

20-Output PCIe Gen 1, 2, 3, 4 and 5 Buffer with Ultra-Low Additive Jitter

Features

- Fully Compliant with PCIe Gen 1, 2, 3, 4, and 5.
- 20 Low-Power Push-Pull HCSL PCIe Outputs
- Ultra-low additive jitter: 10fs for PCIe 5.0
- Supports clock frequencies from 0 to 250MHz
- Supports 3.3V power supplies
- Embedded Low Drop Out (LDO) Voltage regulator provides superior Power Supply Noise Rejection
- Maximum output to output skew of 50ps
- SMBus Interface
- Side-Band Interface (SBI)
- Eight OE pins
- Embedded series termination resistors for 100Ω differential transmission line
- Transparent for Spread Spectrum Clock

Ordering Information

ZL40295LDG6 ZL40295LDF6 80 pin GQFN Trays 80 pin GQFN Tape and Reel

Package size: 6 x 6 mm -40°C to +85°C

Applications

- PCI Express generation 1/2/3/4/5 clock distribution
- Intel QPI
- Servers
- Storage and Data Centers
- Switches and Routers

Figure 1. Functional Block Diagram

Table of Contents

Microsemi

а 🐼 Міскоснір company

Features	1
Applications	1
Table of Contents	2
Pin Diagram	5
Pin Descriptions	6
Functional Description	8
Clock Inputs	
Clock Outputs	
Termination of unused outputs1	1
Power Supply Filtering1	
OE# and Output Enables (Control Register)1	1
OE# Assertion (Transition from '1' to '0')1	
OE# De-Assertion (Transition from '0' to '1')1	2
PWRGD / PWRDN#1	2
PWRDN# Assertion1	2
PWRGD Assertion1	2
Programming via SMBus1	
SMBus Byte Read/Write1	4
SMBus Block Read/Write1	5
Side-Band Interface1	6
Typical Jitter Performance1	
Register Map1	9
AC and DC Electrical Characteristics	24
Absolute Maximum Ratings2	
Current consumption2	24
DC Electrical Specification2	25
Power Noise Tolerance	25
PCIe Electrical Characteristics2	26
Input Clock requirements	30
SMBus Electrical Characteristics	31
Side-Band Interface Characteristics	32
Package Outline	34
Change History	37

List of Figures

Figure 1.	Functional Block Diagram	1
Figure 2.	Pin Diagram	
Figure 3.	Input driven by a push-pull differential output	9
Figure 4.	Input driven by an HCSL output	9
Figure 5.	Input driven by a single ended output	9
Figure 6.	Terminating differential outputs	
Figure 7.	Power Supply Filtering	
Figure 8.	PWRDN# Assertion	
Figure 9.	PWRGD and V_DD Relationship diagram	
Figure 10.	PWRGD Assertion	
Figure 11.	SMBus Byte Read	
Figure 12.	SMBus Byte Write	15
Figure 13.	SMBus Block Read	15
Figure 14.	SMBus Block Write	
Figure 15.	Side-Band Interface Control Logic – Functional Description	
Figure 16.	Side-Band Interface Functional Timing	
Figure 17.	ZL40295 typical phase noise	
Figure 18.	Single-Ended Measurement Points for Absolute Cross Point and Swing	28
Figure 19.	Single-Ended Measurement Points for Delta Cross Point	28
Figure 20.	Single-Ended Measurement Points for Rise and Fall Time Matching	28
Figure 21.	Differential Measurement Points for Rise and Fall Time	29
Figure 22.	Differential Measurement Points for Ringback	29
Figure 23.	PCIe Test Circuit	29
Figure 24.	SMBus Timing	31
Figure 25.	Side-Band Interface timing	32

