power routing. 22uF to 47uF capacitors are typically acceptable, but the final value is application dependent. Choose the input capacitor value to keep the input voltage ripple less than ~50mV. The C_{IN} input capacitor can be increased without limit.

$$C_{IN} = I_{OUT} * \frac{\frac{V_{OUT}}{V_{IN}} * \left(1 - \frac{V_{OUT}}{V_{IN}}\right)}{F_{SW} * V_{ripple}} \text{ Equation 6}$$

Where C_{IN} is the input capacitance in uF, I_{OUT} is the output current in Amperes, V_{OUT} is the output voltage in volts, V_{IN} is the input voltage in volts, F_{SW} is the switching frequency in Hz, and V_{ripple} is the maximum allowable input voltage ripple in volts.

If the input source is a battery, no additional capacitance is needed. If the input source is a power supply rail, adding an additional 100uF bulk electrolytic capacitor is recommended.

The ceramic capacitor PCB placement is critical. Refer to the Layout Guidelines selection and to the EVK layout for details.

Be sure to consider the input capacitor's DC bias effects. A capacitor's actual capacitance is strongly affected by its DC bias characteristics. The input capacitor is typically an X5R, X7R, or similar dielectric. Use of Y5U, Z5U, or similar dielectrics is not recommended. Input capacitor placement is critical for proper operation. The input capacitor must be placed as close to the IC as possible. The traces from VBAT to the capacitor and from the capacitor to PGND should as short and wide as possible.

Output Capacitor Selection

The output capacitors are connected directly to VOUT. The output capacitance must be a combination of ceramic and bulk capacitance.

Table 8 gives the required capacitor values for stability. Note that the table has two output capacitor options: Standard Capacitance and Minimum Capacitance. The Standard Capacitance design requires more overall capacitance, but places no restriction on the bulk capacitor ESR. The Minimum Capacitance design results in an overall smaller design, but places restrictions on the ESR. The capacitor values can be increased without limit.

Note that the Ceramic and Bulk capacitor values are recommended "Capacitor Values". When choosing the ceramic capacitors, use X5R or X7R dielectrics and be sure to consider the capacitor's tolerance and DC bias

ACT510xQI

Rev 2.0, 02-Jul-2018

effects. Use of Y5U, Z5U, or similar dielectrics is not recommended. The 22uF capacitor must have at least 9uF of effective capacitance for stability. The 47uF capacitor must have 19uF of capacitance. The bulk capacitors do not have DC bias effects.

Output ceramic capacitor placement is critical for proper operation. The output capacitor must be placed as close to the IC as possible. The traces from VOUT to the capacitor and from the capacitor to PGND should as short and wide as possible. The bulk capacitor should be placed to the right of the current sense resistor. Refer to the Layout Guidelines selection and to the EVK layout for additional details.

Inductor Selection

The buck-boost regulator utilizes current-mode control and a proprietary compensation scheme to simultaneously compensate the buck, buck-boost, and boost modes of operation. The ACT510x compensation requires a fixed inductor value that is matched to the switching frequency. Table 8 gives the required inductor value. Choose an inductor with a low DC-resistance, and avoid inductor saturation by choosing inductors with DC ratings that exceed the maximum output current by at least 30%. The inductor value must be within +30% to -30% across all operating conditions.

Compensation

The ACT510x operates in three switching modes: buck, buck-boost, and boost mode depending on the input and output voltage ratios. The IC contains a proprietary compensation scheme to simultaneously compensate all three switching modes. The compensation values are directly tied to the switching frequency and required inductor value. Table 8 provides the required compensation values when the IC can operate in all three switching modes Table 9 provides optimized compensation values when the IC will only be operating in Buck mode. Figure 11 shows the compensation components

Be sure to consider the input capacitor's DC bias effects. A capacitor's actual capacitance is strongly affected by its DC bias characteristics. The input capacitor is typically an X5R, X7R, or similar dielectric. Use of Y5U, Z5U, or similar dielectrics is not recommended.

Input capacitor placement is critical for proper operation. The input ceramic capacitor must be placed as close to the IC as possible. The traces from VIN to the capacitor and from the capacitor to PGND should as short and wide as possible. Refer to the Layout Guidelines selection and to the EVK layout for details.

The bulk capacitor should be placed on the left side of the current sense resistor.

Figure 11: Compensation

Table 8: Inductor and Compensation – Buck, Buck-boost, and Boost Modes

					Standa	rd Capacitar	nce Design	Minimu	m Capacitance	Design
Switching Frequency	Inductor Min / Typ / Max (uH)	C _{ICOMP1} (nF)	C _{ICOMP2} (nF)	R _{icomp} (kΩ)	Ceramic Capacitor (uF)	Bulk Capacitor (uF)	Bulk Capacitor ESR (mΩ)	Ceramic Capacitor (uF)	Bulk Capacitor (uF)	Bulk Capacitor ESR (mΩ)
125Khz	29 / 42 / 55	82	8.2	20.0	47	1000	N/A	22	470	30 - 100
250Khz	15 / 22 / 29	39	3.9	20.0	47	470	N/A	22	220	50 - 200
500KHz	7 / 10 / 13	22	2.2	20.0	47	220	N/A	22	100	50 - 200
1MHZ	4 / 5.6 / 7.28	10	1.0	20.0	47	100	N/A	22	100	50 - 200

Table 9: Inductor and Compensation – Buck Mode Only

					Standa	rd Capacitar	nce Design	Minimu	m Capacitance	Design
Switching Frequency	Inductor Min / Typ / Max (uH)	С _{ісомр1} (nF)	С _{ісомр2} (nF)	R _{icomp} (kΩ)	Ceramic Capacitor (uF)	Bulk Capacitor (uF)	Bulk Capacitor ESR (mΩ)	Ceramic Capacitor (uF)	Bulk Capacitor (uF)	Bulk Capacitor ESR (mΩ)
125Khz	25.2 / 42 / 50.4	8.2	0.82	100	47	1000	N/A	22	470	30 - 100
250Khz	13.2/22/26.4	3.9	0.39	100	47	470	N/A	22	220	50 - 200
500KHz	6.0/10/12.0	2.2	0.22	100	47	220	N/A	22	100	50 - 200
1MHZ	3.36 / 5.6 / 6.72	1	0.1	100	47	100	N/A	22	100	50 - 200

ADC Monitoring

General Description

The ACT510x contains a built-in analog to digital converter, ADC, which can be used to monitor six system level parameters. These include input voltage, output voltage, input current, output current, die temperature, and the external ADC input pin. It uses a single 12 bit delta-sigma ADC that uses an analog input multiplexer to select one of seven channels for the A/D conversion. The resulting digital results are stored in seven digital registers. A seven to one multiplexer connects one of the ADC output registers to the user accessible register map.

