DDR SDRAM Small-Outline DIMM MT9VDDT1672PH(I) - 128MB, MT9VDDT3272PH(I) - 256MB, MT9VDDT6472PH(I) - 512MB, MT9VDDT12872PH(I) - 1GB (Advance[‡]) For the lastest data sheet, please refer to the Micron[®] Web site: www.micron.com/products/modules #### **Features** - 200-pin, small-outline, dual in-line memory module (SODIMM) - Supports ECC error detection and correction - Fast data transfer rates: PC2100 and PC2700 - Utilizes 266 MT/s and 333 MT/s DDR SDRAM components - 128MB (16 Meg x 72); 256MB (32 Meg x 72); 512MB (64 Meg x 72); 1GB (128 Meg x 72) - VDD = VDDQ = +2.5V - VDDSPD = +2.3V to +3.6V - 2.5V I/O (SSTL 2 compatible) - Commands entered on each positive CK edge - DQS edge-aligned with data for READs; centeraligned with data for WRITEs - Internal, pipelined double data rate (DDR) architecture; two data accesses per clock cycle - Four internal device banks for concurrent operation - Programmable burst lengths: 2, 4, or 8 - Auto precharge option - Auto Refresh and Self Refresh Modes - 15.625µs (128MB), 7.8125µs (256MB, 512MB, 1GB) maximum average periodic refresh interval - Serial Presence Detect (SPD) with EEPROM - Programmable READ CAS latency - Bidirectional data strobe (DQS) transmitted/received with data—i.e., source-synchronous data capture - Differential clock inputs CK and CK# - Gold edge contacts #### Figure 1: 200-Pin SODIMM (MO-224) Low Profile: 1.25in. (31.75mm) ### Options Marking | • | Operating Temperature Range | | |---|---|-------------------| | | Commercial (0°C \leq T _A \leq +70°C) | None | | | Industrial (-40°C \leq T _A \leq +85°C) | ${ m I}^1$ | | • | Package | | | | 200-pin SODIMM (standard) | G | | | 200-pin SODIMM (lead-free) | Y^1 | | • | Memory Clock, Speed, CAS Latency ² | | | | 6ns (267 MHz), 333 MT/s, $CL = 2.5$ | -335 | | | 7.5ns (133 MHz), 266 MT/s, CL = 2 | -262^{1} | | | 7.5ns (133 MHz), 266 MT/s, CL = 2 | -26A ¹ | | | 7.5ns (133 MHz), 266 MT/s, CL = 2.5 | -265 | | _ | DCP Hoight | | PCB Height 1.25in. (31.75mm) Notes: 1. Consult Micron for product availability; industrial temperature option available in - 265 speed only. 2. CL = Device CAS (READ) Latency. **Table 1: Address Table** | | 128MB | 256MB | 512MB | 1GB | |---------------------------|--------------------|--------------------|--------------------|-------------------| | Refresh Count | 4K | 8K | 8K | 8K | | Row Addressing | 4K (A0–A11) | 8K (A0-A12) | 8K (A0-A12) | 16K (A0-A13) | | DeviceBankAddressing | 4 (BA0, BA1) | 4 (BA0, BA1) | 4 (BA0, BA1) | 4 (BA0, BA1) | | Base Device Configuration | 128Mb (16 Meg x 8) | 256Mb (32 Meg x 8) | 512Mb (64 Meg x 8) | 1Gb (128 Meg x 8) | | Column Addressing | 1K (A0-A9) | 1K (A0-A9) | 1K (A0-A9, A11) | 2K (A0-A9, A11) | | Module Rank Addressing | 1 (S0#) | 1 (S0#) | 1 (SO# | 1 (S0#) | **Table 2: Part Numbers and Timing Parameters** | Part Number | Module | | Module | Memory Clock/ | Clock Latency
(CL - ^t RCD - ^t RP) | |-------------------------|---------|---------------|-----------|-----------------|--| | | Density | Configuration | Bandwidth | Data Rate | (CL - ^t RCD - ^t RP) | | MT9VDDT1672PHG-335_ | 128MB | 16 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT1672PHY-335_ | 128MB | 16 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT1672PHG-262_ | 128MB | 16 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT1672PHY-262_ | 128MB | 16 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT1672PHG-26A_ | 128MB | 16 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT1672PHY-26A_ | 128MB | 16 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT1672PH(I)G-265_ | 128MB | 16 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | | MT9VDDT1672PH(I)Y-265_ | 128MB | 16 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | | MT9VDDT3272PHG-335_ | 256MB | 32 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT3272PHY-335_ | 256MB | 32 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT3272PHG-262_ | 256MB | 32 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT3272PHY-262_ | 256MB | 32 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT3272PHG-26A_ | 256MB | 32 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT3272PHY-26A_ | 256MB | 32 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT3272PH(I)G-265_ | 256MB | 32 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | | MT9VDDT3272PH(I)Y-265_ | 256MB | 32 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | | MT9VDDT6472PHG-335_ | 512MB | 64 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT6472PHY-335_ | 512MB | 64 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT6472PHG-262_ | 512MB | 64 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT6472PHY-262_ | 512MB | 64 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT6472PHG-26A_ | 512MB | 64 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT6472PHY-26A_ | 512MB | 64 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT6472PH(I)G-265_ | 512MB | 64 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | | MT9VDDT6472PH(I)Y-265_ | 512MB | 64 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | | MT9VDDT12872PHG-335_ | 1GB | 128 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT12872PHY-335_ | 1GB | 128 Meg x 72 | 2.7 GB/s | 6ns, 333 MT/s | 2.5-3-3 | | MT9VDDT12872PHG-262_ | 1GB | 128 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT12872PHY-262_ | 1GB | 128 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-2-2 | | MT9VDDT12872PHG-26A_ | 1GB | 128 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT12872PHY-26A_ | 1GB | 128 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2-3-3 | | MT9VDDT12872PH(I)G-265_ | 1GB | 128 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | | MT9VDDT12872PH(I)Y-265_ | 1GB | 128 Meg x 72 | 2.1 GB/s | 7.5ns, 266 MT/s | 2.5-3-3 | Note: All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for current revision codes. Example: MT9VDDT3272PHG-265A1. | Features | |----------------------------------| | Pin Assignments and Descriptions | | Functional Block Diagram | | General Description | | PLL Operation | | Serial Presence-Detect Operation | | Mode Register Definition | | Burst Length | | Burst Type | | Read Latency | | Operating Mode | | Extended Mode Register10 | | DLL Enable/Disable10 | | Commands | | Absolute Maximum Ratings | | Electrical Specifications12 | | Notes19 | | Initialization24 | | PLL Specifications | | Thermal Specifications | | Serial Presence-Detect28 | | SPD Clock and Data Conventions28 | | SPD Start Condition28 | | SPD Stop Condition28 | | SPD Acknowledge28 | | Package Dimensions30 | | Data Sheet Designation | | Revision History37 | | Figure 1: | 200-Pin SODIMM (MO-224) | 1 | |------------|---|----| | Figure 1: | Module Layout | 1 | | Figure 2: | Functional Block Diagram | 4 | | Figure 3: | Mode Register Definition Diagram | 7 | | Figure 4: | CAS Latency Diagram | | | Figure 5: | Extended Mode Register Definition Diagram | 10 | | Figure 6: | Derating Data Valid Window (^t QH - ^t DQSQ) | | | Figure 7: | Pull-Down Characteristics | 22 | | Figure 8: | Pull-Up Characteristics | | | Figure 9: | Initialization Flow Diagram | 25 | | Figure 10: | Component Case Temperature vs. Air Flow | 27 | | Figure 11: | Data Validity | | | Figure 12: | Definition of Start and Stop | 29 | | Figure 13: | Acknowledge Response from Receiver | | | Figure 14: | SPD EEPROM Timing Diagram | | | Figure 15: | 200-Pin SODIMM Dimensions | 36 | | Table 1: | Address Table | 2 | |-----------|--|----| | Table 2: | Part Numbers and Timing Parameters | 2 | | Table 1: | Pin Assignment | 1 | | Table 2: | Pin Descriptions | | | Table 3: | Burst Definition Table | 8 | | Table 4: | CAS Latency (CL) Table | 8 | | Table 5: | Commands Truth Table | | | Table 6: | DM Operation Truth Table | 11 | | Table 7: | DC Electrical Characteristics and Operating Conditions | 12 | | Table 8: | AC Input Operating Conditions | 12 | | Table 9: | IDD Specifications and Conditions – 128MB | | | Table 10: | IDD Specifications and Conditions – 256MB | 14 | | Table 11: | IDD Specifications and Conditions – 512MB | 15 | | Table 12: | IDD Specifications and Conditions – 1GB | 16 | | Table 13: | Capacitance) | 17 | | Table 14: | Electrical Characteristics and Recommended AC Operating Conditions | 17 | | Table 15: | PLL Clock Driver Timing Requirements and Switching Characteristics | 26 | | Table 16: | EEPROM Device Select Code | 30 | | Table 17: | EEPROM Operating Modes | 30 | | Table 18: | Serial Presence-Detect EEPROM DC Operating Conditions | 31 | | Table 19: | Serial Presence-Detect EEPROM AC Operating Conditions | 31 | | Table 20: | Serial Presence-Detect Matrix – 128MB, 256MB, 512MB | 32 | | Table 21: | Serial Presence- Detect Matrix – 1GB | 34 | | | | | ## **Pin Assignments and Descriptions** **Table 1: Pin Assignment** | | | -Pin SO | /I Front | | | | 20 | 0-Pin SO | DIMI | M Back | | | | | | |-----|--------|---------|----------|-----|--------|-----|--------|----------|--------|--------|--------|-----|--------|-----|--------| | PIN | SYMBOL | 1 | VREF | 51 | Vss | 101 | A9 | 151 | DQ42 | 2 | VREF | 52 | Vss | 102 | A8 | 152 | DQ46 | | 3 | Vss | 53 | DQ19 | 103 | Vss | 153 | DQ43 | 4 | Vss | 54 | DQ23 | 104 | Vss | 154 | DQ47 | | 5 | DQ0 | 55 | DQ24 | 105 | A7 | 155 | Vdd | 6 | DQ4 | 56 | DQ28 | 106 | A6 | 156 | Vdd | | 7 | DQ1 | 57 | Vdd | 107 | A5 | 157 | Vdd | 8 | DQ5 | 58 | VDD | 108 | A4 | 158 | NC | | 9 | Vdd | 59 | DQ25 | 109 | A3 | 159 | Vss | 10 | Vdd | 60 | DQ29 | 110 | A2 | 160 | NC | | 11 | DQS0 | 61 | DQS3 | 111 | A1 | 161 | Vss | 12 | DM0 | 62 | DM3 | 112 | A0 | 162 | Vss | | 13 | DQ2 | 63 | Vss | 113 | VDD | 163 | DQ48 | 14 | DQ6 | 64 | Vss | 114 | VDD | 164 | DQ52 | | 15 | Vss | 65 | DQ26 |