List of Tables

Table 1 Pin Descriptions	6
Table 1 Pin Descriptions Table 2 OE Functionality	11
Table 3 PWRGD / PWRDN# Functionality	12
Table 4 SMBus Address Table	14
Table 5 Byte 0: Output Enable	19
Table 6 Byte 1: Output Enable Control Register	19
Table 7 Byte 2: Output Enable Control Register	19
Table 8 Byte 3: OE# Pin Realtime Readback Control Register	20
Table 9 Byte 4: Reserved Control Register	20
Table 10 Byte 5: Vendor/Revision Identification Control Register	
Table 11 Byte 6: Device ID Control Register	21
Table 12 Byte 7: Byte Count Register	
Table 13 Byte 8: SBI Mask – Functional only when SBEN=1	
Table 14 Byte 9: SBI Mask – Functional only when SBEN=1	22
Table 15 Byte 10: SBI Mask – Functional only when SBEN=1	
Table 16 Absolute Maximum Ratings*	
Table 1 Current Consumption	
Table 2 DC Operating Characteristics*	
Table 1 Power Noise Tolerance*	
Table 2 PCIe Electrical Characteristics	
Table 3 Skew and Jitter Performance	
Table 4 Differential Input Clock AC Characteristics	
Table 5 SMBus Electrical Characteristics	
Table 6 Side-Band Interface	
Table 7 6x6mm GQFN Package Thermal Properties	33

Pin Diagram

The device is packaged in a 6x6mm 80-pin GQFN.

	1	2	3	4	5	6	7	8	9	10	11	12	
A	CK17	CK16#	CK16	CK15#	CK15	CK14#	CK14	CK13#	СК13	CK12#	СК12	CK11#	A
В	CK17#	VDD	NC	^vSA0_tri	NC	VDD	NC	^vSA1_tri	NC	vOE12#	VDD	CK11	В
С	CK18	NC	1								vOE11#	CK10#	с
D	СК18#	NC									NC	CK10	D
E	СК19	vSBEN									vOE10# vSHFT_LD#	vOE9#	E
F	СК19#	NC		80-pin GQFN 6mm x 6mm							NC	СК9#	F
G	CK_IN	NC		top view EPAD is GND							NC	СК9	G
н	CK_IN#	VDD_A									vOE8#	CK8#	н
J	СКО	NC									NC	CK8	J
К	СКО#	NC									vOE7#	СК7#	к
L	CK1	VDD	NC	SMBDAT	SMBCLK	NC	NC	vOE5# vDATA	NC	vOE6# vCLK	VDD	СК7	L
М	СК1#	СК2	CK2#	СКЗ	CK3#	vPWRGN/ PWRDWN#	CK4	СК4#	CK5	CK5#	СК6	СК6#	м
	1	2	3	4	5	6	7	8	9	10	11	12	

Prefix "v" implies $120k\Omega$ pull-down resistor Prefix "v" implies $120k\Omega$ pull-up and $120k\Omega$ pull-down resistors (VDD/2 bias)

Figure 2. Pin Diagram

Pin Descriptions

The I/O column uses the following symbols: I – input, I_{PU} – input with 120k Ω internal pull-up resistor, I_{PD} – input with 120k Ω internal pull-down resistor, O – output, I/O – Input/Output Drain pin, NC-No connect pin, P – power supply pin, . I_{TRI} – Tri-level input pin biased to VDD/2 by internal 120k Ω pull-up and 120k Ω pull-down resistors.

· · · · · ·	Table 1Pin Descriptions							
#	Name	I/O	Description					
Input Refer	rence							
G1 H1	CK_IN CK_IN#	I	Input Differential or Single Ended Reference Input frequency range 0Hz to 250MHz.					
Output Clo	cks							
J1	CK0	0	Ultra-Low Additive Jitter Differential Outputs 0 to 19					
K1 L1	CK0# CK1		Output frequency range 0 to 250MHz					
M1	CK1#							
M2	CK2							
M3	CK2#							
M4	CK3							
M5	CK3#							
M7	CK4							
M8	CK4#							
M9	CK5							
M10	CK5#							
M11	CK6							
M12	CK6#							
L12	CK7							
K12	CK7#							
J12	CK8							
H12	CK8#							
G12 F12	CK9 CK9#							
D12 C12	CK10 CK10#							
B12	CK10#							
A12	CK11#							
A11	CK12							
A10	CK12#							
A9	CK13							
A8	CK13#							
A7	CK14							
A6	CK14#							
A5	CK15							
A4	CK15#							