ADC Configuration

The ACT510x ADC is configured through the I²C interface. It is enabled and disabled by the I²C bit EN_ADC in register 0x09h. The ADC has two conversion modes, manual single-shot conversion and automatic polling conversion.

Single-Shot Conversion

Configure the IC for single-shot conversion mode by setting the following I^2C bits in register 0x09h

ADC_ONE_SHOT = 1.

 $ADC_CH_SCAN = 0$

DIS_ADCBUF = 0

In single shot mode, the user defines the input channel to be converted and then manually initiates the ADC conversion. I²C bits ADC_CH_CONV [2:0] in register 0x0Ah select the input channel to be converted. ADC CH READ [2:0] selects the ADC channel to be read. These should be set to the same channel. The user initiates an ADC read by writing a 1 into EN ADC in register 0x09h. When ADC conversion is complete, the ADC_DATA_READY bit in register 0x0Ah is set to 1, nIRQ is asserted low, and EN_ADC bit automatically changes back to 0. The uP can then read the status bits to find that the ADC conversion is complete. The ADC data are stored in ADC OUT [13:6] in register 0x07h and ADC_OUT[5:2] in register 0x08h. nIRQ stays asserted low and the ADC_READY_BIT stays equal to 1 until the ADC data is read. Reading the ADC data automatically deasserts nIRQ. To initiate another ADC conversion for the same channel, set EN ADC=1. To initiate an ADC conversion for another channel, change ADC CH CONV and ADC CH READ to the appropriate channel and then set EN_ADC=1.

ACT510xQI

Rev 2.0, 02-Jul-2018

Figure 12: ADC Block Diagram

Automatic Polling Conversion

Configure the IC for automatic polling conversion mode by setting the following I²C bits in register 0x09h

ADC_ONE_SHOT = 0 ADC_CH_SCAN = 1 DIS_ADCBUF = 0

Start the automatic polling by changing EN_ADC to 1. When in automatic polling mode, the ADC continuously changes the MUX inputs to read all input channels. The ADC continually overwrites the data in the output register. After all channels have been converted, the ADC_DATA_READY bit is set to 1. Note that nIRQ is not asserted low in Automatic Polling mode. Ensure that ADC data is valid and ready by reading the ADC_DATA_READY before reading ADC data. After the ADC_DATA_READY bit is set to 1, the user defines the channel to be read with the ADC_CH_READ [2:0] bits in register 0x0Ah. Change ADC_CH_READ [2:0] to read additional channels.

Table 10: ADC Channels

Channel	Channel Description	ADC_CH_CONV[2:0]	ADC_CH_READ[2:0]	Value
CH0	Output Current (OLIM)	000	000	Iouт = (DOUT-2048)/(65000*Rcs_out)
CH1	Output Voltage (VOUT)	001	001	V _{OUT} = 0.02035*(DOUT-2048)
CH2	Input Voltage (VIN)	010	010	V _{IN} = 0.02035*(DOUT-2048)
СНЗ	Input Current (ILIM)	011	011	I _{IN} = (DOUT-2048)/(65000*R _{CS_IN})
CH4	n/a	100	100	n/a
CH5	Die Temperature	101	101	T _J = 0.2707*DOUT - 809.49
CH6	ADC Input	110	110	V _{ADC} = 0.001527*(DOUT-2048)

PC board layout guidance

Proper parts placement and PCB layout are critical to the operation of switching power supplies. Follow the following layout guidelines when designing the ACT510x PCB. Refer to the Active-Semi ACT510x Evaluation Kit for layout guidance.

- Place the ceramic input and output capacitors as close as possible to the IC. Connect the input capacitors directly between VIN and PGND pins on the top layer. Connect the output capacitors directly between VOUT and PGND pins on the top layer. Use 1206 sized capacitors to allow for proper switch pin routing. Note that the input and output capacitor placement is critical. Active-Semi strongly recommends following the EVK input capacitor and output capacitor placement and routing. The bulk input and output capacitor placement is not as critical. Bulk capacitors should be placed on the opposite side of the sense resistors from the ceramic capacitors.
- Minimize the switch node trace lengths between the SW1 and SW2 pins and the inductor. Optimal switch node routing is to run the traces between the input and output capacitors' pads. Using 1206 or larger sized capacitors is recommended. Avoid routing sensitive analog signals near these high frequency, high dV/dt traces. Active-Semi strongly recommends following the EVK inductor placement and PCB routing.
- The VINS pin should be Kelvin connected to the input capacitors. Keep this trace away from the SW1 and SW2 traces to prevent noise injection. The IC uses this pin to measure the input voltage.
- 4. The PGND and AGND ground pins must be electrically connected together. The AGND ground plane should be isolated from the rest of the PCB power ground. These two ground

pins should be connected together right at the IC.

- 5. Connect the exposed pad directly to the top layer PGND pins and ground plane. Connect the top layer ground plane to both internal ground planes and the PCB backside ground plane with thermal vias. Provide ground plane routing on multiple layers to allow the IC's heat to flow into the PCB and then spread radially from the IC. Avoid cutting the ground planes or adding vias that restrict the radial flow of heat.
- 6. Make Kelvin connections to the ILIM and OLIM current sense resistors. Route the current sense signals close to each other and keep them away from noisy switching signals.
- 7. The current sense filter capacitors and inductors should be placed directly by their respective ISRP, ISRN, OSRP, and OSRN pins.
- 8. Remember that all open drain outputs need pull-up resistors.
- 9. The following components should be connected to the AGND plane.

ILIM resistor

OLIM resistor

COMP resistor and capacitors

VREG bypass capacitor

INTBP bypass capacitor

10. The ACT510x footprint must connect the VOUT pins 23, 24, and 35 on the top layer. It must connect the SW1 pins 21, 22, and 34 on the top layer. It must connect the SW2 pins 18, 19, and 33 on the top layer.

Typical Operating Characteristics

CMI 102

Shutdown - EN

V_{OUT}

SW2

ΕN

IOUT

TOC-003

2V / div

5V / div

5V / div

2A / div

200us / div

ACT510xQI Rev 2.0, 02-Jul-2018

CMI OPTIONS

This section provides the basic default configuration settings for each available ACT510x CMI option.

CMI 102: ACT5101QI102

CMI 102 has default settings that are appropriate for most typical applications. It operates with a 500kHz switching frequency to provide an optimal tradeoff between overall size and efficiency. The table below shows the default register settings.