115 | A10/AP | 165 | DQ49 | 16 | Vss | 66 | DQ30 | 116 | BA1 | 166 | DQ53 | | 17 | DQ3 | 67 | DQ27 | 117 | BA0 | 167 | Vdd | 18 | DQ7 | 68 | DQ31 | 118 | RAS# | 168 | VDD | | 19 | DQ8 | 69 | VDD | 119 | WE# | 169 | DQS6 | 20 | DQ12 | 70 | Vdd | 120 | CAS# | 170 | DM6 | | 21 | VDD | 71 | CB0 | 121 | S0# | 171 | DQ50 | 22 | Vdd | 72 | CB4 | 122 | NC | 172 | DQ54 | | 23 | DQ9 | 73 | CB1 | 123 | NC/A13 | 173 | Vss | 24 | DQ13 | 74 | CB5 | 124 | NC | 174 | Vss | | 25 | DQS1 | 75 | Vss | 125 | Vss | 175 | DQ51 | 26 | DM1 | 76 | Vss | 126 | Vss | 176 | DQ55 | | 27 | Vss | 77 | DQS8 | 127 | DQ32 | 177 | DQ56 | 28 | Vss | 78 | DM8 | 128 | DQ36 | 178 | DQ60 | | 29 | DQ10 | 79 | CB2 | 129 | DQ33 | 179 | Vdd | 30 | DQ14 | 80 | CB6 | 130 | DQ37 | 180 | VDD | | 31 | DQ11 | 81 | VDD | 131 | Vdd | 181 | DQ57 | 32 | DQ15 | 82 | Vdd | 132 | Vdd | 182 | DQ61 | | 33 | Vdd | 83 | CB3 | 133 | DQS4 | 183 | DQS7 | 34 | Vdd | 84 | CB7 | 134 | DM4 | 184 | DM7 | | 35 | CK0 | 85 | NC | 135 | DQ34 | 185 | Vss | 36 | Vdd | 86 | NC | 136 | DQ38 | 186 | Vss | | 37 | CK0# | 87 | Vss | 137 | Vss | 187 | DQ58 | 38 | Vss | 88 | Vss | 138 | Vss | 188 | DQ62 | | 39 | Vss | 89 | NC | 139 | DQ35 | 189 | DQ59 | 40 | Vss | 90 | Vss | 140 | DQ39 | 190 | DQ63 | | 41 | DQ16 | 91 | NC | 141 | DQ40 | 191 | Vdd | 42 | DQ20 | 92 | Vdd | 142 | DQ44 | 192 | VDD | | 43 | DQ17 | 93 | VDD | 143 | Vdd | 193 | SDA | 44 | DQ21 | 94 | Vdd | 144 | Vdd | 194 | SA0 | | 45 | VDD | 95 | NC | 145 | DQ41 | 195 | SCL | 46 | Vdd | 96 | CKE0 | 146 | DQ45 | 196 | SA1 | | 47 | DQS2 | 97 | NC | 147 | DQS5 | 197 | VDDSPD | 48 | DM2 | 98 | NC | 148 | DM5 | 198 | SA2 | | 49 | DQ18 | 99 | NC/A12 | 149 | Vss | 199 | NC | 50 | DQ22 | 100 | A11 | 150 | Vss | 200 | NC | Notes: 1. Pin 99 is a No Connect (NC) for 128MB; A12 for 256MB, 512MB, and 1GB. 2. Pin 123 is a No Connect (NC) for 128MB, 256MB, and 512MB; A13 for 1GB Figure 1: Module Layout # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Pin Assignments and Descriptions **Table 2: Pin Descriptions** Refer to Pin Assignment Tables on page 1 for pin number and symbol correlation. | Pin Numbers | Symbol | Туре | Description | |---|--|------------------|---| | 118, 119, 120 | WE#, CAS#, RAS# | Input | Command Inputs: RAS#, CAS#, and WE# (along with S#) define the command being entered. | | 35, 37 | CK0, CK0# | Input | Clock: CK and CK# are differential clock inputs distributed through an on-board PLL to all devices. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK#. Output data (DQ and DQS) is referenced to the crossings of CK and CK#. | | 96 | CKE0, | Input | Clock Enable: CKE HIGH activates and CKE LOW deactivates the internal clock, input buffers.and output drivers. Taking CKE LOW provides PRECHARGE POWER- DOWN and SELF REFRESH operations (all device banks idle), or ACTIVE POWER-DOWN (row ACTIVE in any device bank). CKE is synchronous for POWER-DOWN entry and exit, and for SELF REFRESH entry. CKE is asynchronous for SELF REFRESH exit and for disabling the outputs. CKE must be maintained HIGH throughout read and write accesses. Input buffers (excluding CK, CK# and CKE) are disabled during POWER-DOWN. Input buffers (excluding CKE) are disabled during SELF REFRESH. CKE is an SSTL_2 input but will detect an LVCMOS LOW level after VDD is applied. | | 121 | S0# | Input | Chip Select: S# enables (registered LOW) and disables (registered HIGH) the command decoder. All com- mands are masked when S# is registered HIGH. S# is considered part of the command code. | | 117, 116 | BA0, BA1 | Input | Bank Address: BA0, BA1 define to which device bank an ACTIVE, READ, WRITE, or PRECHARGE command is being applied. | | 99 (A12), 100, 101,102,
105, 106, 107, 108, 109,
110, 111, 112, 115,
123 (A13) | A0-A11
(128MB)
A0-A12
(256MB, 512MB)
A0-A13
(1GB) | Input | Address Inputs: A0-A11/A12 provide the row address for ACTIVE commands, and the column address, and auto precharge bit (A10) for READ/WRITE commands, to select one location out of the memory array in the respective device bank. A10 sampled during a PRECHARGE command determines whether the PRECHARGE applies to one device bank (A10 LOW, device bank selected by BA0, BA1) or all device banks (A10 HIGH). The address inputs also provide the op-code during a MODE REGISTER SET command. BA0 and BA1 define which mode register (mode register or extended mode register) is loaded during the LOAD MODE REGISTER command. | | 11, 25, 47, 61, 77, 133,
147,169, 183 | DQS0–DQS8 | Input/
Output | Data Strobe: Output with READ data, input with WRITE data. DQS is edge-aligned with READ data, centered in WRITE data. Used to capture data. | | 12, 26, 48, 62, 78, 134,
148, 170, 184 | DM0–DM8 | Input | Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH along with that input data during a WRITE access. DM is sampled on both edges of DQS. Although DM pins are input-only, the DM loading is designed to match that of DQ and DQS pins. | | 71, 72, 73, 74, 79, 80, 83,
84 | CB0-CB7 | Input/
Output | Check Bits. | # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Pin Assignments and Descriptions **Table 2: Pin Descriptions** Refer to Pin Assignment Tables on page 1 for pin number and symbol correlation. | Pin Numbers | Symbol | Туре | Description | |---|----------|------------------|--| | 5, 6, 7, 8, 13, 14, 17, 18, 19, 20, 23, 24, 29, 30, 31, 32, 41, 42, 43, 44, 49, 50, 53, 54, 55, 56, 59, 60, 61, 65, 66, 67, 68, 127, 128, 129, 130, 135, 136, 139, 140, 141, 142, 145, 146, 151, 152, 153, 154, 163, 164, 165, 166, 171, 172, 175, 176, 177, 181, 182, 187, 188, 189, 190 | DQ0-DQ63 | Input/
Output | Data I/Os: Data bus. | | 195 | SCL | Input | Serial Clock for Presence-Detect: SCL is used to synchronize the presence-detect data transfer to and from the module. | | 194, 196, 198 | SA0-SA2 | Input | Presence-Detect Address Inputs: These pins are used to configure the presence-detect device. | | 193 | SDA | Input/
Output | Serial Presence-Detect Data: SDA is a bidirectional pin used to transfer addresses and data into and out of the presence-detect portion of the module. | | 1, 2 | Vref | Supply | SSTL_2 reference voltage. | | 9, 10, 21, 22, 33, 34, 36, 45, 46, 57, 58, 69, 70, 81, 82, 92, 93, 94, 113, 114, 131, 132, 143, 144, 155, 156, 157, 167, 168, 179, 180, 191, 192 | Vdd | Supply | DQ Power Supply: +2.5V ±0.2V. | | 3, 4, 15, 16, 27, 28, 38, 39, 40, 51, 52, 63, 64, 75, 76, 87, 88, 90, 103, 104, 125, 126, 137, 138, 149, 150, 159, 161, 162, 173, 174, 185, 186 | Vss | Supply | Ground. | | 197 | VDDSPD | Supply | Serial EEPROM positive power supply: +2.3V to +3.6V. | | 85, 86, 89, 91, 95, 97, 98, 99 (128MB), 122, 123 (128MB, 256MB, 512MB), 124, 158, 160, 200 | NC | - | No Connect: These pins should be left unconnected. | ### **Functional Block Diagram** All resistor values are 22Ω unless otherwise specified. Per industry standard, Micron modules utilize various component speed grades, as referenced in the module part numbering guide at www.micron.com/numberguide. Standard modules use the following DDR SDRAM devices: MT46V16M8TG (128MB); MT46V32M8TG (256MB); MT46V64M8TG (512MB); and MT46V128M8TG (1GB). Lead-free modules use the following DDR SDRAM devices: MT46V16M8P (128MB); MT46V32M8P (256MB); MT46V64M8P (512MB); and MT46V128M8P (1GB). Contact Micron for information on IT modules. Figure 2: Functional Block Diagram # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM General Description ### **General Description** The Micron MT9VDDT1672PH, MT9VDDT3272PH, MT9VDDT6472PH, and MT9VDDT12872PH, are high-speed CMOS, dynamic random-access, 128MB, 256MB, 512MB, and 1GB memory modules organized in x72 (ECC) configuration. DDR SDRAM modules use internally configured quad-bank DDR SDRAM devices. DDR SDRAM modules use a double data rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the DDR SDRAM module effectively consists of a single 2n-bit wide, one-clock-cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is an intermittent strobe transmitted by the DDR SDRAM device during READs and by the memory controller during WRITEs. DQS is edge-aligned with data for READs
and center-aligned with data for WRITEs. DDR SDRAM modules operate from differential clock inputs (CK and CK#); the crossing of CK going HIGH and CK# going LOW will be referred to as the positive edge of CK. Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK. A phase-lock loop (PLL) device on the module is used to redrive the differential clock signals to the DDR SDRAM devices to minimize system clock loading. Read and write accesses to DDR SDRAM modules are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the device bank and row to be accessed (BAO, BA1 select device bank; A0–A11 select device row for 128MB; A0–A12 select device row for 256MB and 512MB; and A0–A13 select device row for 1GB). The address bits registered coincident with the READ or WRITE command are used to select the device bank and the starting device column location for the burst access. DDR SDRAM modules provide for programmable read or write burst lengths of 2, 4, or 8 locations. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access. The pipelined, multibank architecture of DDR SDRAM modules allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. An auto refresh mode is provided, along with a power-saving power-down mode. All inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class II compatible. For more information regarding DDR SDRAM operation, refer to the 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM data sheets. ## **PLL Operation** A phase-lock loop (PLL) on the module is used to redrive the differential clock signals CK and CK# to the DDR SDRAM devices to minimize system clock loading. ## **Serial Presence-Detect Operation** DDR SDRAM modules incorporate serial presence-detect (SPD). The SPD function is implemented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Mode Register Definition various SDRAM organizations and timing parameters. The remaining 128 bytes of storage are available for use by the customer. System READ/WRITE operations between the master (system logic) and the slave EEPROM device (DIMM) occur via a standard $\rm I^2C$ bus using the DIMM's SCL (clock) and SDA (data) signals, together with SA(2:0), which provide eight unique DIMM/EEPROM addresses. Write protect (WP) is tied to ground on the module, permanently disabling hardware write protect. ## **Mode Register Definition** The mode register is used to define the specific mode of operation of DDR SDRAM device. This definition includes the selection of a burst length, a burst type, a CAS latency and an operating mode, as shown in the Mode Register Diagram. The mode register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0) and will retain the stored information until it is programmed again or the device loses power (except for bit A8, which is self-clearing). Reprogramming the mode register will not alter the contents of the memory, provided it is performed correctly. The mode register must be loaded (reloaded) when all device banks are idle and no bursts are in progress, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation. Mode register bits A0–A2 specify the burst length, A3 specifies the type of burst (sequential or interleaved), A4–A6 specify the CAS latency, and A7–A11 (128MB), A7–A12 (256MB, 512MB), or A7–A13 (1GB) specify the operating mode. #### **Burst Length** Read and write accesses to the DDR SDRAM are burst oriented, with the burst length being programmable, as shown in Mode Register Diagram. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 2, 4, or 8 locations are available for both the sequential and the interleaved burst types. Reserved states should not be used, as unknown operation or incompatibility with future versions may result. When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1–A*i* when the burst length is set to two, by A2–A*i* when the burst length is set to four and by A3–A*i* when the burst length is set to eight (where A*i* is the most significant column address bit for a given configuration; see note 5 of Table 3, Burst Definition Table, on page 8). The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. The programmed burst length applies to both read and write bursts. ### **Burst Type** Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3. The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 3, Burst Definition Table, on page 8. ### **Read Latency** The READ latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first bit of output data. The latency can be set to 2 or 2.5 clocks, as shown in Figure 4, CAS Latency Diagram, on page 9. Figure 3: Mode Register Definition Diagram #### 128MB Module * M13 and M12 (BA0 and BA1) must be "0, 0" to select the base mode register (vs. the extended mode register). #### 256MB and 512MB Modules * M14 and M13 (BA0 and BA1) must be "0, 0" to select the base mode register (vs. the extended mode register). #### 1GB Module * M15 and M14 (BA1 and BA0) must be "0, 0" to select the base mode register (vs. the extended mode register). | | | | Burst Length | |----|----|----|--------------| | M2 | M1 | M0 | M3 = 0 | | 0 | 0 | 0 | Reserved | | 0 | 0 | 1 | 2 | | 0 | 1 | 0 | 4 | | 0 | 1 | 1 | 8 | | 1 | 0 | 0 | Reserved | | 1 | 0 | 1 | Reserved | | 1 | 1 | 0 | Reserved | | 1 | 1 | 1 | Reserved | | М3 | Burst Type | |----|-------------| | 0 | Sequential | | 1 | Interleaved | | M | 6 M5 | M4 | CAS Latency | |---|------|----|-------------| | 0 | 0 | 0 | Reserved | | 0 | 0 | 1 | Reserved | | 0 | 1 | 0 | 2 | | 0 | 1 | 1 | Reserved | | 1 | 0 | 0 | Reserved | | 1 | 0 | 1 | Reserved | | 1 | 1 | 0 | 2.5 | | 1 | 1 | 1 | Reserved | | M13 | M12 | M11 | M10 | М9 | М8 | M7 | M6-M0 | Operating Mode | |-----|-----|-----|-----|----|----|----|-------|----------------------------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Valid | Normal Operation | | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Valid | Normal Operation/Reset DLL | | - | - | - | - | - | - | - | - | All other states reserved | **Table 3: Burst Definition Table** | Burst | Starf | tina Ca | dumn | Order of Access | es Within a Burst | |--------|----------------------------|---------|------|-------------------|--------------------| | Length | Starting Column
Address | | | Type = Sequential | Type = Interleaved | | | | | A0 | | | | 2 | | | 0 | 0-1 | 0-1 | | | | | 1 | 1-0 | 1-0 | | | | A1 | A0 | | | | | | 0 | 0 | 0-1-2-3 | 0-1-2-3 | | 4 | | 0 | 1 | 1-2-3-0 | 1-0-3-2 | | 4 | | 1 | 0 | 2-3-0-1 | 2-3-0-1 | | | | 1 | 1 | 3-0-1-2 | 3-2-1-0 | | | A2 | A1 | A0 | | | | | 0 | 0 | 0 | 0-1-2-3-4-5-6-7 | 0-1-2-3-4-5-6-7 | | | 0 | 0 | 1 | 1-2-3-4-5-6-7-0 | 1-0-3-2-5-4-7-6 | | | 0 | 1 | 0 | 2-3-4-5-6-7-0-1 | 2-3-0-1-6-7-4-5 | | 8 | 0 | 1 | 1 | 3-4-5-6-7-0-1-2 | 3-2-1-0-7-6-5-4 | | | 1 | 0 | 0 | 4-5-6-7-0-1-2-3 | 4-5-6-7-0-1-2-3 | | | 1 | 0 | 1 | 5-6-7-0-1-2-3-4 | 5-4-7-6-1-0-3-2 | | | 1 | 1 | 0 | 6-7-0-1-2-3-4-5 | 6-7-4-5-2-3-0-1 | | | 1 | 1 | 1 | 7-0-1-2-3-4-5-6 | 7-6-5-4-3-2-1-0 | Notes: 1. For a burst length of two, A1-Ai select the two- data-element block; A0 selects the first access within the block. - 2. For a burst length of four, A2-Ai select the four- data-element block; A0-A1 select the first access within the block. - 3. For a burst length of eight, A3-Ai select the eight- data-element block; A0-A2 select the first access within the block. - 4. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. - 5. i = 9 for 128MB, 256MB i = 9, 11 for 512MB, 1GB Table 4: CAS Latency (CL) Table | | Allowable Operating C | lock Frequency (MHz) | |-------|-----------------------|----------------------| | Speed | CL = 2 | CL = 2.5 | | -335 | N/A | 75 ≤ f ≤ 167 | | -262 | 75 ≤ f ≤ 133 | 75 ≤ f ≤ 133 | | -26A | 75 ≤ f ≤ 133 | 75 ≤ f ≤ 133 | | -265 | 75 ≤ f ≤ 100 | 75 ≤ f ≤ 133 | Figure 4: CAS Latency Diagram Burst Length = 4 in the cases shown Shown with nominal [†]AC, [†]DQSCK, and [†]DQSQ TRANSITIONING DATA ON'T CARE If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available nominally coincident with clock edge n + m. Table 4, CAS Latency (CL) Table, on page 8, indicates the operating frequencies at which each CAS latency setting can be used. Reserved states should not be used as unknown operation or incompatibility with future versions may result. ### **Operating Mode** The normal operating mode is selected by issuing a MODE REGISTER SET command with bits A7–A11 (128MB), A7–A12 (256MB, 512MB), or A7–A13 (1GB) each set to zero, and bits A0–A6 set to the desired values. A DLL reset is initiated by
issuing a MODE REGISTER SET command with bits A7 and A9–A11 (128MB); A7 and A9–A12 (256MB, 512MB); or A7 and A9–A13 (1GB) each set to zero, bit A8 set to one, and bits A0–A6 set to the desired values. Although not required by the Micron device, JEDEC specifications recommend when a LOAD MODE REGISTER command is issued to reset the DLL, it should always be followed by a LOAD MODE REGISTER command to select normal operating mode. All other combinations of values for A7–A11 (128MB.), A7–A12 (256MB, 512MB), or A7–A13 (1GB) are reserved for future use and/or test modes. Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result. ### **Extended Mode Register** The extended mode register controls functions beyond those controlled by the mode register; these additional functions are DLL enable/disable and output drive strength. These functions are controlled via the bits shown in the Extended Mode Register Definition Diagram. The extended mode register is programmed via the LOAD MODE REGISTER command to the mode register (with BA0 = 1 and BA1 = 0) and will retain the stored information until it is programmed again or the device loses power. The enabling of the DLL should always be followed by a LOAD MODE REGISTER command to the mode register (BA0, /BA1 both low) to reset the DLL. The extended mode register must be loaded when all device banks are idle and no bursts are in progress, and the controller must wait the specified time before initiating any subsequent operation. Violating either of these requirements could result in unspecified operation. #### **DLL Enable/Disable** The DLL must be enabled for normal operation. DLL enable is required during power-up initialization and upon returning to normal operation after having disabled the DLL for the purpose of debug or evaluation. (When the device exits self refresh mode, the DLL is enabled automatically.) Any time the DLL is enabled, 200 clock cycles with CKE HIGH must occur before a READ command can be issued. Figure 5: Extended Mode Register Definition Diagram Notes: 1. BA1 and BA0 (E13 and E12 for 128MB; E14 and E13 for 256MB, 512MB; or E15 and E14 for 1GB) must be "0, 1" to select the Extended Mode Register (vs. the base Mode Register). 2.QFC# is not supported. # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Commands #### Commands Table 5, Commands Truth Table, and Table 6, DM Operation Truth Table, provide a general reference of available commands. For a more detailed description of commands and operations, refer to the Micron 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM component data sheets. #### **Table 5: Commands Truth Table** CKE is HIGH for all commands shown except SELF REFRESH; all states and sequences not shown are illegal or reserved | Name (Function) | CS# | RAS# | CAS# | WE# | Address | Notes | |--|-----|------|------|-----|----------|-------| | DESELECT (NOP) | Н | Х | Х | Х | Х | 1 | | NO OPERATION (NOP) | L | Н | Н | Н | Х | 1 | | ACTIVE (Select device bank and activate row) | L | L | Н | Н | Bank/Row | 2 | | READ (Select device bank and column, and start READ burst) | L | Н | L | Н | Bank/Col | 3 | | WRITE (Select device bank and column, and start WRITE burst) | L | Н | L | L | Bank/Col | 3 | | BURST TERMINATE | L | Н | Н | L | Х | 4 | | PRECHARGE (Deactivate row in device bank or banks) | L | L | Н | L | Code | 5 | | AUTO REFRESH or SELF REFRESH (Enter self refresh mode) | L | L | L | Н | Х | 6, 7 | | LOAD MODE REGISTER | L | L | L | L | Op-Code | 8 | Notes: 1. DESELECT and NOP are functionally interchangeable. - 2. BA0-BA1 provide device bank address and A0-A11(128MB), A0-A12 (256MB, 512MB), or A0-A13 (1GB) provide row address. - 3. BA0-BA1 provide device bank address; A0-A9 (128MB, 256MB) or A0-A9, A11 (512MB, 1GB) provide column address; A10 HIGH enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature. - 4. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ bursts with auto precharge enabled and for WRITE bursts. - 5. A10 LOW: BA0–BA1 determine which device bank is precharged. A10 HIGH: all device banks are precharged and BA0–BA1 are "Don't Care." - 6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW. - 7. Internal refresh counter controls row addressing; all inputs and I/Os are "Don't Care" except for CKE. - 8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0 select the mode register; - BA0 = 1, BA1 = 0 select extended mode register; other combinations of BA0-BA1 are reserved). A0-A11(128MB), A0-A12 (256MB, 512MB), or A0-A13 (1GB) provide the opcode to be written to the selected mode register. #### **Table 6: DM Operation Truth Table** Used to mask write data; provided coincident with the corresponding data | Name (Function) | DM | DQs | |-----------------|----|-------| | Write Enable | L | Valid | | Write Inhibit | Н | X | # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Absolute Maximum Ratings ## **Absolute Maximum Ratings** Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. | VDD Supply Voltage Relative to Vss1V to +3.6 | V | |--|---| | VDDQ Supply Voltage Relative to Vss | V | | VREF and Inputs Voltage Relative to Vss1V to +3.6V | V | | I/O Pins Voltage Relative to Vss0.5V to VddQ +0.5V | V | | Operating Temperature, | | | T _A (ambient - commercial) | C | | T _A (ambient - industrial) | C | | Storage Temperature (plastic) | C | | Short Circuit Output Current50m/ | A | ## **Electrical Specifications** ### **Table 7: DC Electrical Characteristics and Operating Conditions** Notes: 1–5, 14; notes appear on pages 19–23; $0^{\circ}C \le T_A \le +70^{\circ}C$ | Parameter/Condition | | Symbol | Min | Max | Units | Notes | |--|---|---------|-------------|-------------|-------|---------------| | Supply Voltage | | Vdd | 2.3 | 2.7 | V | 32, 36 | | I/O Supply Voltage | | VDDQ | 2.3 | 2.7 | V | 32, 36,
39 | | I/O Reference Voltage | | VREF | 0.49 x VDDQ | 0.51 x VDDQ | V | 6, 39 | | I/O Termination Voltage (system) | | VTT | VREF - 0.04 | VREF + 0.04 | V | 7, 39 | | Input High (Logic 1) Voltage | | VIH(Dc) | VREF + 0.15 | VDD + 0.3 | V | 25 | | Input Low (Logic 0) Voltage | | VIL(DC) | -0.3 | VREF - 0.15 | V | 25 | | INPUT LEAKAGE CURRENT Any input $0V \le VIN \le VDD$, VREF pin $0V \le VIN \le 1.35V$ | Command/Address,
RAS#, CAS#, WE#,