A3 A2 A1 B1 C1 D1 E1 F1 Hardware	CK16 CK16# CK17 CK17# CK18 CK18# CK19 CK19#				
naiuwaie	Control				
K11 H11 E12 C11	vOE7# vOE8# vOE9# vOE11#	I _{PD}	Output Enable. Logic level on these pins enables/disables corresponding output. OE_n# CKn/n#		
B10	vOE12#		0 Active		
			1 Low/Low both pulled low by 42.5 Ω		
L8	vOE5#/vDATA	Ι _{ΡD}	Output Enable/ Data input for Side Band Interface When Side-Band interface is disabled (pin SBEN pulled low) this pin is Output Enable and the description is the same as for pin K11 above. When Side-Band interface is enabled (pin SBEN pulled high) this pin is Data Input for Side-Band interface.		
L10	vOE6#/vCLK	I _{PD}	Output Enable/ Clock input for Side Band Interface When Side-Band interface is disabled (pin SBEN pulled low) this pin is Output Enable and the description is the same as for pin K11 above. When Side-Band interface is enabled (pin SBEN pulled high) this pin is Clock Input		
			for Side-Band interface.		
E11	vOE10#/	I _{PD}	Output Enable/ Shift load for Side Band Interface		
	vSHFT_LD#		When Side-Band interface is disabled (pin SBEN pulled low) this pin is Output Enable and the description is the same as for pin K11 above. When Side-Band interface is enabled (pin SBEN pulled high) this pin is Shift Load Input for Side-Band interface. A falling edge on this pin transfers the sideband shift register content to the output register.		
E2	vSBEN	I _{PD}	Side Band Interface Enable		
			Side-Band Interface EnableWhen this pin is low, the Side-Band interface is disabled and OE pins and OERegister bits (via SMBus) can be used to enable/disable outputs.When this pin is high, the Side-Band interface can be used to enable/disableoutputs, and OE pins and OE Register bits (via SMBus) are disabled.		
M6	PWRGD/PWRDN#	I	Power up / power down		
SMBus Co	ontrol				
L5	SMBCLK	I	SMBus slave clock input		

L4	SMBDAT	I/O	Input/Open drain SMBus data
B4 B8	^vSADR0_tri ^vSADR1_tri	I _{tri}	Tri level address selection inputs

Power and Ground

Fower and	Ground		
B2 B6 B11 L2 L11	VDD	Ρ	Positive Supply Voltage. Connect to 3.3V supply.
H2	VDD_A	Р	Positive Analog Supply Voltage Connect 3.3V power supply.
E-Pad	GND	Ρ	Ground. Connect to ground

No Connect Pins

B3 B5 B7 C2 D2 D11 F2 F11 G2 G11	N/C	No Connect. These pins are not connected to the die. Leave them open.
G11 J2		
J11 K2		
L3		
L6 L7		
L9		

Functional Description

The ZL40295 is an ultra-low additive jitter, low power 1 to 20 fanout buffer which is fully compliant with PCIe Gen 1, 2, 3,4 and 5 Standards.

The device operates from 3.3V+/-5% supply and over the industrial temperature range -40°C to +85°C.

Clock Inputs

The following blocks diagram shows how to terminate different signals fed to the inputs of ZL40295 device.

The device input can be fed with transmission lines of any impedance. Examples below show only 50Ω single ended, 85Ω differential and 100Ω differential which are the most common ones in practice. Figure 3 and Figure 4 show how to terminate the input when driven from a push-pull and traditional HCSL drivers respectively.

Figure 5 shows how to terminate a single ended output such as LVCMOS. This example assumes 50 Ω transmission line which is the most common for single ended CMOS signaling. Ideally, resistors R1 and R2 should be 100 Ω each and Ro + Rs should be 50 Ω so that the transmission line is terminated at both ends with characteristic impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series resistor Rs should be increased. This will reduce the voltage swing at the input but this should be fine as long as the input voltage swing

requirement is not violated (Figure 5). The source resistors of Rs = 270Ω could be used for standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of $(3.3V/2) *(1/(270\Omega + 50\Omega)) = 5.16$ mA.

For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence, the ratio R1/R2 should be equal to the ratio R3/R4.

Figure 3. Input driven by a push-pull differential output

Figure 4. Input driven by an HCSL output

Figure 5. Input driven by a single ended output

Clock Outputs

Differential outputs have embedded termination resistors as shown in Figure 6. This provides significant saving relative to traditional current based HCSL outputs which require four resistors per differential pair (80 resistors for 20 outputs).

Embedded termination resistors in ZL40295 are matched for 100Ω differential transmission line.

Figure 6. Terminating differential outputs.