Function	ACT5101QI102 Default Register Settings	Register
	Converter	
Default Output Voltage	5.1V	VOUT
Dutput Constant Current Control	Enabled	DIS_CC
Dutput Constant Current Limit Scaling Factor (relative to IoLIM)	. 100%	сс
nput Constant Current Limit Scaling Factor (rela-ive to $I_{I \sqcup IM}$)	200%	INPUT_ILIM
Softstart Time	5ms	SOFT_START
Switching Frequency	500kHz	FREQ_SEL
EN Pin Polarity	Active High	EN_POLARITY
Start up Delay	Oms	EN_DLY
Cord Compensation	200mV	CORD_COMP
/IN_UV_OFFSET register setting	5.0V	VIN_UV_OFFSET
/IN_UV register setting	1.4V	VIN_UV
/IN UV Voltage	3.6V	VIN_UV and VIN_UV_OFFSET
Dutput Slew Rate	0.5V/ms	OUTPUT_SLEW
PFM Mode	Enabled	DIS_PFM
ight Load Turn Off	Disabled	OFF_LOAD_EN
ight Load Turn Off Delay	30s	OFF_DLY
DCP Shutdown (8 FET OC cycles)	Enabled	DIS_OCP_SHUTDOWN
ET cycle by cycle current limit	10A	FET_ILIMIT & ILIM_LOW
STAT Pin Functionality	Enabled	EN_STAT
	ADC	
ADC Enabled	Disabled	EN_ADC
(DEC Enchlad	VREG LDO	
/REG Enabled	Enabled	VREG_EN
/REG Output Voltage	5V	VREG
/REG Input Control	Auto	VREG_OVERRIDE
/REG Input Voltage	VOUT	VREG_SELECT
/REG Fault Disables VOUT	Yes Miscellaneous	DIS_VREG_FLT
Vatchdog Timer	Disabled	WATCHDOG
Die Regulation Temperature	120 deg C	TREG
7-bit I2C Slave Address	0x24h	I2CADD

CMI 102: ACT5102QI102

CMI 102 has default settings that are appropriate for most typical applications. It operates with a 500kHz switching frequency to provide an optimal tradeoff between overall size and efficiency. The table below shows the default register settings.