CKE, S# | lı | -18 | 18 | μΑ | 46 | | (All other pins not under test = 0V) | CK, CK# | lı | -5 | 5 | μΑ | | | | DM | lı . | -2 | 2 | μΑ | | | OUTPUT LEAKAGE CURRENT (DQs are disabled; $0V \le VOUT \le VDDQ$) | DQ, DQS | loz | -5 | 5 | μΑ | 46 | | OUTPUT LEVELS: | | | -16.8 | _ | mA | | | High Current (Vout = VDDQ-0.373V, minimum VREF, minimum VTT) Low Current (Vout = 0.373V, maximum VREF, maximum VTT) | | lol | 16.8 | - | mA | 33, 34 | #### **Table 8: AC Input Operating Conditions** Notes: 1–5, 12, 48; notes appear on pages 19–23; $0^{\circ}C \le T_{A} \le +70^{\circ}C$; VDD = VDDQ = +2.5V ±0.2V | Parameter/Condition | Symbol | Min | Мах | Units | Notes | |------------------------------|----------|--------------|--------------|-------|--------| | Input High (Logic 1) Voltage | VIH(Ac) | VREF + 0.310 | _ | V | 25, 35 | | Input Low (Logic 0) Voltage | VIL(AC) | _ | VREF - 0.310 | V | 25, 35 | | I/O Reference Voltage | VREF(AC) | 0.49 x VDDQ | 0.51 x VDDQ | V | 6 | ## 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Electrical Specifications #### Table 9: IDD Specifications and Conditions – 128MB DDR SDRAM components only; Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; $0^{\circ}C \le T_A \le +70^{\circ}C$; VDD = VDDQ = $+2.5V \pm 0.2V$ | | | | | Max | | | | |--|---|--------|-------|-------|---------------|--------|---------------| | Parameter/Condition | | Symbol | -335 | -262 | -26A/
-265 | Units | Notes | | OPERATING CURRENT: One device bank; Active-Precharge;
^t RC = ^t RC (MIN); ^t CK = ^t CK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles | | | 1,125 | 990 | 945 | mA | 20, 41 | | OPERATING CURRENT: One device bank
Precharge; Burst = 2; ^t RC = ^t RC (MIN); ^t CH
0mA; Address and control inputs chang
cycle | C = ^t CK (MIN); ΙΟ υ Τ = | IDD1 | 1,215 | 1,080 | 1,080 | mA | 20, 41 | | PRECHARGE POWER-DOWN STANDBY (banks idle; Power-down mode; ^t CK = ^t C (LOW) | | IDD2P | 27 | 27 | 27 | mA | 21, 28,
43 | | IDLE STANDBY CURRENT: CS# = HIGH; A tCK = tCK MIN; CKE = HIGH; Address and inputs changing once per clock cycle. VIDQS, and DM | d other control | IDD2F | 405 | 405 | 360 | mA | 44 | | ACTIVE POWER-DOWN STANDBY CURR bank active; Power-down mode; ^t CK = ^t LOW | | IDD3P | 225 | 225 | 180 | mA | 21, 28,
43 | | ACTIVE STANDBY CURRENT: CS# = HIGH device bank; Active-Precharge; ^t RC = RA (MIN); DQ, DM and DQS inputs changin cycle; Address and other control inputs clock cycle | S (MAX); ^t CK = ^t CK
g twice per clock | IDD3N | 450 | 450 | 405
 mA | | | OPERATING CURRENT: Burst = 2; Reads;
One device bank active; Address and co
changing once per clock cycle; CK = ^t CK | ntrol inputs | IDD4R | 1,260 | 1,170 | 1,125 | mA | 20, 41 | | OPERATING CURRENT: Burst = 2; Writes; One device bank active; Address and co changing once per clock cycle; [†] CK = [†] CK and DQS inputs changing twice per clock | ntrol inputs
((MIN); DQ, DM, | IDD4W | 1,260 | 1,125 | 1,080 | mA | 20 | | AUTO REFRESH CURRENT tREFC = tRFC (MIN) | | IDD5 | 2,385 | 1,980 | 1,980 | mA | 20, 43 | | ^t REFC = 15.625μs | | IDD5A | 45 | 45 | 45 | mA | 24, 43 | | SELF REFRESH CURRENT: CKE ≤ 0.2V | | IDD6 | 27 | 27 | 18 | mA | 9 | | OPERATING CURRENT: Four bank interle
with auto precharge with, ^t RC = ^t RC (MI
Address and control inputs change only
READ, or WRITE commands | IDD7 | 3,195 | 2,970 | 2,925 | mA | 20, 42 | | # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Electrical Specifications #### Table 10: IDD Specifications and Conditions - 256MB DDR SDRAM components only; Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; $0^{\circ}C \le T_A \le +70^{\circ}C$; VDD = VDDQ = $+2.5V \pm 0.2V$ | | | | | Max | | | | |--|---|--------|-------|-------|---------------|--------|---------------| | Parameter/Condition | | Symbol | -335 | -262 | -26A/
-265 | Units | Notes | | OPERATING CURRENT: One device bank; Active-Precharge;
[†] RC = [†] RC (MIN); [†] CK = [†] CK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles | | | 1,125 | 1,125 | 960 | mA | 20, 41 | | OPERATING CURRENT: One device bank;
Precharge; Burst = 4; ^t RC = ^t RC (MIN); ^t Ck
IOUT = 0mA; Address and control inputs
clock cycle | C = ^t CK (MIN); | IDD1 | 1,530 | 1,440 | 1,305 | mA | 20, 41 | | PRECHARGE POWER-DOWN STANDBY C
banks idle; Power-down mode; ^t CK = ^t CH
CKE = (LOW) | | IDD2P | 35 | 36 | 36 | mA | 21, 28,
43 | | IDLE STANDBY CURRENT: CS# = HIGH; AI ^t CK = ^t CK MIN; CKE = HIGH; Address and changing once per clock cycle. VIN = VREI DM | IDD2F | 450 | 405 | 405 | mA | 44 | | | ACTIVE POWER-DOWN STANDBY CURRE bank active; Power-down mode; ^t CK = ^t CKE = LOW | | IDD3P | 270 | 225 | 225 | mA | 21, 28,
43 | | ACTIVE STANDBY CURRENT: CS# = HIGH;
device bank; Active-Precharge; ^t RC = RA
(MIN); DQ, DM and DQS inputs changing
cycle; Address and other control inputs of
clock cycle | S (MAX); ^t CK = ^t CK
g twice per clock | IDD3N | 540 | 450 | 450 | mA | | | OPERATING CURRENT: Burst = 2; Reads; One device bank active; Address and corchanging once per clock cycle; CK = ^t CK | ntrol inputs | IDD4R | 1,575 | 1,350 | 1,350 | mA | 20, 41 | | OPERATING CURRENT: Burst = 2; Writes;
One device bank active; Address and cor
changing once per clock cycle; ^t CK = ^t CK
DQS inputs changing twice per clock cyc | ntrol inputs
(MIN); DQ, DM, and | IDD4W | 1,400 | 1,200 | 1,200 | mA | 20 | | AUTO REFRESH CURRENT | tREFC = tRFC(MIN) | IDD5 | 2,295 | 2,115 | 2,115 | mA | 20, 43 | | ^t REFC = 7.8125µs | | IDD5A | 54 | 54 | 54 | mA | 24, 43 | | SELF REFRESH CURRENT: CKE ≤ 0.2V | | IDD6 | 36 | 36 | 36 | mA | 9 | | OPERATING CURRENT: Four bank interle
with auto precharge with, ^t RC = ^t RC (MI
Address and control inputs change only
or WRITE commands | IDD7 | 3,645 | 3,150 | 3,150 | mA | 20, 42 | | ## 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Electrical Specifications #### **Table 11: IDD Specifications and Conditions – 512MB** DDR SDRAM components only; Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; $0^{\circ}C \le T_A \le +70^{\circ}C$; VDD = VDDQ = $+2.5V \pm 0.2V$ | | | | Max | | | | | |--|--|--------|-------|-------|---------------|-------|---------------| | Parameter/Condition | | Symbol | -335 | -262 | -26A/
-265 | Units | Notes | | OPERATING CURRENT: One device bank; Active-Precharge; [†] RC = [†] RC (MIN); [†] CK = [†] CK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles | | | 1,040 | 1,040 | 920 | mA | 20, 41 | | OPERATING CURRENT: One device bank; A Burst = 4 ; ${}^{t}RC = {}^{t}RC$ (MIN); ${}^{t}CK = {}^{t}CK$ (MIN); and control inputs changing once per close | IOUT = 0mA; Address | IDD1 | 1,280 | 1,280 | 1,160 | mA | 20, 41 | | PRECHARGE POWER-DOWN STANDBY CUI
banks idle; Power-down mode; ^t CK = ^t CK (| | IDD2P | 40 | 40 | 40 | mA | 21, 28,
43 | | IDLE STANDBY CURRENT: CS# = HIGH; All of the thick | control inputs | IDD2F | 360 | 360 | 320 | mA | 44 | | ACTIVE POWER-DOWN STANDBY CURREN active; Power-down mode; ^t CK = ^t CK (MIN | | IDD3P | 280 | 280 | 240 | mA | 21, 28,
43 | | ACTIVE STANDBY CURRENT: CS# = HIGH; C
device bank; Active-Precharge; ^t RC = RAS (
(MIN); DQ, DM and DQS inputs changing t
Address and other control inputs changing | MAX); ^t CK = ^t CK
wice per clock cycle; | IDD3N | 400 | 400 | 360 | mA | | | OPERATING CURRENT: Burst = 2; Reads; Codevice bank active; Address and control in per clock cycle; CK = ^t CK (MIN); IOUT = 0 mA | puts changing once | IDD4R | 1,320 | 1,320 | 1,160 | mA | 20, 41 | | OPERATING CURRENT: Burst = 2; Writes; Codevice bank active; Address and control in per clock cycle; [†] CK = [†] CK (MIN); DQ, DM, a changing twice per clock cycle | puts changing once | IDD4W | 1,400 | 1,240 | 1,080 | mA | 20 | | AUTO REFRESH CURRENT | ^t REFC = ^t RFC (MIN) | IDD5 | 2,320 | 2,320 | 2,240 | mA | 20, 43 | | | ^t REFC = 7.8125µs | IDD5A | 80 | 80 | 80 | mA | 24, 43 | | SELF REFRESH CURRENT: CKE ≤ 0.2V | | IDD6 | 40 | 40 | 40 | mA | 9 | | OPERATING CURRENT: Four bank interleaving READs (BL=4) with auto precharge with, ${}^tRC = {}^tRC$ (MIN); ${}^tCK = {}^tCK$ (MIN); Address and control inputs change only during Active READ, or WRITE commands | | ldd7 | 3,240 | 3,200 | 2,800 | mA | 20, 42 | ## 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Electrical Specifications #### Table 12: IDD Specifications and Conditions - 1GB DDR SDRAM components only; Notes: 1–5, 8, 10, 12, 47; notes appear on pages 19–23; $0^{\circ}C \le T_A \le +70^{\circ}C$; VDD = VDDQ = +2.5V ±0.2V | | | | Max | | | | | |---|--|--------|-------|-------|---------------|-------|---------------| | Parameter/Condition | | Symbol | -335 | -262 | -26A/
-265 | Units | Notes | | OPERATING CURRENT: One device bank; Active-Precharge; [†] RC = [†] RC (MIN); [†] CK = [†] CK (MIN); DQ, DM and DQS inputs changing once per clock cyle; Address and control inputs changing once every two clock cycles | | | 1,040 | 1,040 | 1,160 | mA | 20, 41 | | OPERATING CURRENT: One device bank; Act
Burst = 4; ^t RC = ^t RC (MIN); ^t CK = ^t CK (MIN); l
and control inputs changing once per clock | OUT = 0mA; Address | lDD1 | 1,280 | 1,280 | 1,440 | mA | 20, 41 | | PRECHARGE POWER-DOWN STANDBY CURI
banks idle; Power-down mode; ^t CK = ^t CK (N | | IDD2P | 40 | 40 | 80 | mA | 21, 28,
43 | | IDLE STANDBY CURRENT: CS# = HIGH; All de = ^t CK MIN; CKE = HIGH; Address and other changing once per clock cycle. VIN = VREF fo | control inputs | IDD2F | 360 | 360 | 480 | mA | 44 | | ACTIVE POWER-DOWN STANDBY CURRENT active; Power-down mode; ^t CK = ^t CK (MIN); | | IDD3P | 280
 280 | 240 | mA | 21, 28,
43 | | ACTIVE STANDBY CURRENT: CS# = HIGH; Ck device bank; Active-Precharge; ^t RC = RAS (MIN); DQ, DM and DQS inputs changing tv Address and other control inputs changing | MAX); ^t CK = ^t CK