Termination of unused outputs

Unused outputs should be left unconnected.

Power Supply Filtering

Each power pin (VDDA and VDD) should be decoupled with 0.1µF capacitor with minimum equivalent series resistance (ESR) and minimum series inductance (ESL). For example, 0402 X5R Ceramic Capacitors with 6.3V minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce the power noise from adjacent digital components on the board each power supply could be further insulated with low DC resistance ferrite bead with two capacitors. The ferrite bead will also insulate adjacent component from the noise generated from the device. Following figure shows recommended decoupling.

Figure 7. Power Supply Filtering

OE# and Output Enables (Control Register)

Each output can be individually enabled or disabled by SMBus control register bits or via OE# pin. The OE# pins are asynchronous asserted-low signals. The Output Enable bits in the SMBus registers are active high and are set to enable by default.

OE# pins are mapped to CK[12:5] outputs.

Note that the logic level for assertion or de-assertion is different in software than it is on hardware. This follows hardware default nomenclature for communication channels (e.g., output is enabled if OE# pin is pulled low) and still maintains software programming logic (e.g., output is enabled if OE register is true).

Refer to Table 2 for the truth table for enabling and disabling outputs via hardware and software. Note that both the control register bit must be a '1' AND the OE# pin must be a '0' for the output to be active.

Inp	uts	OE# Hardware Pins and Control Register Bits			
PWRGD/ PWRDN#	CK_IN/ CK_IN#	SMBUS Enable Bit	OE# Pin	CK/CK# [12:5]	CK/CK# [4:0] and [19:13]
0	Х	Х	Х	0	0
1	Running	0	Х	0	0
		1	0	Running	Running
		1	1	0	Running

Table 2 OE Functionality

OE# Assertion (Transition from '1' to '0')

All differential outputs that were disabled are to resume normal operation in a glitch free manner. The latency from the assertion to active outputs is 0 - 10 CK clock periods.

OE# De-Assertion (Transition from '0' to '1')

The impact of de-asserting OE# is each corresponding output will transition from normal operation to disabled in a glitch free manner. A minimum of four valid clocks will be provided after the de-assertion of OE#. The maximum latency from the de-assertion to disabled outputs is 10 CK clock periods.

PWRGD / PWRDN#

PWRGD is asserted high and de-asserted low. De-assertion of PWRGD (pulling the signal low) is equivalent to indicating a powerdown condition. PWRGD (assertion) is used by the ZL40295 to sample initial configurations such as SA selections.

After PWRGD has been asserted high for the first time, the pin becomes a PWRDN# (Power Down) pin which is used to disable (drive low/low) all clocks cleanly and instruct the device to invoke power savings mode. PWRDN# is a completely asynchronous active low input. When entering power savings mode, PWRDN# should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch free manner. When PWRDN# is de-asserted high, all clocks will start and stop without any abnormal behavior and will meet all AC and DC parameters.

The assertion and de-assertion of PWRDN# is asynchronous.

Disabling of the CK_IN input clock prior to assertion of PWRDN# is an undefined mode and not recommended. Operation in this mode may result in glitches.

PWRGD / PWRDN#	СК	CK#
0	LOW	LOW
1	Normal	Normal

Table 3 PWRGD / PWRDN# Functionality

PWRDN# Assertion

When PWRDN# is sampled low by two consecutive rising edges of CK#, all differential outputs will be disabled on the next CK# high to low transition.

Figure 8. PWRDN# Assertion

PWRGD Assertion

PWRGD to the clock buffer should not be asserted before V_{DD} reaches V_{DDmin} . Prior to V_{DDmin} it is recommended to hold PWRGD low (less than 0.5 V)

Figure 9. PWRGD and V_{DD} Relationship diagram

The power-up latency Tstable is to be less than 1.8 ms. This is the time from the valid CK_IN input clocks and the assertion of the PWRGD signal to the time that stable clocks are output from the buffer chip. All differential outputs stopped in a disabled condition resulting from power down must be driven high in less than 300 µs of PWRGD assertion to a voltage greater than 200 mV.

Figure 10. PWRGD Assertion

Programming via SMBus

The address selection is done via SA_0 and SA_1 tri-level hardware pins, which select the appropriate address for the device.

The two tri-level input pins that can configure the ZL40295 to nine different addresses (refer to Table 2 for VIL_Tri, VIM_Tri, VIH_Tri signal level).