Default Output Voltage5.1VVOUTOutput Constant Current Limit Scaling Factor (relative to louw)InPUT_utIMCCInput Constant Current Limit Scaling Factor (relative to louw)200%InPUT_utIMSoftstart Time5msSOFT_STARTSwitching Frequency500kHzFREQ_SELEN Pin PolarityActive HighEN_POLARITYStart up Delay0msEN_DLYCord Compensation200mVCORD_COMPVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting5.0VVIN_UV_OFFSETVIN UV Voltage3.6VVIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCF_SHUTDOWNFET cycle by cycle current limit10AFET_LIMIT & ILIM_LOWFET cycle by cycle current limit10AVEE_CINVREG EnabledEnabledVREG_ENVREG EnabledSVVREG_ENVREG EnabledSVVREG_ENVREG EnabledSVVREG_OVERRIDEVREG EnabledVREG_INUVREG_OVERRIDEVREG EnabledVREG_INUVREG_OVERRIDEVREG EnabledVREG_INUVREG_OVERRIDEVREG EnabledVREG_INUVREG_INUVREG EnabledVREG_INUVREG_INUVREG EnabledVREG_INUVREG_INUVREG Enabled <th>Function</th> <th>ACT5102QI102 Default Register Settings</th> <th>Register</th>	Function	ACT5102QI102 Default Register Settings	Register	
Output Constant Current Control Enabled DIS_CC Output Constant Current Limit Scaling Factor (rel- ative to locuu) 100% CC Input Constant Current Limit Scaling Factor (rela- tive to locuu) 200% INPUT_ILIM Softsart Time 5ms SOFT_START Switching Frequency 500kHz FREQ_SEL EN Pin Polarity Active High EN_DLY Cord Compensation 200mV CORD_COMP VIN_UV_OFFSET register setting 5.0V VIN_UV_OFFSET VIN_UV register setting 1.4V VIN_UV VIN_UV register setting 0.5V/ms OUTPUT_SLEW PFM Mode Enabled DIS_PFM Light Load Tum Off Disabled OFF_LOAD_EN Light Load Tum Off Delay 30s OFF_DLY OCP Shutdown (8 FET OC cycles) Enabled DIS_OCP_SHUTDOWN FET cycle by cycle current limit 10A FET_ILIMIT & ILIM_LOW STAT Pin Functionality Enabled DIS_OCP_SHUTDOWN VEEG Enabled VREG_ENN VREG VREG Coutput Voltage 5V VREG <		Converter		
Output Constant Current Limit Scaling Factor (relative to louw)100%CCInput Constant Current Limit Scaling Factor (relative to louw)200%INPUT_ILIMSoftstart Time5msSOFT_STARTSwitching Frequency500kHzFREQ_SELEN Pin PolarityActive HighEN_POLARITYStat up Delay0msEN_DLYCord Compensation200mVCORDVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV_OFFSET register setting3.6VVIN_UV_OFFSETOutput Siew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENCOP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_ADCVREG EnabledVREG Enabled <td></td> <td>5.1V</td> <td>VOUT</td>		5.1V	VOUT	
ative to louw)ToomCCInput Constant Current Limit Scaling Factor (rela- tive to liuw)200%INPUT_ILIMSoftstart Time5msSOFT_STARTSwitching Frequency500kHzFREQ_SELEN Pin PolarityActive HighEN_POLARITYStart up Delay0msEN_DLYCord Compensation200mVCORD_COMPVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting1.4VVIN_UVVIN UV voltage3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/ms0UTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn OffDisabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG LoupVREG Doutput VoltageVREG EnabledPREG_ENVREG Duty VoltageVREG Input ControlAutoVREG_ENVREG Input Voltage5VVREGVREG Input Voltage5VVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Input VoltageVOUTVREG_FLTVREG Input VoltageVOUTVREG_FLTVREG Input VoltageVOUTVREG_FLTVREG Input VoltageVOUTVREG_FLTVREG Input VoltageVOUTVREG_FLTVREG Input VoltageDisabledWATCHDOGVREG	Output Constant Current Control	Enabled	DIS_CC	
tive to Ium)ZOU%INPOT_LILMSoftstart TimeSmsSOFT_STARTSwitching Frequency500kHzFREQ_SELEN Pin PolarityActive HighEN_POLARITYStart up DelayOmsEN_DLYCord Compensation200mVCORD_COMPVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting1.4VVIN_UVVIN UV register setting3.6VVIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn OffDisabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTA The FunctionalityEnabledEN_STATMCEVEG LDOVREG EnabledSVVREG_ENVREG EnabledSVVREG_NENVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Input VoltageYOUTVREG_SELECTVREG Input Voltage<		100%	сс	
Switching Frequency500kHzFREQ_SELEN Pin PolarityActive HighEN_POLARITYStart up DelayOmsEN_DLYCord Compensation200mVCORD_COMPVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting1.4VVIN_UVVIN UV voltage3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENUity Load Turn OffDisabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG EnabledVREG EnabledEnabledEN_ADCVREG Coutput Voltage5VVREG_ENVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Input Voltage <td></td> <td>200%</td> <td>INPUT_ILIM</td>		200%	INPUT_ILIM	
EN Pin PolarityActive HighEN_POLARITYStart up DelayOmsEN_DLYCord Compensation200mVCORD_COMPVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting1.4VVIN_UVVIN_UV register setting3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn OffDisabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG EnabledEN_ADCVREG EnabledVREG_ENVREG Coutput Voltage5VVREGVREG Coutput Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	Softstart Time	5ms	SOFT_START	
Start up DelayOmsEN_DLYCord Compensation200mVCORD_COMPVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting1.4VVIN_UVVIN_UV register setting3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn OffDisabledDFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG EnabledVREG_ENVREG Coutput Voltage5VVREGVREG Coutput Voltage5VVREGVREG Input ControlAutoVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	Switching Frequency	500kHz	FREQ_SEL	
Cord Compensation200mVCORD_COMPVIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting1.4VVIN_UVVIN UV voltage3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEnxTATVREG LDOVREG LDOVREG Cutput Voltage5VVREG_ENVREG Output Voltage5VVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	EN Pin Polarity	Active High	EN_POLARITY	
VIN_UV_OFFSET register setting5.0VVIN_UV_OFFSETVIN_UV register setting1.4VVIN_UVVIN_UV voltage3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG LDDVREG EnabledDisabledEN_ADCVREG Cutput Voltage5VVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	Start up Delay	0ms	EN_DLY	
VIN_UV register setting1.4VVIN_UVVIN_UV Voltage3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG LDOVREG EnabledEnabledVREG Cutput Voltage5VVREG_ENVREG Output Voltage5VVREG_OVERRIDEVREG Input ControlAutoVREG_OVERRIDEVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	Cord Compensation	200mV	CORD_COMP	
VIN UV Voltage3.6VVIN_UV and VIN_UV_OFFSETOutput Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG EnabledVREG EnabledVREG EnabledVREG EnabledVREG Cover Net C	VIN_UV_OFFSET register setting	5.0V	VIN_UV_OFFSET	
Output Slew Rate0.5V/msOUTPUT_SLEWPFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG EnabledEN_ADCVREG EnabledEnabledVREG Cutput Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	VIN_UV register setting	1.4V	VIN_UV	
PFM ModeEnabledDIS_PFMLight Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATVREG EnabledEN_ADCVREG EnabledEnabledVREG Coutput VoltageVREG Output Voltage5VVREG_OVERRIDEVREG Input ControlAutoVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	VIN UV Voltage	3.6V	VIN_UV and VIN_UV_OFFSET	
Light Load Turn OffDisabledOFF_LOAD_ENLight Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATMDCVREG EnabledDisabledVREG LDOVREG EnabledVREG Cutput VoltageVREG Output Voltage5VVREG_ENVREG Input ControlAutoVREG_SELECTVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	Output Slew Rate	0.5V/ms	OUTPUT_SLEW	
Light Load Turn Off Delay30sOFF_DLYOCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATADCVREG EnabledDisabledEN_ADCVREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	PFM Mode	Enabled	DIS_PFM	
OCP Shutdown (8 FET OC cycles)EnabledDIS_OCP_SHUTDOWNFET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATADCVREG EnabledDisabledEN_ADCVREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	Light Load Turn Off	Disabled	OFF_LOAD_EN	
FET cycle by cycle current limit10AFET_ILIMIT & ILIM_LOWSTAT Pin FunctionalityEnabledEN_STATADCADCADC EnabledDisabledEN_ADCVREG LDOVREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	Light Load Turn Off Delay	30s	OFF_DLY	
STAT Pin FunctionalityEnabledEN_STATADCADCADC EnabledDisabledEN_ADCVREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	OCP Shutdown (8 FET OC cycles)	Enabled	DIS_OCP_SHUTDOWN	
ADCADC EnabledDisabledEN_ADCVREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	FET cycle by cycle current limit	10A	FET_ILIMIT & ILIM_LOW	
ADC EnabledDisabledEN_ADCVREG LDOVREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTWatchdog TimerDisabledDie Regulation Temperature120 deg CTREG	STAT Pin Functionality	Enabled	EN_STAT	
VREG LDOVREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	ADC			
VREG EnabledEnabledVREG_ENVREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG	ADC Enabled		EN_ADC	
VREG Output Voltage5VVREGVREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG				
VREG Input ControlAutoVREG_OVERRIDEVREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG				
VREG Input VoltageVOUTVREG_SELECTVREG Fault Disables VOUTYesDIS_VREG_FLTMiscellaneousWatchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG		-		
VREG Fault Disables VOUT Yes DIS_VREG_FLT Miscellaneous Watchdog Timer Disabled WATCHDOG Die Regulation Temperature 120 deg C TREG				
Miscellaneous Watchdog Timer Disabled WATCHDOG Die Regulation Temperature 120 deg C TREG				
Watchdog TimerDisabledWATCHDOGDie Regulation Temperature120 deg CTREG				
Die Regulation Temperature 120 deg C TREG	Watchdog Timer		WATCHDOG	
7-bit I2C Slave Address 0x24h I2CADD	7-bit I2C Slave Address			

I2C REGISTERS

The register map section provides a basic understanding of the ACT510x registers. Note that the default values reference the ACT5101 CMI 102 settings.

Register	Register Name	Туре	R/W	Description	Default
0x00	Master Control 1	VM	R/W		0x00h
0x01	Master Control 2	NVM	R/W	Configure various device options	0xB4h
0x02	General Status	VM	R	Device status	0x00h
0x03	Thermal Status	VM	R	Thermal status	0x00h
0x04	RFU	VM	R	Reserved for future use	0x00h
0x05	Fault 1	VM	R	Davies Faults	0x00h
0x06	Fault 2	VM	R	Device Faults	0x00h
0x07	ADC Output 1	VM	R		0x00h
0x08	ADC Output 2	VM	R	ADC Output	0x00h
0x09	ADC Configuration 1	VM	R/W	ADC configuration bits	0x00h
0x0A	ADC Configuration 2	VM	R/W	ADC configuration bits	0x00h
0x0B	VREG Control	NVM	R/W	Configure VREG Input Source	0x80h
0x0C	RFU	NVM	R/W	Reserved for future use	0x10h
0x0D	RFU	NVM	R/W	Reserved for future use	0x08h
0x0E	Converter Control 1	NVM	R/W	Configure Converter Operation	0xA2h
0x0F	Converter Control 2	NVM	R/W	Configure Converter Operation	0xE8h
0x10	Converter Control 3	NVM	R/W	Configure Converter Operation	0x78h
0x11	VREG Voltage	NVM	R/W	5bit, 2.0 ~ 5.1V, LSB = 100mV, Default = 5V	0xF6h
0x12	RFU	NVM	R/W	Reserved for future use	0xA4h
0x13	Output Voltage 1	NVM	R/W	11-bit, 3.6 ~ 24.07V, LSB = 10mV, Default = 5V	0xA0h
0x14	Output Voltage 2	NVM	R/W		0xD6h
0x15	RFU	NVM	R/W	Reserved for future use	0x80h
0x16	RFU	NVM	R/W	Reserved for future use	0x80h