vice per clock cycle; | IDD3N | 360 | 360 | 360 | mA | | | OPERATING CURRENT: Burst = 2; Reads; Condevice bank active; Address and control inper clock cycle; CK = [†] CK (MIN); IOUT = 0mA | | IDD4R | 1,320 | 1,320 | 1,600 | mA | 20, 41 | | OPERATING CURRENT: Burst = 2; Writes; Coldevice bank active; Address and control inpper clock cycle; ^t CK = ^t CK (MIN); DQ, DM, archanging twice per clock cycle | uts changing once | IDD4W | 1,240 | 1,240 | 1,680 | mA | 20 | | AUTO REFRESH CURRENT | t REFC = t RFC (MIN) | IDD5 | 2,320 | 2,320 | 2,640 | mA | 20, 43 | | ^t REFC = 7.8125μs | | IDD5A | 80 | 80 | 80 | mA | 24, 43 | | SELF REFRESH CURRENT: CKE ≤ 0.2V | | IDD6 | 40 | 40 | 72 | mA | 9 | | OPERATING CURRENT: Four bank interleaving READs (BL=4) with auto precharge with, ${}^{t}RC = {}^{t}RC$ (MIN); ${}^{t}CK = {}^{t}CK$ (MIN); Address and control inputs change only during Active READ, or WRITE commands | | IDD7 | 3,240 | 3,200 | 3,880 | mA | 20, 42 | # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Electrical Specifications **Table 13: Capacitance)** Note: 11; notes appear on pages 19-23 | Parameter | Symbol | Min | Тур | Max | Units | |---|--------|------|-----|------|-------| | Input/Output Capacitance: DQ, DQS, DM | Cio | 4.0 | - | 5.0 | pF | | Input Capacitance: Command and Address, S#, CKE | CI1 | 18.0 | - | 27.0 | pF | | Input Capacitance: CK, CK# | CI2 | - | 7.7 | - | pF | #### **Table 14: Electrical Characteristics and Recommended AC Operating Conditions** DDR SDRAM components only; notes appear on pages 19-23 Notes: 1–5, 12–15, 29, 47; $0^{\circ}\text{C} \le \text{T}_{A} \le +70^{\circ}\text{C}$; $\text{VDD} = \text{VDDQ} = +2.5\text{V} \pm 0.2\text{V}$ | AC Characteristics | | -3 | 35 | -2 | 62 | -26a | /-265 | | | |--|------------------------------|---------------------------------------|--------------------|---------------------------------------|-------------------|--------------------------------------|-------------------|-----------------|--------| | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Units | Notes | | Access window of DQs from CK/CK# | ^t AC | -0.7 | +0.7 | -0.75 | +0.75 | -0.75 | +0.75 | ns | | | CK high-level width | ^t CH | 0.45 | 0.55 | 0.45 | 0.55 | 0.45 | 0.55 | ^t CK | 26 | | CK low-level width | ^t CL | 0.45 | 0.55 | 0.45 | 0.55 | 0.45 | 0.55 | ^t CK | 26 | | Clock cycle time CL = 2.5 | ^t CK (2.5) | 6 | 13 | 7.5 | 13 | 7.5 | 13 | ns | 40, 45 | | CL = 2 | ^t CK (2) | 7.5 | 13 | 7.5 | 13 | 10 | 13 | ns | 40, 45 | | DQ and DM input hold time relative DQS | to ^t DH | 0.45 | | 0.5 | | 0.5 | | ns | 23, 27 | | DQ and DM input setup time relative DQS | | 0.45 | | 0.5 | | 0.5 | | ns | 23, 27 | | DQ and DM input pulse width (for eainput) | ch ^t DIPW | 1.75 | | 1.75 | | 1.75 | | ns | 27 | | Access window of DQS from CK/CK# | ^t DQSCK | -0.60 | +0.60 | -0.75 | +0.75 | -0.75 | +0.75 | ns | | | DQS input high pulse width | ^t DQSH | 0.35 | | 0.35 | | 0.35 | | ^t CK | | | DQS input low pulse width | ^t DQSL | 0.35 | | 0.35 | | 0.35 | | ^t CK | | | DQS-DQ skew, DQS to last DQ valid, pgroup, per access | per ^t DQSQ | | 0.45 | | 0.5 | | 0.6 | ns | 22, 23 | | Write command to first DQS latching transition | ^t DQSS | 0.75 | 1.25 | 0.75 | 1.25 | 0.75 | 1.25 | ^t CK | | | DQS falling edge to CK rising - setup time | ^t DSS | 0.2 | | 0.2 | | 0.2 | | ^t CK | | | DQS falling edge from CK rising - hol time | d ^t DSH | 0.2 | | 0.2 | | 0.2 | | ^t CK | | | Half clock period | ^t HP | ^t CH | l, ^t CL | ^t CH | , ^t CL | ^t CH | , ^t CL | ns | 30 | | Data-out high-impedance window fro | | | +0.70 | | +0.75 | | +0.75 | ns | 16, 37 | | Data-out low-impedance window fro CK/CK# | m ^t LZ | -0.70 | | -0.75 | | -0.75 | | ns | 16, 37 | | Address and control input hold time (slow slew rate) | ^t IH _S | 0.75 | | 0.90 | | 1.1 | | ns | 12 | | Address and control input setup time (slow slew rate) | | 0.75 | | 0.90 | | 1.1 | | ns | 12 | | Address and Control input pulse widt (for each input) | | 2.2 | | 2.2 | | 2.2 | | ns | | | LOAD MODE REGISTER command cyclime | | 0.80 | | 15 | | 15 | | ns | | | DQ-DQS hold, DQS to first DQ to go r valid, per access | | ^t HP -
^t QHS | | ^t HP -
^t QHS | | ^t HP-
^t QHS | | ns | 22, 23 | | Data Hold Skew Factor | ^t QHS | | 0.50 | | 0.75 | | 0.75 | ns | | # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Electrical Specifications #### **Table 14: Electrical Characteristics and Recommended AC Operating Conditions (Continued)** DDR SDRAM components only; notes appear on pages 19–23 Notes: 1–5, 12–15, 29, 47; 0°C \leq T $_{A} \leq$ +70°C; VDD = VDDQ = +2.5V $\pm0.2V$ | AC Charac | teristics | | -3 | 35 | -2 | :62 | -26a | /-265 | | | |---|---------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|--------| | Parameter | | Symbol | Min | Max | Min | Max | Min | Max | Units | Notes | | ACTIVE to PRECHARGE com | nmand | ^t RAS | 42 | 70,000 | 40 | 120,00
0 | 40 | 120,00
0 | ns | 31, 48 | | ACTIVE to READ with Auto command | precharge | ^t RAP | 15 | | 15 | | 20 | | ns | | | ACTIVE to ACTIVE/AUTO RE command period | FRESH | ^t RC | 60 | | 60 | | 65 | | ns | | | AUTO REFRESH command period | 128MB,
256MB,
512MB | ^t RFC | 72 | | 75 | | 75 | | ns | 43 | | | 1GB | | 120 | | 120 | | 120 | | ns | 43 | | ACTIVE to READ or WRITE | | ^t RCD | 15 | | 15 | | 20 | | ns | | | PRECHARGE command peri | od | ^t RP | 15 | | 15 | | 20 | | ns | | | DQS read preamble | | ^t RPRE | 0.9 | 1.1 | 0.9 | 1.1 | 0.9 | 1.1 | ^t CK | 38 | | DQS read postamble | | ^t RPST | 0.4 | 0.6 | 0.4 | 0.6 | 0.4 | 0.6 | ^t CK | 38 | | ACTIVE bank a to ACTIVE bank b | | ^t RRD | 12 | | 15 | | 15 | | ns | | | command | | | | | | | | | | | | DQS write preamble | | ^t WPRE | 0.25 | | 0.25 | | 0.25 | | ^t CK | | | DQS write preamble setup | time | ^t WPRES | 0 | | 0 | | 0 | | ns | 18, 19 | | DQS write postamble | | ^t WPST | 0.4 | 0.6 | 0.4 | 0.6 | 0.4 | 0.6 | ^t CK | 17 | | Write recovery time | | ^t WR | 15 | | 15 | | 15 | | ns | | | Internal WRITE to READ co | mmand delay | ^t WTR | 1 | | 1 | | 1 | | ^t CK | | | Data valid output window | (DVW) | na | ^t QH - | ^t DQSQ | ^t QH - | ^t DQSQ | ^t QH - | ^t DQSQ | ns | 22 | | REFRESH to REFRESH | 128MB | | | 140.6 | | 140.6 | | 140.6 | μs | 21 | | command interval | 256MB,
512MB, 1GB | ^t REFC | | 70.3 | | 70.3 | | 70.3 | μs | 21 | | Average periodic refresh | 128MB | | | 15.6 | | 15.6 | | 15.6 | μs | 21 | | interval | 256MB,
512MB, 1GB | ^t REFI | | 7.8 | | 7.8 | 0 | 7.8 | μs | | | Terminating voltage delay | to VDD | ^t VTD | 0 | | 0 | | 0 | | ns | | | Exit SELF REFRESH to non-R | | ^t XSNR | 75 | | 75 | | 75 | | ns | | | Exit SELF REFRESH to READ | command | ^t XSRD | 200 | | 200 | | 200 | | ^t CK | | #### **Notes** - 1. All voltages referenced to Vss. - 2. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. - 3. Outputs measured with equivalent load: - 4. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 1V/ns in the range between VIL(AC) and VIH(AC). - 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level). - 6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise (non-common mode) on Vref may not exceed ±2 percent of the DC value. Thus, from VDDQ/2, Vref is allowed ±25mV for DC error and an additional ±25mV for AC noise. This measurement is to be taken at the nearest VREF bypass capacitor. - 7. VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF and must track variations in the DC level of VREF. - 8. IDD is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time at CL = 2 for -26A and -202, CL = 2.5 for -335 and -265 with the outputs open. - 9. Enables on-chip refresh and address counters. - 10. IDD specifications are tested after the device is properly initialized, and is averaged at the defined cycle rate. - 11. This parameter is sampled. VDD = $\pm 2.5V \pm 0.2V$, VDDQ = $\pm 2.5V \pm 0.2V$, VREF = VSS, f = 100 MHz, $T_A = 25$ °C, VOUT(DC) = VDDQ/2, VOUT (peak to peak) = 0.2V. DM input is grouped with I/O pins, reflecting the fact that they are matched in loading. - 12. For slew rates < 1 V/ns and \geq to 0.5 Vns. If the slew rate is < 0.5V/ns, timing must be derated: ${}^t\text{IS}$ has an additional 50ps per each 100 mV/ns reduction in slew rate from 500 mV/ns, while ${}^t\text{IH}$ is unaffected. If the slew rate exceeds 4.5 V/ns, functionality is uncertain. For -335, slew rates must be \geq 0.5 V/ns. - 13. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK# cross; the input reference level for signals other than CK/CK# is VREF. - 14. Inputs are not
recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizes, CKE \leq 0.3 x VDDQ is recognized as LOW. - 15. The output timing reference level, as measured at the timing reference point indicated in Note 3, is VTT. ## 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Notes - 16. ^tHZ and ^tLZ transitions occur in the same access time windows as data valid transitions. These parameters are not referenced to a specific voltage level, but specify when the device output is no longer driving (HZ) or begins driving (LZ). - 17. The intent of the Don't Care state after completion of the postamble is the DQS-driven signal should either be high, low, or high-Z and that any signal transition within the input switching region must follow valid input requirements. That is, if DQS transitions high [above VIHDC (MIN)] then it must not transition low (below VIHDC) prior to ^tDOSH (MIN). - 18. This is not a device limit. The device will operate with a negative value, but system performance could be degraded due to bus turnaround. - 19. It is recommended that DQS be valid (HIGH or LOW) on or before the WRITE command. The case shown (DQS going from High-Z to logic LOW) applies when no WRITEs were previously in progress on the bus. If a previous WRITE was in progress, DQS could be HIGH during this time, depending on [†]DQSS. - 20. MIN (^tRC or ^tRFC) for IDD measurements is the smallest multiple of ^tCK that meets the minimum absolute value for the respective parameter. ^tRAS (MAX) for IDD measurements is the largest multiple of ^tCK that meets the maximum absolute value for ^tRAS. - 21. The refresh period 64ms. This equates to an average refresh rate of 15.625µs (128MB), or 7.8251µs (256MB, 512MB, 1GB). However, an AUTO REFRESH command must be asserted at least once every 140.6µs (128MB) or 70.3µs (256MB, 512MB, 1GB); burst refreshing or posting by the DRAM controller greater than eight refresh cycles is not allowed. - 22. The valid data window is derived by achieving other specifications: ^tHP (^tCK/2), ^tDQSQ, and ^tQH (^tQH = ^tHP ^tQHS). The data valid window derates in direct porportion with the clock duty cycle and a practical data valid window can be derived, as shown in Figure 6, Derating Data Valid Window (^tQH ^tDQSQ). The clock is allowed a maximum duty cycle variation of 45/55, beyond which functionality is uncertain. The data valid window derating curves are provided below for duty cycles ranging between 50/50 and 45/55. - 23. Each byte lane has a corresponding DQS. - 24. This limit is actually a nominal value and does not result in a fail value. CKE is HIGH during REFRESH command period (^tRFC [MIN]) else CKE is LOW (i.e., during standby). - 25. To maintain a valid level, the transitioning edge of the input must: - a. Sustain a constant slew rate from the current AC level through to the target AC level, VIL(AC) or VIH(AC). - b. Reach at least the target AC level. - c. After the AC target level is reached, continue to maintain at least the target DC level, VIL(DC) or VIH(DC). - 26. JEDEC specifies CK and CK# input slew rate must be $\leq 1V/ns$ (2V/ns differentially). - 27. DQ and DM input slew rates must not deviate from DQS by more than 10 percent. If the DQ/DM/DQS slew rate is less than 0.5 V/ns, timing must be derated: 50ps must be added to tDS and tDH for each 100 mv/ns reduction in slew rate. If slew rate exceeds 4 V/ns, functionality is uncertain. For -335, slew rates must be \geq 0.5 V/ns. - 28. VDD must not vary more than 4 percent if CKE is not active while any bank is active. - 29. The clock is allowed up to ± 150 ps of jitter. Each timing parameter is allowed to vary by the same amount. - 30. ^tHP min is the lesser of ^tCL minimum and t^tCH minimum actually applied to the device CK and CK# inputs, collectively during bank active. Figure 6: Derating Data Valid Window (^tQH - ^tDQSQ) - 31. READs and WRITEs with auto precharge are not allowed to be issued until ^tRAS(min) can be satisfied