Table 4 Swidus Aduless Table						
SA_1	SA_0	SMBus Address				
L	L	D8				
L	М	DA				
L	Н	DE				
М	L	C2				
М	М	C4				
М	Н	C6				
Н	L	CA				
Н	М	CC				
Н	Н	CE				

Table 4 SMBus Address Table

SMBus Byte Read/Write

Reading or writing a register in a SMBus slave device in byte mode always involves specifying the register number.

<u>Read</u>. The standard byte read is as shown in Figure 11. It is an extension of the byte write. The write start condition is repeated then the slave device starts sending data and the master acknowledges it until the last byte is sent. The master terminates the transfer with a NAK then a stop condition. For byte operation, the 2*7th bit of the command byte must be set. For block operations, the 2*7th bit must be reset. If the bit is not set, the next byte must be the byte transfer count.

Figure 11. SMBus Byte Read

<u>Write.</u> Figure 12 illustrates a simple typical byte write. For byte operation the 2*7th bit of the command byte must be <u>set</u>. For block operations, the 2*7th bit must be reset. If the bit is not set the next byte must be the byte transfer count. The count can be between 1 and 32. It cannot be zero or exceed 32.

Figure 12. SMBus Byte Write

SMBus Block Read/Write

<u>**Read.</u>** After the slave address is sent with the r/w condition bit *set*, the command byte is sent with the MSB = 0. The slave Ack's the register index in the command byte. The master sends a repeat start function. After the slave Ack's this the slave sends the number of bytes it wants to transfer (>0 and <33). The master Ack's each byte except the last and sends a stop function.</u>

Figure 13. SMBus Block Read

<u>Write.</u> After the slave address is sent with the r/w condition bit not set, the command byte is sent with the MSB = 0. The lower seven bits indicate what register to start the transfer at. If the command byte is 00h, the slave device will be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the master will transfer to the slave device. The byte count must be greater than zero and less than 33. Following this byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte received. The transfer is terminated after the slave sends the Ack and the master sends a stop function.

Figure 14. SMBus Block Write

Side-Band Interface

Besides OE pins and SMBUS interface the device outputs can be enabled/disabled via a simple 3-wire serial interface referred to as the Side-Band Interface (SBI).

This interface consists of the vDATA, vCLK and vSHFT_LD# pins. When the vSHFT_LD# pin is high, the rising edge of vCLK can shift vDATA into the shift register. After shifting data, the falling edge of vSHFT_LD# clocks the shift register contents to the Output register.

Both the SBI and the traditional interface feed common output enable/disable synchronization logic ensuring glitch free enable and disable outputs, regardless of the method used.

Both interfaces are not active at the same time, and the SBEN pin selects which interface is active. Tying the SBEN high enables the SBI. Tying the SBEN pin low enables the traditional OE# pin/SMBus output-enable interface.

When the SBI is enabled, OE[7:9, 11,12]# are disabled and vDATA, vCLK and vSHFT_LD# are enabled on vOE5#, vOE6# and vOE10# respectively. Additionally, SMBus registers for masking off the disable function of the shift register (0 value of a bit) become active.

When set to 1, the mask register forces its respective output to 'enabled'. This prevents accidentally disabling critical outputs when using the SBI.

A SMBus read-back bit in Byte 4 indicates which output-enable control interface is enabled.

When the SBI is enabled and power has been applied, the SBI is active, even if the PWRGD/PWRDN# pin indicates the part is in powerdown. This allows loading the shift register and transferring the contents to the output register before the assertion of PWRGD.

Note that the mask registers are part of the normal SMBus interface and cannot be accessed when the PWRGD/PWRDN# is low. Figure 15 provides a functional description of the SBI.

The SBI and the traditional SMBus output-enable registers both default to the 'output enabled' state at power-up. The mask registers default to zero at power-up, allowing the shift register bits to disable their respective output.

Figure 15. Side-Band Interface Control Logic – Functional Description

Figure 16 shows the basic timing of the side-band interface. The vSHFT_LD# pin goes high to enable the CLK input. Next, the rising edge of CLK clocks enable vDATA into the shift register. After the 20th clock cycle for output 19, it stops the clock low and drive the vSHFT_LD# pin low. The falling edge of vSHFT_LD# clocks the shift register contents to the output register, enabling or disabling the outputs. It always shifts 20 bits of data into the shift register to control the outputs.