ACT510xQI

Rev 2.0, 02-Jul-2018

0x17	Output Current Limit	NVM	R/W	7-bit, 0 ~ 100%, LSB = 1%, Default = 100%	0x64h
0x18	RFU	NVM	R/W	Reserved for future use	0x64h
0x19	RFU	NVM	R/W	Reserved for future use	0x00h
0x1A	VIN UV	NVM	R/W	8-bit, 2.5 ~ 15.2V, LSB = 100mV, default = 3V	0x00h
0x1B	RFU	NVM	R/W	Reserved for future use	0x40h
0x1C	RFU	NVM	R/W	Reserved for future use	0x40h
0x1D	Frequency	NVM			0x83h
0x1E	IRQ Control 1	VM	R/W	IRQ Mask Control	0x00h
0x1F	IRQ Control 2	VM	R/W		0x00h
0x20	VOUT Status	VM	R	IRQ Mask Control / Converter Status	0x00h

REG 0x00: Main Control 1 (R/W) (VM)

Bit	Name	Default Value	Description	Comment
7	HIZ	0	0: Not forced to HIZ mode 1: Forced to HIZ mode	If this bit = 0, the IC can enter the POWER ON state (turn output on) normally. If this bit = 1, the IC is forced into HIZ mode. This bit overrides the EN pin and the OVERRIDE_EN register.
6	RFU	0		Reserved for future use. Do not change.
5	RFU	0		Reserved for future use. Do not change.
4	RFU	0		Reserved for future use. Do not change.
3	RFU	0		Reserved for future use. Do not change.
2	WATCHDOG_RESET	0	0: Normal 1: Reset	I2C Watchdog Timer Reset This must be written to 1 before Watchdog timer expires, if Watchdog timer is enabled. This is auto clearing when writing to a 1.
1	Audio Frequency Limit	0	0: Disabled 1: Enabled	0: Disabled 1: Enabled to set the minimum switching frequency to 31.25kHz to avoid audio noise
0	REGISTER_RESET	0	1: Reset Registers to Default	Register is self-clearing. Write to 1 resets all registers to their default values. This bit automatically clears back to a 0 after a write.

REG 0x01: Main Control 2 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	RFU	1		Reserved for future use. Do not change.
6	DIS_SHUTDOWN	0	0: Enable 1: Disable	If set to 0, the device will be disabled if FET cycle by cycle current limit is detected for 8 (or 16) continuous cycles. Uses the <i>FET_LIMIT</i> register setting for the FET current limit.
5	RFU	1		Reserved for future use. Do not change.
4	FET_ILIMIT	1	0: 8.5A 1: 10A	This is the peak cycle-by-cycle current limit setting for ALL FETS in any operating mode:
	RFU	0		Reserved for future use. Do not change.
2	VREG_EN	1	0: Turn OFF VREG 1: Turn ON VREG	Control VREG on/off Default is on.
1	WATCHDOG[1]	0	00: Disable timer 01: 80s	I2C Watchdog Timer Setting Watchdog timer is always disabled and reset to 0 in HIZ
0	WATCHDOG[0]	0	10: 160s 11: 320s	Mode. When Disabled, Watchdog timer is also reset to 0.

REG 0x02: General Status (Read Only) (VM)

Bit	Name	Default Value	Description	Comment
7	RFU	0		Reserved for future use. Do not change.
6	nIRQ_PIN_Status	0	0: nIRQ is pulled to ground (logic 0) 1: nIRQ pin is open collector (logic 1)	Real-time nIRQ status. Note that nIRQ is open collector, so the output can be pulled to ground by an external circuit even if this bit = 1 to indicate a high impedance state.
5	EN_PIN_STATUS	0	0: EN Pin Low 1: EN Pin High	Real time status of the EN pin
4	RFU	0		Reserved for future use. Do not change.
3	RFU	0		Reserved for future use. Do not change.
2	RFU	0		Reserved for future use. Do not change.
1	OPERATION_MODE[1]	0	00: HIZ State 01: not valid	Current state machine status for overall system
0	OPERATION_MODE[0]	0	10: POWER ON State 11: not valid	

ACT510xQI Rev 2.0, 02-Jul-2018

REG 0x03: Thermal Status (Read only) (VM)

Bit	Name	Default Value	Description	Comment
7	RFU	0		Reserved for future use. Do not change.
6	THERMAL_ACTIVE	0	0: Not in thermal regulation 1: Thermal regulation Active	Thermal Regulation Active
5	RFU	0		Reserved for future use. Do not change.
4	RFU	0		Reserved for future use. Do not change.
3	RFU	0		Reserved for future use. Do not change.
2	RFU	0		Reserved for future use. Do not change.
1	RFU	0		Reserved for future use. Do not change.
0	RFU	0		Reserved for future use. Do not change.

REG 0x04: RFU (Read Only) (VM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0		Reserved for future use. Do not change.

REG 0x05: Faults 1 (Read only) (VM)

Bit	Name	Default Value	Description	Comment
7	nIRQ_Clear	0	0: Normal Status 1: Clear IRQ output	Write this bit to 1 to clear the IRQ output. The bit will self- clear to a 0 once the write occurs. If a fault still occurs, then nIRQ pin may stay asserted low. Register 0x02 Bit 6 provides a real time status of the nIRQ output.
6	RFU	0		Reserved for future use. Do not change.
5	RFU	0		Reserved for future use. Do not change.
4	VREG_OC_UVLO	0	0: No Fault 1: VREG OC or UVLO	VREG_LDO Overcurrent. Read to clear this latching fault bit. The fault mask bits <i>DIS_VREG_FLT</i> does not affect this fault bit. VREG_OV_UVLO always gives the VREG fault status for user reference. Note: There is a 100msec restart delay for OC faults on the VREG LDO, so the delay must expire before this bit can be reset with a read to clear.
3	TSD	0	0: No Fault 1: Over Temperature	Die Thermal Shutdown. This bit is latching. Read this bit to clear the value back to 0. This bit is not cleared if the fault is still present.
2	FET_OC	0	0: No Fault 1: Input OC	FET Overcurrent. This bit is latching. Read this bit to clear the value back to 0. This bit is not cleared if the fault is still present
1	RFU	0		Reserved for future use. Do not change.
0	RFU	0		Reserved for future use. Do not change.