prior to the internal precharge command being issued. - 32. Any positive glitch must be less than 1/3 of the clock and not more than +400mV or 2.9V, whichever is less. Any negative glitch must be less than 1/3 of the clock cycle and not exceed either -300mV or 2.2V, whichever is more positive. - 33. Normal Output Drive Curves: - a. The full variation in driver pull-down current from minimum to maximum process, temperature and voltage will lie within the outer bounding lines of the V-I curve of Figure 7, Pull-Down Characteristics. - b. The variation in driver pull-down current within nominal limits of voltage and temperature is expected, but not guaranteed, to lie within the inner bounding lines of the V-I curve of Figure 7, Pull-Down Characteristics. - c. The full variation in driver pull-up current from minimum to maximum process, temperature and voltage will lie within the outer bounding lines of the V-I curve of Figure 8, Pull-Up Characteristics - d. The variation in driver pull-up current within nominal limits of voltage and temperature is expected, but not guaranteed, to lie within the inner bounding lines of the V-I curve of Figure 8, Pull-Up Characteristics. - e. The full variation in the ratio of the maximum to minimum pull-up and pull-down current should be between 0.71 and 1.4, for device drain-to-source voltages from 0.1V to 1.0V, and at the same voltage and temperature. - f. The full variation in the ratio of the nominal pull-up to pull-down current should be unity ± 10 percent, for device drain-to-source voltages from 0.1V to 1.0V. ## 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Notes - 34. The voltage levels used are derived from a minimum VDD level and the referenced test load. In practice, the voltage levels obtained from a properly terminated bus will provide significantly different voltage values. - 35. VIH overshoot: VIH(MAX) = VDDQ + 1.5V for a pulse width \leq 3ns and the pulse width can not be greater than 1/3 of the cycle rate. VIL undershoot: VIL(MIN) = -1.5V for a pulse width \leq 3ns and the pulse width can not be greater than 1/3 of the cycle rate. - 36. VDD and VDDQ must track each other. - 37. ^tHZ (MAX) will prevail over ^tDQSCK (MAX) + ^tRPST (MAX) condition. ^tLZ (MIN) will prevail over ^tDQSCK (MIN) + ^tRPRE (MAX) condition. - 38. ^tRPST end point and ^tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (^tRPST), or begins driving (^tRPRE). - 39. During initialization, VDDQ, VTT, and VREF must be equal to or less than VDD + 0.3V. Alternatively, VTT may be 1.35V maximum during power up, even if VDD/VDDQ are 0Vs, provided a minimum of 42Ω of series resistance is used between the VTT supply and the input pin. - 40. The current Micron part operates below the slowest JEDEC operating frequency of 83 MHz. As such, future die may not reflect this option. - 41. Random addressing changing and 50 percent of data changing at every transfer. - 42. Random addressing changing and 100 percent of data changing at every transfer. Figure 7: Pull-Down Characteristics Figure 8: Pull-Up Characteristics # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Notes - 43. CKE must be active (high) during the entire time a refresh command is executed. That is, from the time the AUTO REFRESH command is registered, CKE must be active at each rising clock edge, until ^tREF later. - 44. IDD2N specifies the DQ, DQS, and DM to be driven to a valid high or low logic level. IDD2Q is similar to IDD2F except IDD2Q specifies the address and control inputs to remain stable. Although IDD2F, IDD2N, and IDD2Q are similar, IDD2F is "worst case." - 45. Whenever the operating frequency is altered, not including jitter, the DLL is required to be reset. This is followed by 200 clock cycles. - 46. Leakage number reflects the worst case leakage possible through the module pin, not what each memory device contributes. - 47. When an input signal is HIGH or LOW, it is defined as a steady state logic HIGH or LOW. - 48. The -335 speed grade will operate with ${}^{t}RAS$ (MIN) = 40ns and ${}^{t}RAS$ (MAX) = 120,000ns at any slower frequency. # 128MB, 256MB, 512MB, 1GB: (x72, PLL, SR) 200-Pin DDR SODIMM Initialization #### **Initialization** To ensure device operation the DRAM must be initialized as described below: - 1. Simultaneously apply power to VDD and VDDQ. - 2. Apply VREF and then VTT power. - 3. Assert and hold CKE at a LVCMOS logic low. - 4. Provide stable CLOCK signals. - 5. Wait at least 200 µs. - 6. Bring CKE high and provide at least one NOP or DESELECT command. At this point the CKE input changes from a LVCMOS input to a SSTL2 input only and will remain a SSTL_2 input unless a power cycle occurs. - 7. Perform a PRECHARGE ALL command. - 8. Wait at least ^tRP time, during this time NOPs or DESELECT commands must be given. - 9. Using the LMR command program the Extended Mode Register (E0 = 0 to enable the DLL and E1 = 0 for normal drive or E1 = 1 for reduced drive, E2 through En must be set to 0; where n = most significant bit). - 10. Wait at least ^tMRD time, only NOPs or DESELECT commands are allowed. - 11. Using the LMR command program the Mode Register to set operating parameters and to reset the DLL. Note at least 200 clock cycles are required between a DLL reset and any READ command. - 12. Wait at least ^tMRD time, only NOPs or DESELECT commands are allowed. - 13. Issue a PRECHARGE ALL command. - 14. Wait at least ^tRP time, only NOPs or DESELECT commands are allowed. - 15. Issue an AUTO REFRESH command (Note this may be moved prior to step 13). - 16. Wait at least ^tRFC time, only NOPs or DESELECT commands are allowed. - 17. Issue an AUTO REFRESH command (Note this may be moved prior to step 13). - 18. Wait at least ^tRFC time, only NOPs or DESELECT commands are allowed. - 19. Although not required by the Micron device, JEDEC requires a LMR command to clear the DLL bit
(set M8 = 0). If a LMR command is issued the same operating parameters should be utilized as in step 11. - 20. Wait at least ^tMRD time, only NOPs or DESELECT commands are allowed. - 21. At this point the DRAM is ready for any valid command. Note 200 clock cycles are required between step 11 (DLL Reset) and any READ command. Figure 9: Initialization Flow Diagram ### **PLL Specifications** **Table 15: PLL Clock Driver Timing Requirements and Switching Characteristics** Note: 1 | | | 0°C ≤ T _A ≤ +70°C
Vdd = +2.5V ±0.2V | | | | | |---------------------------|------------------------------|---|---------|-----|-------|-------| | Parameter | Symbol | Min | Nominal | Max | Units | notes | | Operating Clock Frequency | †CK | 60 | - | 170 | MHz | 2, 3 | | Input Duty Cycle | ^t DC | 40 | - | 60 | % | | | Stabilization Time | ^t STAB | - | - | 100 | ms | 4 | | Cycle to Cycle Jitter | tJIT _{CC} | -75 | - | 75 | ps | | | Static Phase Offset | ^t ∅ | -50 | 0 | 50 | ps | 5 | | Output Clock Skew | ^t SK _o | - | - | 100 | ps | | | Period Jitter | tJIT _{PER} | -75 | - | 75 | ps | 6 | | Half-Period Jitter | tJIT _{HPER} | -100 | - | 100 | ps | 6 | | Input Clock Slew Rate | ^t LS _I | 1.0 | - | 4 | V/ns | | | Output Clock Slew Rate | ^t LS _o | 1.0 | - | 2 | V/ns | 7 | - Notes: 1. The timing and switching specifications for the PLL listed above are critical for proper operation of DDR SDRAM modules. These are meant to be a subset of the parameters for the specific device used on the module. Detailed information for this PLL is available in JEDEC Standard JESD82. - 2. The PLL must be able to handle spread spectrum induced skew. - 3. Operating clock frequency indicates a range over which the PLL must be able to lock, but in which it is not required to meet the other timing parameters. (Used for low-speed system debug.) - 4. Stabilization time is the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal after power up. - 5. Static Phase Offset does not include Jitter. - 6. Period Jitter and Half-Period Jitter specifications are separate specifications that must be met independently of each other. - 7. The Output Slew Rate is determined from the IBIS model: ### **Thermal Specifications** Figure 10: Component Case Temperature vs. Air Flow - 8. Micron Technology, Inc. recommends a minimum air flow of 1 meter/second (~197 LFM) across all modules. - 9. The component case temperature measurements shown above were obtained experimentally. The typical system to be used for experimental purposes is a dual-processor 600 MHz work station, fully loaded, with four comparable registered memory modules. Case temperatures charted represent worst-case component locations on modules installed in the internal slots of the system. - 10. Temperature versus air speed data is obtained by performing experiments with the system motherboard removed from its case and mounted in a Eiffel-type low air speed wind tunnel. Peripheral devices installed on the system motherboard for testing are the processor(s) and video card, all other peripheral devices are mounted outside of the wind tunnel test chamber. - 11. The memory diagnostic software used for determining worst-case component temperatures is a memory diagnostic software application developed for internal use by Micron Technology, Inc. #### **Serial Presence-Detect** #### **SPD Clock and Data Conventions** Data states on the SDA line can change only during SCL LOW. SDA state changes during SCL HIGH are reserved for indicating start and stop conditions (as shown in Figure 11, Data Validity, and Figure 12, Definition of Start and Stop). #### **SPD Start Condition** All commands are preceded by the start condition, which is a HIGH-to-LOW transition of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL lines for the start condition and will not respond to any command until this condition has been met. #### **SPD Stop Condition** All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device into standby power mode. #### **SPD Acknowledge** Acknowledge is a software convention used to indicate successful data transfers. The transmitting device, either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the receiver will pull the SDA line LOW to acknowledge that it received the eight bits of data (as shown in Figure 13, Acknowledge Response from Receiver). The SPD device will always respond with an acknowledge after recognition of a start condition and its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond with an acknowledge after the receipt of each subsequent eight-bit word. In the read mode the SPD device will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by the master, the slave will continue to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the stop condition to return to standby power mode. Figure 11: Data Validity Figure 12: Definition of Start and Stop Figure 13: Acknowledge Response from Receiver **Table 16: EEPROM Device Select Code** Most significant bit (b7) is sent first | Select Code | Dev | ice Typ | e Identi | fier | Ch | RW | | | |--------------------------------------|-----|---------|----------|------|-----|-----|-----|----| | Select Code | b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 | | Memory Area Select Code (two arrays) | 1 | 0 | 1 | 0 | SA2 | SA1 | SA0 | RW | | Protection Register Select Code | 0 | 1 | 1 | 0 | SA2 | SA1 | SA0 | R₩ | **Table 17: EEPROM Operating Modes** | Mode | RW Bit | WC | Bytes | Initial Sequence | |----------------------|--------|------------|-------|---| | Current Address Read | 1 | VIH or VIL | 1 | START, Device Select, $R\overline{W} = '1'$ | | Random Address Read | 0 | VIH or VIL | 1 | START, Device Select, $R\overline{W} = '0'$, Address | | | 1 | VIH or VIL | 1 | reSTART, Device Select, $R\overline{W} = '1'$ | | Sequential Read | 1 | VIH or VIL | ≥ 1 | Similar to Current or Random Address Read | | Byte Write | 0 | VIL | 1 | START, Device Select, $R\overline{W} = '0'$ | | Page Write | 0 | VIL | ≤ 16 | START, Device Select, RW = '0' | Figure 14: SPD EEPROM Timing Diagram #### **Table 18: Serial Presence-Detect EEPROM DC Operating Conditions** All voltages referenced to Vss; VDDSPD = +2.3V to +3.6V | Parameter/Condition | Symbol | Min | Max | Units | |---|--------|-----------|-----------|-------| | SUPPLY VOLTAGE | VDD | 2.3 | 3.6 | V | | INPUT HIGH VOLTAGE: Logic 1; All inputs | ViH | VDD X 0.7 | VDD + 0.5 | V | | INPUT LOW VOLTAGE: Logic 0; All inputs | VIL | -1 | VDD x 0.3 | V | | OUTPUT LOW VOLTAGE: IOUT = 3mA | Vol | _ | 0.4 | V | | INPUT LEAKAGE CURRENT: VIN = GND to VDD | ILI | _ | 10 | μΑ | | OUTPUT LEAKAGE CURRENT: Vout = GND to VDD | ILO | _ | 10 | μΑ | | STANDBY CURRENT: | ISB | _ | 30 | μΑ | | SCL = SDA = VDD - 0.3V; All other inputs = Vss or VDD | | | | | | POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz | IDD | _ | 2 | mA | #### **Table 19: Serial Presence-Detect EEPROM AC Operating Conditions** All voltages referenced to Vss; VDDSPD = +2.3V to +3.6V | Parameter/Condition | Symbol | Min | Max | Units | Notes | |---|---------------------|-----|-----|-------|-------| | SCL LOW to SDA data-out valid | ^t AA | 0.2 | 0.9 | μs | 1 | | Time the bus must be free before a new transition can start | ^t BUF | 1.3 | | μs | | | Data-out hold time | ^t DH | 200 | | ns | | | SDA and SCL fall time | ^t F | | 300 | ns | 2 | | Data-in hold time | tHD:DAT | 0 | | μs | | | Start condition hold time | tHD:STA | 0.6 | | μs | | | Clock HIGH period | ^t HIGH | 0.6 | | μs | | | Noise suppression time constant at SCL, SDA inputs | ^t l | | 50 | ns | | | Clock LOW period | ^t LOW | 1.3 | | μs | | | SDA and SCL rise time | ^t R | | 0.3 | μs | 2 | | SCL clock frequency | fSCL | | 400 | KHz | | | Data-in setup time | ^t SU:DAT | 100 | | ns | | | Start condition setup time | ^t SU:STA | 0.6 | | μs | 3 | | Stop condition setup time | ^t SU:STO | 0.6 | | μs | | | WRITE cycle time | ^t WRC | | 10 | ms | 4 | - Notes: 1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1 and the falling or rising edge of SDA. - 2. This parameter is sampled. - 3. For a reSTART condition, or following a WRITE cycle. - 4. The SPD EEPROM WRITE cycle time (^tWRC) is the time from a valid stop condition of a write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address. Table 20: Serial Presence-Detect Matrix - 128MB, 256MB, 512MB "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW" | BYTE | DESCRIPTION | ENTRY(VERSION) | MT9VDDT1672PH | MT9VDDT3272PH | MT9VDDT6472PH | |------|---|--------------------------------------|---------------|---------------|---------------| | 0 | Number of SPD Bytes Used by Micron | 128 | 80 | 80 | 80 | | 1 | Total Number of Bytes in SPD Device | 256 | 08 | 08 | 08 | | 2 | Fundamental Memory Type | DDR SDRAM | 07 | 07 | 07 | | 3 | Number of Row Addresses on Ass'y | 12 or13 | 0C | 0D | 0D | | 4 | Number of Column Addresses on Ass'y | 10 or 11 | 0A | 0A | OB | | 5 | Number of Physical Ranks on DIMM | 1 | 01 | 01 | 01 | | 6 | Module Data Width | 72 | 48 | 48 | 48 | | 7 | Module Data Width (Continued) | 0 | 00 | 00 | 00 | | 8 | Module Voltage Interface
Levels | SSTL 2.5V | 04 | 04 | 04 | | 9 | SDRAM Cycle Time, ^t CK (CAS Latency = | 6ns (-335) | 60 | 60 | 60 | | | 2.5) (see note 2) | 7ns (-262/-26A) | 70 | 70 | 70 | | | | 7.5ns (-265) | 75 | 75 | 75 | | 10 | SDRAM Access from Clock, ^t AC (CAS | 0.7ns (-335) | 70 | 70 | 70 | | | Latency = 2.5) (see note 1) | 0.75ns (-262/-26A/-265) | 75 | 75 | 75 | | | Module Configuration Type | ECC | 02 | 02 | 02 | | | Refresh Rate/ Type | 15.6µs or 7.8µs/SELF | 80 | 82 | 82 | | 13 | SDRAM Device Width (Primary DDR SDRAM) | 8 | 08 | 08 | 08 | | 14 | Error-checking DDR SDRAM Data
Width | 8 | 08 | 08 | 08 | | 15 | Minimum Clock Delay, Back-to-Back
Random Column Access | 1 clock | 01 | 01 | 01 | | 16 | Burst Lengths Supported | 2, 4, 8 | 0E | 0E | 0E | | 17 | Number of Banks on DDR SDRAM Device | 4 | 04 | 04 | 04 | | 18 | CAS Latencies Supported | 2, 2.5 | 0C | 0C | 0C | | 19 | CS Latency | 0 | 01 | 01 | 01 | | 20 | WE Latency | 1 | 02 | 02 | 02 | | 21 | SDRAM Module Attributes | Unbuff, Diff CLK, PLL | 24 | 24 | 24 | | 22 | SDRAM Device Attributes: General | Fast/concurrent AP | 00 | C0 | C0 | | 23 | SDRAM Cycle Time, ^t CK (CL = 2) (See | 7.5ns (-335/-262/-26A) | 75 | 75 | 75 | | | note 2) | 10ns (-265) | A0 | A0 | A0 | | 24 | SDRAM Access from CK, t AC (CL = 2) | 0.7ns (-335) | 70 | 70 | 70 | | | (See note 2) | 0.75ns (-265/-26A) | 75 | 75 | 75 | | | SDRAM Cycle Time, ^t CK (CL = 1.5) | N/A | 00 | 00 | 00 | | | SDRAM Access from CK, ^t AC (CL = 1.5) | N/A | 00 | 00 | 00 | | 27 | Minimum Row Precharge Time, ^t RP | 18ns (-335) | 48 | 48 | 48 | | | (see note 5) | 15ns (-262) | 3C | 3C | 3C | | 20 | Minimum Barra Antire to Barra Antire | 20ns (-26A/-265) | 50 | 50 | 50 | | 28 | Minimum Row Active to Row Active,
tRRD | 12ns (-335)
15ns (-262/-26A/-265) | 30
3C | 30
3C | 30
3C | | 29 | Minimum RAS# to CAS# Delay, ^t RCD | 18ns (-335) | 48 | 48 | 48 | | | (see note 5) | 15ns (-262) | 3C | 3C | 3C | | 20 | DAGUE L SAGUE TRACE | 20ns (-26A/-265) | 50 | 50 | 50 | | 30 | Minimum RAS# Pulse Width, ^t RAS (see note 3) | 42ns (-335)
45ns (-262/-26A/-265) | 2A
2D | 2A
2D | 2A
2D | | 31 | Module Rank Density | 128MB, 256MB, 512MB | | 40 | 80 | | וכ | iviouule nalik Delisity | IZUIVID, ZJUIVID, J IZIVIB | 20 | 40 | οU | Table 20: Serial Presence-Detect Matrix - 128MB, 256MB, 512MB (Continued) "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW" | 32 | BYTE | DESCRIPTION | ENTRY(VERSION) | MT9VDDT1672PH | MT9VDDT3272PH | MT9VDDT6472PH | |--|-------|--|------------------------|---------------|---------------|---------------| | 33 Address and Command Hold Time, ¹ H (see note 4) 1.0ns (262/26A/265) A0 A0 A0 A0 A0 A0 A0 A | 32 | Address and Command Setup Time, ^t IS | , , | | | | | (see note 4) | | 1` ' | | A0 | A0 | A0 | | 34 Data/Data Mask Input Setup Time, ¹ DS 0.45ns (-335 45 50 50 50 50 50 50 5 | 33 | Address and Command Hold Time, ^t IH | , , | | | 80 | | Data/ Data Mask Input Hold Time, [†] DH | | , | | A0 | A0 | A0 | | 35 | 34 | Data/Data Mask Input Setup Time, ^t DS | | _ | _ | _ | | | | | | | | | | 36-40 Reserved Construction Revision Revision Revision Revision Revision Revision Revision Revision Ref Reserved | 35 | Data/ Data Mask Input Hold Time, ¹ DH | • | | | | | Min Active Refresh Time [†] RC 60ns (-335/-262) 3C 3C 3C 41 41 41 41 41 41 41 4 | 25.40 | | 0.5ns (-262/-26A/-265) | | | | | 42 Minimum Auto Refresh to Active/Auto 72ns (-335) 48 48 48 48 48 48 48 4 | | | | | | | | Minimum Auto Refresh to Active/Auto Refresh Command Period, [†] RFC 75ns (-262/-26A/-265) 48 48 48 48 48 48 48 4 | 41 | Min Active Refresh Time 'RC | | | | | | Refresh Command Period, \text{ RFC} 75ns (-262/-26A/-265) 48 48 48 48 | 40 | | | | | | | SDRAM Device Max Cycle Time, [†] CK _{MAX} | 42 | | | | | | | 13ns (-262/-26A/-265) 34 34 34 34 44 SDRAM Device Max DQS-DQ Skew Time, [†] DQSQ 0.5ns (-262/-26A/-265) 32 32 32 32 45 SDRAM Device Max Read Data Hold Skew Factor 0.75ns (-262/-26A/-265) 55 55 55 55 Skew Factor 0.75ns (-262/-26A/-265) 75 75 75 46 Reserved 00 00 00 00 47 DIMM Height 01 01 01 01 48-61 Reserved 00 00 00 00 62 SPD Revision Revision 1.0 10 10 10 63 Checksum For Bytes 0-62 -335 1A 3D 7E -262 ED D0 11 -264 Nanufacturer's JEDEC ID Code MICRON 2C 2C 2C 65-71 Manufacturer's JEDEC ID Code MICRON 2C 2C 2C 65-71 Manufacturing Location 01-12 01-0C 01-0C 73-90 Module Part Number (ASCII) Variable Data Variable Data 91 PCB Identification Code 1-9 01-09 01-09 92 Identification Code (Continued) 0 00 00 93 Year Of Manufacture in BCD Variable Data Variable Data Variable Data 94 Week Of Manufacture in BCD Variable Data Variable Data Variable Data 95-98 Module Serial Number Variable Data Variable Data Variable Data Variable Data 94 Variable Data Variable Data Variable Data Variable Data 95-98 Module Serial Number Variable Data Variable Data Variable Data Variable Data Variable Data 95-98 Module Serial Number Variable Data Varia | 42 | | • | | | | | 44 SDRAM Device Max DQS-DQ Skew Time, *DQSQ 0.45ns (-335) 2D 2D 2D 32 | 43 | SDRAM Device Max Cycle Time, CK _{MAX} | | | | | | Time, *tDQSQ | 11 | SDRAM Davisa Max DOS DO Skow | | | _ | | | 45 SDRAM Device Max Read Data Hold Skew Factor 0.55ns (-335) 55 55 75 75 46 Reserved 00 00 00 00 47 DIMM Height 01 01 01 01 48-61 Reserved 00 00 00 00 62 SPD Revision Revision 1.0 10 10 10 10 63 Checksum For Bytes 0-62 -335 1A 3D 7E | 44 | | , , | | | | | Skew Factor 0.75ns (-262/-26A/-265) 75 75 75 46 Reserved 00 00 00 00 47 DIMM Height 01 01 01 01 48-61 Reserved 00 00 00 00 62 SPD Revision Revision 1.0 10 10 10 63 Checksum For Bytes 0-62 -335 1A 3D 7E -262 ED D0 11 1 -26A 1A FD 3E -265 4A 2D 6E 64 Manufacturer's JEDEC ID Code (continued) 00 00 00 72 Manufacturing Location 01-12 01-0C 01-0C 01-0C 73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data Variable Data 91 PCB Identification Code (Continued) 0 00 00 00 00 92 Identification Code (Continued) 0 0 00 00 00 93 Year Of Manufacture in BCD <t< td=""><td>45</td><td></td><td></td><td>_</td><td>_</td><td></td></t<> | 45 | | | _ | _ | | | 46 Reserved 00 00 00 47 DIMM Height 01 01 01 48–61 Reserved 00 00 00 62 SPD Revision Revision 1.0 10 10 10 63 Checksum For Bytes 0–62 -335 1A 3D 7E -262 ED D0 11 1 -26A 1A FD 3E -265 4A 2D 6E 64 Manufacturer's JEDEC ID Code (continued) 00 00 00 72 Manufacturing Location 01–12 01–0C 01–0C 01–0C 73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data Variable Data Variable Data 91 PCB Identification Code 1-9 01–09 01–09 01–09 01–09 92 Identification Code (Continued) 0 0 00 00 00 93 Year Of Manufacture in BCD | 73 | | | | | | | 47 DIMM Height 01 01 01 48–61 Reserved 00 00 00 62 SPD Revision Revision 1.0 10 10 10 63 Checksum For Bytes 0–62 -335 1A 3D 7E -262 ED D0 11 1 -26A 1A FD 3E -265 4A 2D 6E 64 Manufacturer's JEDEC ID Code MICRON 2C 2C 2C 65-71 Manufacturer's JEDEC ID Code (continued) 00 00 00 00 72 Manufacturing Location 01–12 01–0C 01–0C 01–0C 73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data 91 PCB Identification Code 1–9 01–09 01–09 01–09 92 Identification Code (Continued) 0 00 00 00 93 Year Of Manufacture in BCD Variable Data | 46 | Reserved | , , | 00 | 00 | 00 | | 48–61 Reserved 00 00 00 62 SPD Revision Revision 1.0 10 10 10 63 Checksum For Bytes 0–62 -335 1A 3D 7E -262 ED D0 11 -26A 1A FD 3E -265 4A 2D 6E 64 Manufacturer's JEDEC ID Code (continued) 00 00 00 72 Manufacturing Location 01–12 01–0C 01–0C 01–0C 73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data 91 PCB Identification Code 1–9 01–09 01–09 01–09 92 Identification Code (Continued) 0 00 00 00 93 Year Of Manufacture in BCD