Figure 16. Side-Band Interface Functional Timing

The SBI supports clock rates up to 10 MHz. Multiple devices may share vCLK and vDATA pins. Dedicating a vSHFT_LD# pin to each device allows its use as a chip-select pin. When the vSHFT_LD# pin is low, the device ignores any activity on the vCLK and vDATA pins.

Typical Jitter Performance

Following figure shows a typical phase noise for 100MHz clock frequency. The light blue curve is the phase noise of the input clock fed to the device and the dark blue is the phase noise of the output clock. The plot shows phase noise floor of -163dBc/Hz and an absolute jitter in 12kHz to 20MHz of 76fs. The additive jitter is calculated as:

 $J_{ADD} = \sqrt{(J_{OUT}^2 - J_{IN}^2)}$ where J_{OUT} and J_{IN} are respectively output and input jitter in the band of interest. The additive jitter for 12kHz to 20MHz band is 58fs.

Figure 17. ZL40295 typical phase noise

Register Map

		Table	J Dyle 0.	Juipui		
Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Reserved				0	
1	Reserved				0	
2	Reserved				0	
3	Output Enable CK 16	LOW	Enable	RW	1	CK[16]
4	Output Enable CK 17	LOW	Enable	RW	1	CK[17]
5	Output Enable CK 18	LOW	Enable	RW	1	CK[18]
6	Output Enable CK 19	LOW	Enable	RW	1	CK[19]
7	Reserved				0	

Table 5 Byte 0: Output Enable

Table 6 Byte 1: Output Enable Control Register

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Output Enable CK 0	LOW	Enabled	RW	1	CK[0]
1	Output Enable CK 1	LOW	Enabled	RW	1	CK[1]
2	Output Enable CK 2	LOW	Enabled	RW	1	CK[2]
3	Output Enable CK 3	LOW	Enabled	RW	1	CK[3]
4	Output Enable CK 4	LOW	Enabled	RW	1	CK[4]
5	Output Enable CK 5	LOW	Enabled	RW	1	CK[5]
6	Output Enable CK 6	LOW	Enabled	RW	1	CK[6]
7	Output Enable CK 7	LOW	Enabled	RW	1	CK[7]

Table 7 Byte 2: Output Enable Control Register

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Output Enable CK 8	LOW	Enabled	RW	1	CK[8]
1	Output Enable CK 9	LOW	Enabled	RW	1	CK[9]
2	Output Enable CK 10	LOW	Enabled	RW	1	CK[10]
3	Output Enable CK 11	LOW	Enabled	RW	1	CK[11]
4	Output Enable CK 12	LOW	Enabled	RW	1	CK[12]
5	Output Enable CK 13	LOW	Enabled	RW	1	CK[13]
6	Output Enable CK 14	LOW	Enabled	RW	1	CK[14]
7	Output Enable CK 15	LOW	Enabled	RW	1	CK[15]

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Realtime Readback of OE_5#	OE_5# Low	OE_5# High	R	Realtime	CK[5]
1	Realtime Readback of OE_6#	OE_6# Low	OE_6# High	R	Realtime	CK[6]
2	Realtime Readback of OE_7#	OE_7# Low	OE_7# High	R	Realtime	CK[7]
3	Realtime Readback of OE_8#	OE_8# Low	OE_8# High	R	Realtime	CK[8]
4	Realtime Readback of OE_9#	OE_9# Low	OE_9# High	R	Realtime	CK[9]
5	Realtime Readback of OE_10#	OE_10# Low	OE_10# High	R	Realtime	CK[10]
6	Realtime Readback of OE_11#	OE_11# Low	OE_11# High	R	Realtime	CK[11]
7	Realtime Readback of OE_12#	OE_12# Low	OE_12# High	R	Realtime	CK[12]

Table 8 Byte 3: OE# Pin Realtime Readback Control Register

Table 9 Byte 4: Reserved Control Register

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	RB_SBEN	Pin Low	Pin High	Input	Real time	
1	Reserved				0	
2	Reserved				0	
3	Reserved				0	
4	Reserved				0	
5	Reserved				0	
6	Reserved				0	
7	Reserved				0	