REG 0x06: Faults 2 (Read only) (VM)

Bit	Name	Default Value	Description	Comment
7	WATCHDOG_FAULT	0	0: No Fault 1: Watchdog Fault	Watchdog Timeout Fault This bit is latching. If Watchdog is enabled and watchdog timer times out, then this bit is set high. This bit is not cleared when read. The watchdog timer is cleared with a watchdog read or by disabling the watchdog timer.
6	VOUT_FAULT	0	0: No Fault 1: VOUT Fault	Output Hiccup Mode Fault This bit is latching. Read this bit to clear the value back to 0. If the VOUT enters hiccup state because current exceeds the Constant Current Mode, then this bit gets set. This register will always be set during hiccup mode when VOUT is off during the 3sec restart time and converter is in the HICCUP state. After it exits this state, a read clears this bit.
5	VIN_UV_FLT	0	0: No Fault 1: VIN UV Fault	VIN UV Fault This bit is latching. If VIN falls below the V _{IN_UV_OFFSET} Voltage specified in the VIN_UV_OFFSET Register (Reg 0x0F, Bits 7:5), this bit is set to 1. When the input voltage is above the VIN_UV_OFFSET voltage, a read will clear this fault bit.
4	νουτ_ον	0	0: No Fault 1: VOUT OV Fault	Vout Overvoltage Fault Read to Clear latching bit This bit will be set any time the Vout exceeds the OV threshold for external or internal feedback. The VOUT must be below the OV voltage and then a read will clear this fault bit.
3	LIGHT_LOAD	0	0: No Fault 1: Converter off	Output Light Load State Latch This bit is latching. This bit is set when the converter has been disabled because of light load condition on output and it entered the LL_DIS state. After the IC exits the LL_DIS state, a read clears this bit.
2	VIN_OV	0	0: No Fault 1: VIN OV	VIN Overvoltage fault This bit is latching. This bit is set any time VIN exceeds the OV threshold when in the POWER ON state. VIN must be below the OV voltage and then a read clears this bit.
1	I2C_FAULT	0	0: No Fault 1: I2C Fault	If set to 1, I2C command did not finish correctly or errors on I2C data
0	RFU	0		Reserved for future use. Do not change.

REG 0x07: ADC Output 1 (Read only) (VM)

Bit	Name	Default Value	Description	Comment
7	ADC_OUT[13]/[7]	0		
6	ADC_OUT[12]/[6]	0		
5	ADC_OUT[11]/[5]	0		Selected data output from ADC_READ Register
4	ADC_OUT[10]/[4]	0		ADC output Upper 8 Bits of ADC output.
3	ADC_OUT[9]/[3]	0		If only 8 Bits are used, then [7:0]
2	ADC_OUT[8]/[2]	0		If all 14 Bits are used, then [13:6]
1	ADC_OUT[7]/[1]	0		
0	ADC_OUT[6]/[0]	0		

REG 0x08: ADC Output 2 (Read only) (VM)

Bit	Name	Default Value	Description	Comment
7	RFU	0		Reserved for future use. Do not change.
6	RFU	0		Notor roa for fataro doo. Do not onango.
5	ADC_OUT[5]	0		Selected data output from <i>ADC_READ</i> Register Lower 6 LSB Bits of ADC Output
4	ADC_OUT[4]	0		
3	ADC_OUT/[3]	0		
2	ADC_OUT[2]	0		
1	ADC_OUT[1]	0		
0	ADC_OUT[0]	0		

REG 0x09: ADC Configuration 1 (R/W) (VM)

Bit	Name	Default Value	Description	Comment
7	EN_ADC	0	0: ADC disabled 1: ADC enabled	
6	ADC_ONE_SHOT	0	0: ADC continually converts data when EN_ADC=1 1: ADC performs a one- time conversion when EN_ADC=1	 [ADC ONE SHOT][ADC_ CH_SCAN] = XX operation is described as below. 00 = Scan channel specified by ADC CHANNEL CONVERSION [2:0] register bits repeatedly in a loop. 01 = Scan and convert channels 0 – 7 repeatedly in a loop. 10 = Convert channel specified by ADC CHANNEL
5	ADC_CH_SCAN	0	0: Scan single channel specified by ADC_CH_CONV 1: Scan all channels	CONVERSION [2:0] once (one shot) 11 = Scan and convert channels 0 – 7 once and stop – one loop
4	DIS_ADC_BUFFER	0	0: ADC Buffer is enabled 1: ADC Buffer is disabled	This should always be set to 0.
3	ADC_SWAP	0	0: ADC Buffer is normal inputs 1: ADC Buffer swaps inputs	If very accurate measurements are required, the ADC input pair can be swapped to negate input offset errors in the Buffer AMP. This requires one read with <i>ADC_SWAP</i> =0 and one read with <i>ADC_SWAP</i> =1, then average the results.
2	HW_DIE_REV[2]	0		HW Die Revision For use by Active Semi
1	HW_DIE_REV[1]	0		
0	HW_DIE_REV[0]	0		

REG 0x0A: ADC Configuration 2 (R/W) (VM)

Bit	Name	Default Value	Description	Comment
7	ADC_DATA_READY	0	0: Data not ready 1: Data is ready	Read Only - Conversion occurred and data is ready to read
6	RFU	0		Reserved for future use. Do not change.
5	ADC_CH_I2C_READ[2]	0	000 = OLIM Pin 001 = VOUT	This controls the current A2D register to output on the I2C register. The A2D can provide an I2C read on a different
4	ADC_CH_I2C_READ[1]	0	010 = VIN 011 = ILIM	register while processing / converting another channel.
3	ADC_CH_I2C_READ[0]	0	100 = not valid 101 = Die temperature 110 = External input 111 = AGND	
2	ADC_CH_CONV [2]	0	000 = ILIM Pin 001 = VIN	This controls the current A2D conversion processing channel. The A2D can provide an I2C read on a different
1	ADC_CH_CONV [1]	0	010 = VBAT 011 = OLIM	register while processing /converting another channel.
0	ADC_CH_CONV [0]	0	100 = TH 101 = Die temperature 110 = External input 111 = AGND	

REG 0x0B: VREG Control 1 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	RFU	1		Reserved for future use. Do not change.
6	RFU	0		Reserved for future use. Do not change.
5	RFU	0		Reserved for future use. Do not change.
4	RFU	0		Reserved for future use. Do not change.
3	RFU	0		Reserved for future use. Do not change.
2	RFU	0		Reserved for future use. Do not change.
1	VREG_OVERRIDE	0	0: Automatic Control 1: Manual Control	 0: The IC automatically selects the correct VREG input supply 1: Forces the IC to use the VREG input supply defined by the VREG_SELECT register.
0	VREG_SELECT	0	0: VOUT Supply 1: VIN Supply	Defines the VREG input power source.