Variable Data Variable Data Variable Data Variable Data 95-98 Module Serial Number Variable Data Variable Data Variable Data | 47 | | | 01 | 01 | 01 | | 62 SPD Revision Revision 1.0 10 10 10 63 Checksum For Bytes 0–62 -335 1A 3D 7E -262 ED D0 11 1 -262 ED D0 11 1 -264 1A FD 3E -265 4A 2D 6E 6D 6E 6D 6E 6E | | | | 00 | 00 | 00 | | 63 Checksum For Bytes 0–62 -335 1A 3D 7E -262 ED D0 11 -26A 1A FD 3E -265 4A 2D 6E 64 Manufacturer's JEDEC ID Code 00 00 00 (continued) 00 00 00 00 72 Manufacturing Location 01–12 01–0C 01–0C 01–0C 73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data 91 PCB Identification Code 1–9 01–09 01–09 01–09 92 Identification Code (Continued) 0 00 00 00 93 Year Of Manufacture in BCD Variable Data Variable Data Variable Data Variable Data 95-98 Module Serial Number Variable Data Variable Data Variable Data Variable Data | | | Revision 1.0 | | 10 | | | -262 ED D0 11 -26A 1A FD 3E -265 4A 2D 6E 64 Manufacturer's JEDEC ID Code MICRON 2C 2C 2C 65-71 Manufacturer's JEDEC ID Code (continued) 00 00 00 72 Manufacturing Location 01–12 01–0C 01–0C 01–0C 73-90 Module Part Number (ASCII) Variable Data Variable Data 91 PCB Identification Code 1–9 01–09 01–09 01–09 92 Identification Code (Continued) 0 00 00 00 93 Year Of Manufacture in BCD Variable Data Variable Data Variable Data 94 Week Of Manufacture in BCD Variable Data | - | | | | | | | -265 4A 2D 6E 64 Manufacturer's JEDEC ID Code MICRON 2C 2C 2C 65-71 Manufacturer's JEDEC ID Code (continued) 72 Manufacturing Location 01–12 01–0C 01–0C 01–0C 73-90 Module Part Number (ASCII) Variable Data Variable Data Variable Data 91 PCB Identification Code 1–9 01–09 01–09 01–09 92 Identification Code (Continued) 0 00 00 93 Year Of Manufacture in BCD Variable Data Variable Data 94 Week Of Manufacture in BCD Variable Data Variable Data 95-98 Module Serial Number Variable Data Variable Data Variable Data | | enecidam For Bytes of GE | | | | | | 64 Manufacturer's JEDEC ID Code 65-71 Manufacturer's JEDEC ID Code (continued) 72 Manufacturing Location 73-90 Module Part Number (ASCII) 91 PCB Identification Code 92 Identification Code (Continued) 93 Year Of Manufacture in BCD 94 Week Of Manufacture in BCD 95-98 Module Serial Number MICRON 2C 2C 2C 2C 2C 2C 2C 2C 2C 2 | | | | | FD | 3E | | 65-71 Manufacturer's JEDEC ID Code (continued) 72 Manufacturing Location 73-90 Module Part Number (ASCII) 91 PCB Identification Code 92 Identification Code (Continued) 93 Year Of Manufacture in BCD 94 Week Of Manufacture in BCD 95-98 Module Serial Number 00 01-0C 01-09 0 | | | -265 | 4A | 2D | 6E | | (continued)01–1201–0C01–0C01–0C73-90 Module Part Number (ASCII)Variable DataVariable DataVariable Data91 PCB Identification Code1–901–0901–0901–0992 Identification Code (Continued)000000093 Year Of Manufacture in BCDVariable DataVariable DataVariable DataVariable Data94 Week Of Manufacture in BCDVariable DataVariable DataVariable DataVariable Data95-98 Module Serial NumberVariable DataVariable DataVariable Data | 64 | Manufacturer's JEDEC ID Code | MICRON | 2C | 2C | 2C | | 73-90 Module Part Number (ASCII) 91 PCB Identification Code 92 Identification Code (Continued) 93 Year Of Manufacture in BCD 94 Week Of Manufacture in BCD 95-98 Module Serial Number Variable Data | 65-71 | | | 00 | 00 | 00 | | 91PCB Identification Code1–901–0901–0901–0992Identification Code (Continued)000000093Year Of Manufacture in BCDVariable DataVariable DataVariable Data94Week Of Manufacture in BCDVariable DataVariable DataVariable Data95-98Module Serial NumberVariable DataVariable DataVariable Data | 72 | Manufacturing Location | 01–12 | 01–0C | 01–0C | 01–0C | | 92Identification Code (Continued)000000093Year Of Manufacture in BCDVariable DataVariable DataVariable Data94Week Of Manufacture in BCDVariable DataVariable DataVariable Data95-98Module Serial NumberVariable DataVariable DataVariable Data | 73-90 | Module Part Number (ASCII) | | Variable Data | Variable Data | Variable Data | | 93 Year Of Manufacture in BCD Variable Data Variable Data Variable Data 94 Week Of Manufacture in BCD Variable Data Variable Data Variable Data 95-98 Module Serial Number Variable Data Variable Data | 91 | PCB Identification Code | 1–9 | 01–09 | 01–09 | 01–09 | | 93Year Of Manufacture in BCDVariable DataVariable DataVariable Data94Week Of Manufacture in BCDVariable DataVariable DataVariable Data95-98Module Serial NumberVariable DataVariable DataVariable Data | 92 | Identification Code (Continued) | 0 | 00 | 00 | 00 | | 94Week Of Manufacture in BCDVariable DataVariable DataVariable Data95-98Module Serial NumberVariable DataVariable DataVariable Data | 93 | - | | Variable Data | Variable Data | Variable Data | | 95-98 Module Serial Number Variable Data Variable Data Variable Data | - | - | -
- | Notes: 1. Device latencies used for SPD values. - 2. Value for -262/-26A ^tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns. - 3. The value of ^tRAS used for -265 modules is calculated from ^tRC ^tRP. Actual device spec value is 40ns. - 4. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster minimum slew rate is met. - 5. The value of ^tRP, ^tRCD, and ^tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR SDRAM device specification is 15ns. **Table 21: Serial Presence- Detect Matrix - 1GB** "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW" | BYTE | DESCRIPTION | ENTRY(VERSION) | MT9VDDT12872PH | |------|--|--|----------------| | 0 | Number of SPD Bytes Used by Micron | 128 | 80 | | 1 | Total Number of Bytes in SPD Device | 256 | 08 | | 2 | Fundamental Memory Type | SDRAM DDR | 07 | | 3 | Number of Row Addresses on Assembly | 14 | 0E | | 4 | Number of Column Addresses on Assembly | 11 | 0B | | 5 | Number of Physical Ranks on DIMM | 2 | 01 | | 6 | Module Data Width | 72 | 48 | | 7 | Module Data Width (Continued) | 0 | 00 | | 8 | Module Voltage Interface Levels | SSTL 2.5V | 04 | | 9 | SDRAM Cycle Time, ^t CK (CAS Latency = 2.5) | 6ns (-335) | 60 | | | (see note 2) | 7ns (-262/-26A) | 70 | | | | 7.5ns (-265) | 75 | | 10 | SDRAM Access from Clock, ^t AC (CAS Latency = 2.5) | 0.7ns (-335) | 70 | | | (see note 1) | 0.75ns (-262/-26A/-265) | 75 | | 11 | Module Configuration Type | ECC | 02 | | 12 | Refresh Rate/ Type | 7.8µs/SELF | 82 | | 13 | SDRAM Device Width (Primary DDR SDRAM) | x8 | 08 | | 14 | Error-checking DDR SDRAM Data Width | x8 | 08 | | 15 | Minimum Clock Delay, Back-to-Back Random Column
Access | 1 clock | 01 | | 16 | Burst Lengths Supported | 2, 4, 8 | 0E | | 17 | Number of Banks on DDR SDRAM Device | 4 | 04 | | 18 | CAS Latencies Supported | 2.5 | 0C | | 19 | CS Latency | 0 | 01 | | 20 | WE Latency | 1 | 02 | | 21 | SDRAM Module Attributes | Unbuffered, Diff CLK, PLL | 24 | | 22 | SDRAM Device Attributes: General | Fast/concurrent AP | CO | | 23 | SDRAM Cycle Time, ^t CK (CAS Latency = 2) | 7.5ns (-335/-26A/-262) | 75 | | 23 | (see note 2) | 10ns (-265) | A0 | | 24 | SDRAM Access from CK, ^t AC (CAS Latency = 2) | 0.7ns (-335) | 70 | | | (see note 2) | 0.75ns (-262/-26A/-265) | 75 | | 25 | SDRAM Cycle Time, ^t CK (CAS Latency = 1.5) | N/A | 00 | | 26 | SDRAM Access from CK, ^t AC (CAS Latency = 1.5) | N/A | 00 | | 27 | Minimum Row Precharge Time, ^t RP (see note 5) | 18ns (-335) | 48 | | | | 15ns (-262) | 3C | | | | 20ns (-265/-26A) | 50 | | 28 | Minimum Row Active to Row Active, ^t RRD | 12ns (-335) | 30 | | | | 15ns (-262/-26A/-265) | 3C | | 29 | Minimum RAS# to CAS# Delay, ^t RCD (see note 5) | 18ns (-335) | 48 | | | | 15ns (-262) | 3C | | | | 20ns (-26A/-265) | 50 | | 30 | Minimum RAS# Pulse Width, ^t RAS (see note 3) | 42ns (-335)
45ns (-262/-26A/-265) | 2A
2D | | 31 | Module Rank Density | 1GB | 01 | | 32 | Address and Command Setup Time, ^t IS (see note 4) | 0.8ns (-335)
1.0ns (-262/-26A/-265) | 80
A0 | **Table 21: Serial Presence- Detect Matrix – 1GB (Continued)** "1"/"0": Serial Data, "driven to HIGH"/"driven to LOW" | BYTE | DESCRIPTION | ENTRY(VERSION) | MT9VDDT12872PH | |--------|--|-------------------------|----------------| | 33 | Address and Command Hold Time, ^t IH | 0.8ns (-335) | 80 | | | (see note 4) | 1.0ns (-262/-26A/-265) | Α0 | | 34 | Data/Data Mask Input Setup Time, ^t DS | 0.45ns (-335 | 45 | | | | 0.5ns (-262/-26A/-265) | 50 | | 35 | Data/ Data Mask Input Hold Time, ^t DH | 0.45ns (-335 | 45 | | | | 0.5ns (-262/-26A/-265) | 50 | | 36-40 | Reserved | | 00 | | 41 | Min Active Refresh Time ^t RC | 60ns (-335/-262) | 3C | | | | 65ns (-265/-26A) | 41 | | 42 | Minimum Auto Refresh to Active/Auto Refresh Command Period, [†] RFC | 120ns | 78 | | 43 | SDRAM Device Max Cycle Time, ^t CK _{MAX} | 12ns (-335) | 30 | | | | 13ns (-262/-26A/-265) | 34 | | 44 | SDRAM Device Max DQS-DQ Skew Time, ^t DQSQ | 0.45ns (-335) | 2D | | | | 0.5ns (-262/-26A/-265) | 32 | | 45 | SDRAM Device Max Read Data Hold Skew Factor | 0.55ns (-335) | 55 | | | | 0.75ns (-262/-26A/-265) | 75 | | 46 | Reserved | | 00 | | 47 | DIMM Height | | 01 | | 48–61 | Reserved | | 00 | | 62 | SPD Revision | Revision 1.0 | 10 | | 63 | Checksum For Bytes 0-62 | -335 | 30 | | | | -262 | C0 | | | | -26A | ED | | C 4 | M. () () [DECID C] | -265 | 1D | | 64 | Manufacturer's JEDEC ID Code | MICRON | 2C | | 65-71 | Manufacturer's JEDEC ID Code (continued) | | 00 | | 72 | Manufacturing Location | 01–12 | 01–0C | | 73-90
 Module Part Number (ASCII) | | Variable Data | | 91 | PCB Identification Code | 1–9 | 01–09 | | 92 | Identification Code (Continued) | 0 | 00 | | 93 | Year of Manufacture in BCD | | Variable Data | | 94 | Week of Manufacture in BCD | | Variable Data | | 95-98 | Module Serial Number | | Variable Data | | 99-127 | Manufacturer-Specific Data (RSVD) | | _ | Notes: 1. Device latencies used for SPD values. - 2. Value for -26A ^tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns. - 3. The value of ^tRAS used for -265 modules is calculated from ^tRC ^tRP. Actual device spec value is 40ns. - 4. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster minimum slew rate is met. - 5. The value of ^tRP, ^tRCD, and ^tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR SDRAM device specification is 15ns. ## **Package Dimensions** All dimensions are in inches (millimeters); $\frac{MAX}{MIN}$ or typical where noted. Figure 15: 200-Pin SODIMM Dimensions 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.