Table 10 Byte 5: Vendor/Revision Identification Control Register

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Vendor ID Bit 0			R	1	
1	Vendor ID Bit 1			R	1	
2	Vendor ID Bit 2			R	0	
3	Vendor ID Bit 3			R	0	
4	Revision Code Bit 0			R	1	
5	Revision Code Bit 1			R	1	
6	Revision Code Bit 2			R	0	
7	Revision Code Bit 3			R	0	

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Device ID 0			R	1	
1	Device ID 1			R	1	
2	Device ID 2			R	1	
3	Device ID 3			R	1	
4	Device ID 4			R	1	
5	Device ID 5			R	0	
6	Device ID 6			R	1	
7	Device ID 7 (MSB)			R	0	

Table 11 Byte 6: Device ID Control Register

Table 12 Byte 7: Byte Count Register

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
						Affected
0	BC0 - Writing to this register configures how many bytes will be read back			RW	0	
1	BC1 - Writing to this register configures how many bytes will be read back			RW	0	
2	BC2 - Writing to this register configures how many bytes will be read back			RW	0	
3	BC2 - Writing to this register configures how many bytes will be read back			RW	1	
4	BC3 - Writing to this register configures how many bytes will be read back			RW	0	
5	BC4 - Writing to this register configures how many bytes will be read back			RW	0	
6	Reserved				0	
7	Reserved				0	

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Mask0 - Masks off Side Band Disable			RW	0	CK[0]
1	Mask1 - Masks off Side Band Disable			RW	0	CK[1]
2	Mask2 - Masks off Side Band Disable		Forces output to	RW	0	CK[2]
3	Mask3 - Masks off Side Band Disable	Side Band shift register	always be enabled	RW	0	CK[3]
4	Mask4 - Masks off Side Band Disable	may disable the output	regardless of Side Band	RW	0	CK[4]
5	Mask5 - Masks off Side Band Disable		shift register value	RW	0	CK[5]
6	Mask6 - Masks off Side Band Disable			RW	0	CK[6]
7	Mask7 - Masks off Side Band Disable			RW	0	CK[7]

Table 13 Byte 8: SBI Mask – Functional only when SBEN=1

Table 14 Byte 9: SBI Mask – Functional only when SBEN=1

	1	-		-		
Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Mask8 - Masks off Side Band Disable			RW	0	CK[8]
1	Mask9 - Masks off Side Band Disable			RW	0	CK[9]
2	Mask10 - Masks off Side Band Disable		Forces output to	RW	0	CK[10]
3	Mask11 - Masks off Side Band Disable	Side Band shift register	always be enabled	RW	0	CK[11]
4	Mask12 - Masks off Side Band Disable	may disable the output	regardless of Side Band	RW	0	CK[12]
5	Mask13 - Masks off Side Band Disable		shift register value	RW	0	CK[13]
6	Mask14 - Masks off Side Band Disable			RW	0	CK[14]
7	Mask15 - Masks off Side Band Disable			RW	0	CK[15]

Bit	Description	If Bit = 0	If Bit = 1	Туре	Default	Output(s) Affected
0	Mask16 - Masks off Side Band Disable			RW	0	CK[16]
1	Mask17 - Masks off Side Band Disable		Forces	RW	0	CK[17]
2	Mask18 - Masks off Side Band Disable	Side Band shift register	output to always be enabled	RW	0	CK[18]
3	Mask19 - Masks off Side Band Disable	may disable the output	regardless of Side Band	RW	0	CK[19]
4	Reserved		shift register	RW	0	
5	Reserved		value	RW	0	
6	Reserved			RW	0	
7	Reserved			RW	0	

Table 15 Byte 10: SBI Mask – Functional only when SBEN=1
--

AC and DC Electrical Characteristics

Absolute Maximum Ratings

Table 16 Absolute Maximum Ratings*

	Parameter	Sym.	Min.	Max.	Units	Notes
1	3.3 V Core Supply Voltage	V _{DD_A}	-	4.6	V	3
2	3.3 V I/O Supply Voltage	V _{DD}	-	4.6	V	3
5	3.3 V Input High Voltage	VIH	-	4.6	V	1, 3
	3.3 V Input Low Voltage	VIL	-0.5	-	V	3
	Storage Temperature	Ts	-65	150	°C	3
6	Input ESD protection	V _{DD-IN}	2000		V	2

* Exceeding these values may cause permanent damage

* Functional operation under these conditions is not implied

* Voltages are with respect to ground (GND) unless otherwise stated 1. Maximum VIH is not to exceed maximum VDD.