REG 0x0C: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0		Reserved for future use. Do not change.

REG 0x0D: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0		Reserved for future use. Do not change.

REG 0x0E: Converter Control 1 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	EN	1	0: Disable 1: Enable	If this bit is low, the converter is always disabled. If this pin is High, then either the EN pin or the EN_OVERRIDE bit will enable the converter. In addition, the HIZ mode bit (Reg 0x00, bit 7) must be low.
6	EN_OVERRIDE	0	0: Disable 1: Enable	If this bit is high, EN pin is over written and the converter is enabled by the EN bit. This allows user to enable the converter from I ² C without using the EN pin.
5	SS	1	0: 1.5ms 1: 5ms	Soft start time for the output voltage:
4	RFU	0		Reserved for future use. Do not change.
3	OFF_DLY[1]	0	00: Disable 01: 10s	When light load is detected for the setting time, the output is disabled and latched off. The IC must be put
2	OFF_DLY[0]	0	10: 20s 11: 30s	into the HIZ state (disabled) and back into the POWER ON state (enabled) to turn the converter back on. This can be done with the EN Pin, or through the EN Register
1	EN_POLARITY	1	0: Active Low 1: Active High	Controls the polarity of the EN input pin.
0	OFF_LOAD_EN	0	0: Disable 1: Enable	When light load is detected for longer than the OFF_DLY time, the converter is disabled and latched off. The converter must be disabled and re-enabled to turn back on. This can be done with the EN pin or the EN register bit.

REG 0x0F: Converter Control 2 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	VIN_UV[2]	1	000: V _{VIN_UV_OFFSET} 001: V _{VIN_UV_OFFSET} -0.2V 010: V _{VIN_UV_OFFSET} -0.4V	VIN UV threshold for the converter to operate. Referenced from V_{IN_UV} level.
6	VIN_UV[1]	1	011: V _{VIN_UV_OFFSET} -0.6V 100: V _{VIN_UV_OFFSET} -0.8V 101: V _{VIN_UV_OFFSET} -1.0V	
5	VIN_UV[0]	1	110: V _{VIN_UV_OFFSET} -1.2V 111: V _{VIN_UV_OFFSET} -1.4V	
4	EN_STAT	0	0: Disable 1: Enable	If EN_STAT bit is 1, the IC pulls the STAT pin low to indicate the converter is running. OUT fault or VIN UV, etc, STAT will go high. If set to 0, STAT is always HIZ.
3	CORD_COMP[1]	1	00: Disable 01: 100mV	Cord Compensation at 2.4A Load with $10m\Omega$
2	CORD_COMP[0]	0	10: 200mV 11: 300mV	resistor
1	EN_DLY[1]	0	00: 0ms 01: 200ms	The delay before enabling the converter from the EN pin or EN register bit.
0	EN_DLY[0]	0	10: 500ms 11: 1s	

REG 0x10: Converter Control 3 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	OUTPUT_SLEW[1]	0	00: 1V/ms 01: 0.5V/ms	For the ACT5101 only, when the output voltage is changed using the VOUT register for QC2.0/3.0 or
6	OUTPUT_SLEW[0]	1	10: 0.33V/ms 11: 0.1V/ms	USB PD voltage ramps, this register controls the rate at which the output voltage changes.
5	PULLDOWN_RAMP	1	0: Disable 1: Enable	If PULLDOWN_RAMP is set to 1 and VOUT_I2C is set to 0 for I ² C output voltage control (ACT5101), an internal current source pulls down the output during a ramp down of the output voltage. This allows the output to meet the QC 2.0/3.0 and USB PD ramp timing requirements.
4	PULLDOWN_OV	1	0: Disable 1: Enable	If PULLDOWN_OV is set to 1, the pulldown current source pulls down on the output during any OV condition on the output.
3	INPUT_ILIM[1]	1	00: Disable 01: 150% of	The input current limit scaling factor relative to the hardware programmed ILIM current setting.
2	INPUT_ILIM[0]	0	IFCHG 10: 200% of IFCHG 11: 150% of IFCHG	
1	DIS_VREG_FLT	0	0: Enable 1: Disable	If set to 0, an Overcurrent or UVLO fault on the VREG stops the buck-boost converter. If set to 1, the buck-boost converter continues to operate with fault on VREG.
0	DIS_PFM	0	0: Enable 1: Disable	Disable PFM mode in mode to set a fixed switching frequency.

REG 0x11: VREG Regulation Voltage 1 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	VREG[4]	1	1600mV	VREG LDO Output Voltage Offset: 2V
6	VREG[3]	1	800mV	Range: 2V (00000) - 5.1V (11111)
5	VREG[2]	1	400mV	
4	VREG[1]	1	200mV	
3	VREG[0]	0	100mV	
2	RFU	1		Reserved for future use. Do not change.
1	RFU	1		Reserved for future use. Do not change.
0	RFU	0		Reserved for future use. Do not change.

REG 0x12: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0xA4h		Reserved for future use. Do not change.

ACT510xQI Rev 2.0, 02-Jul-2018

REG 0x13: Output Voltage 1 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	RFU	1		Reserved for future use. Do not change.
6	RFU	0		Reserved for future use. Do not change.
5	RFU	1		
4	RFU	0		
3	VOUT_I2C	0	1: External	Set to 0 for ACT5101. I ² C registers control the output voltage. Set to 1 for ACT5102. An external voltage divider connected to the FB pin controls the output voltage.
2	VOUT[9]	0	10240 mV	Internal divider network Offset: 2.96V
1	VOUT[8]	0	5120 mV	Range: 2.96V (000_0000_0000) to 23.42V (111_1111_111)
0	V0UT[7]	0	2560 mV	

REG 0x14: Output Voltage 2 (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	VOUT[6]	1	1280 mV	Internal divider network
6	VOUT[5]	1	640 mV	Offset: 2.96V Range: 2.96V (000_0000_0000) to 23.42V
5	VOUT[4]	0	320 mV	(111_1111_111)
4	VOUT[3]	1	160 mV	
3	VOUT[2]	0	80 mV	
2	VOUT[1]	1	40 mV	
1	VOUT[0]	1	20 mV	
0	RFU	0		Reserved for future use. Do not change.

REG 0x15: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0x80h		Reserved for future use. Do not change.

REG 0x16: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0x80h		Reserved for future use. Do not change.

REG 0x17: Output Current Limit (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	DIS_CC	0	0: Enable 1: Disable	Set 1 to disable the output constant current limit function
6	CC[6]	1	64%	The output current limit scaling factor relative to the hardware programmed OLIM current setting.
5	CC[5]	1	32%	Range: 1% (000_0001) to 100% (110_0100) Setting 110_0100 to 111_1111 = 100%
4	CC[4]	0	16%	Setting 000_0000 to 000_0001 = 1%
3	CC[3]	0	8%	
2	CC[2]	1	4%	
1	CC[1]	0	2%	
0	CC[0]	0	1%	

REG 0x18: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0x64h		Reserved for future use. Do not change.

REG 0x19: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0x00h		Reserved for future use. Do not change.

REG 0x1A: VIN UV OFFSET (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	RFU	0		Reserved for future use. Do not change.
6	VIN_UV_OFFSET[6]	0	6400 mV	Input UV offset voltage.
5	VIN_UV_OFFSET[5]	0	3200 mV	Offset: 5V Range: 5V (0000000) ~ 15.2V (1111111)
4	VIN_UV_OFFSET[4]	0	1600 mV	
3	VIN_UV_OFFSET[3]	0	800 mV	
2	VIN_UV_OFFSET[2]	0	400 mV	
1	VIN_UV_OFFSET[1]	0	200 mV	
0	VIN_UV_OFFSET[0]	0	100 mV	

REG 0x1B: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0x40h		Reserved for future use. Do not change.

REG 0x1C: RFU (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7-0	RFU	0x40h		Reserved for future use. Do not change.

REG 0x1D: Frequency Setting (R/W) (NVM)

Bit	Name	Default Value	Description	Comment
7	FREQ_SEL[1]	1	Frequency Selection Settings for SMPS 00: 125kHz 01: 250kHz	Operation Frequency Settings Note: These can NOT be changed "on the fly" and each setting requires a different inductor value and capacitors and compensation components.
6	FREQ_SEL[0]	0	10: 500kHz 11: 1MHz	CARE SHOULD BE TAKEN WHEN WRITING TO THIS REGISTER TO AVOID CHANGING THE FREQUENCY WHILE OPERATING
5	RFU	0		Reserved for future use. Do not change.
4	RFU	0		Reserved for future use. Do not change.
3	RFU	0		Reserved for future use. Do not change.
2	RFU	0		Reserved for future use. Do not change.
1	TREG[1]	1	00: Disable 01: 80°C	Die temperature regulation threshold
0	TREG[0]	1	10: 100°C 11: 120°C	

ACT510xQI Rev 2.0, 02-Jul-2018

REG 0x1E: IRQ Control 1 R/W (VM)

Bit	Name	Default Value	Description	Comment
7	RFU	0		Reserved for future use. Do not change.
6	RFU	0		Reserved for future use. Do not change.
5	RFU	0		Reserved for future use. Do not change.
4	nIRQ_VIN_UVOV	0	0: VIN UV or OV on nIRQ 1: Masks nIRQ	If set to 0, an input voltage UV or OV condition activates the nIRQ Pin Setting to 1, masks the fault to nIRQ
3	RFU	0		Reserved for future use. Do not change.
2	RFU	0		Reserved for future use. Do not change.
1	nIRQ_VREG_FLT	0	0: VREG LDO Overcurrent or Undervoltage indicated on nIRQ 1: Masks nIRQ	If set to 0, a VREG LDO Overcurrent or Undervoltage activates the nIRQ pin Setting to 1, masks the fault to nIRQ
0	nIRQ_TSD	0	0: Device Thermal Shutdown indicated on nIRQ 1: Masks nIRQ	If set to 0, a device Thermal Shutdown activates the nIRQ pin Setting to 1, masks the fault to nIRQ

REG 0x1F: IRQ Control 2 R/W (VM)

Bit	Name	Default Value	Description	Comment
7	nIRQ_FET_OC	0	0: FET Overcurrent triggers nIRQ pin 1: Masks nIRQ	If set to 0, a FET Overcurrent condition activates the nIRQ pin Setting to 1, masks CHG done states to nIRQ
6	nIRQ_Watchdog	0	0: Watchdog timer expired triggers nIRQ 1: Masks nIRQ	If set to 0, a watchdog timeout activates the nIRQ pin Setting to 1, masks the fault nIRQ
5	nIRQ_HICCUP	0	0: Converter is in Hiccup state nIRQ 1: Masks nIRQ	If set to 0, converter entering Hiccup state activates the nIRQ pin Setting to 1, masks hiccup mode to nIRQ
4	nIRQ_LL	0	0: Converter Light Load state on nIRQ 1: Masks nIRQ	If set to 0, converter entering Light Load Disable state activates the nIRQ pin Setting to 1, masks light load disable state to nIRQ
3	nIRQ_A2D_DATA	0	0: A2D Data Ready 1: Masks A2D Data Ready nIRQ	If set to 0, a rising edge on A2D Data Ready activates the nIRQ pin Setting to 1, masks the A2D Data Ready to nIRQ
2	nIRQ_HIZ	0	0: Enter HIZ Mode 1: Masks Enter HIZ Mode nIRQ	If set to 0, a rising edge when entering HIZ State activates the nIRQ pin Setting to 1, masks the HIZ Enter to nIRQ
1	RFU	0		Reserved for future use. Do not change.
0	RFU	0		Reserved for future use. Do not change.

REG 0x20: IRQ / Status (R/W) (VM)

Г

Bit	Name	Default Value	Description	Comment
7	nIRQ_I2C_ERROR	0	0: I2C Fault 1: Masks I2C Fault nIRQ	If set to 0, a fault on the I2C command / I2C bus activates the nIRQ Pin Setting to 1, masks the nIRQ
6	INPUT_CC	0	0: Input not in current limit 1: Input is regulating in Constant Current Mode	Real Time status This is the current measured on the VIN side using ISRP and ISRN and is controlled by the VIN_ <i>ILIM</i> Register
5	OUTPUT_CC	0	0: Output regulating using voltage loop 1: output is regulating in Constant Current Mode	Real Time status This is the current measured on the VOUT side using OSRP and OSRN and is controlled by the <i>CC</i> Register
4	VIN_UV	0	0: VIN above VIN_UV 1: VIN below VIN_UV	Real time status – For latched fault, see the Fault Registers
3	VIN_OV	0	NA	0: VIN below OV 1: VIN above OV
2	STATUS[2]	0	00: RST	State machine for POWER ON state
1	STATUS[1]	0	001: SS 010: REG	101 – 111: Not Valid
0	STATUS[0]	0	011: HICCUP 100: LL_DIS	

PACKAGE OUTLINE AND DIMENSIONS QFN4X4-32

All dimensions are in millimeters

Dimensioning and tolerancing per JEDED MO-232

See Active Semi Application note AN-104, QFN PCB Layout Guidelines for more information on generating the ACT5101 land pattern.