Human body model. 2.

3. Consult manufacturer regarding extended operation in excess of normal DC operating parameters.

Current consumption

Table 1 **Current Consumption**

	Parameter	Parameter Condition	Symbol	Min.	Тур.	Max	Units	Notes
1		fIN = 100MHz All CKx/CKx# outputs enabled			205	240		1,2
2	Active Mode Supply Current	fIN = 100MHz All CKx/CKx# outputs disabled			48	55	mA	1,3
3	Current	fIN = 133MHz All CKx/CKx# outputs enabled			257	308		1,2
4		fIN = 133MHz All CKx/CKx# outputs disabled			49	56		1,3
5	Power Down Mode	fIN = 100MHz			21	25	mA	1,4
6	Supply Current	fIN = 133MHz	10050		22	26		1,4

1. VDD = 3.3V + 5%

Device operating in active mode (Pin PWRGD/PWRDN# = 1) with all 20 CKx/CKx# outputs enabled (all OE_xN pin = 0, all OCR1, OCR2, OCR3 register OEx bits = 1) 2.

Device operating in active mode (Pin PWRGD/PWRDN# = 1) with all 20 CKx/CKx# outputs disabled (all OCR1, OCR2, OCR3 register OEx bits = 0) 3.

4. Device operating in low power mode (Pin PWRGD/PWRDN# = 0)

DC Electrical Specification

Table 2 DC Operating Characteristics*

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	3.3 V Core Supply Voltage	V _{DD_A}	3.135	3.3	3.465	V	
2	3.3 V I/O Supply Voltage	V _{DD}	3.135	3.3	3.465	V	
3	3.3 V Input High Voltage	V _{IH}	2.0		VDD+0.3	V	
4	3.3 V Input Low Voltage	VL	VSS-0.3		0.8	V	
5	Input Leakage Current	I⊫	-5		+5	μA	
6	Input Low Voltage, 3-level CMOS Input	V _{IL3}	VSS-0.3		0.9	V	
7	Input Midrange Voltage, 3-level CMOS Input	V _{IM3}	1.3		1.8	V	
8	Input High Voltage, 3-level CMOS Input	V _{IH3}	2.4		VDD	V	
9	Input Capacitance	C _{IN}			4.5	pF	1
10	Output Capacitance	Cout			4.5	pF	1
11	Ambient Temperature	T _A	-40		85	°C	

* Voltages are with respect to ground (GND) unless otherwise stated

1 For parasitic simulation use IBIS model.

Power Noise Tolerance

Table 1 Power Noise Tolerance*

	VDD Electrical Noise Range	Symbol	Min.	Тур.	Max	Units	Notes
1	f _{NOISE} = 12kHz to 20MHz	N _{VDD_MID}	100			mV,p-p	1,2,3
2	$f_{NOISE} > 20MHz$	N _{VDD_HIGH}	50			mV,p-p	1,2,3
3	$f_{NOISE} = 12kHz$ to 20MHz	N _{VDD_A_MID}	40			mV,p-p	1,2,3
4	f _{NOISE} > 20MHz	Nvdd_a_high	20			mV,p-p	1,2,3

* The device meets all specification in the presence of noise specified in this table

1 Jitter and electrical characteristics are met with specified AC noise present on any of the power pins.

2 Over the specified frequency range, a single sinusoid tone should be assumed swept as the worst case.

3 Maximum measured frequency for VDD was 650kHz and for VDD_A the maximum frequency was 900kHz due to limitation of the test setup

PCIe Electrical Characteristics

PCIe Electrical Characteristics

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes	
1	Rising edge rate	Rise_rate	1.4	1.6	2	V/ns	(2), (3)	
2	Falling edge rate	Fall_rate	1.4	1.6	2	V/ns	(2), (3)	
3	Differential High Voltage	VIH	0.7			V	(2)	
4	Differential Low Voltage	VIL			-0.7	V	(2)	
5	Single ended high voltage	VsiH	0.7	0.76	0.82`	V	DC Measurement	
6	Single ended low voltage	VsiL	-0.05	0	0.05	V	DC Measurement	
7	Absolute Crossing Voltage	V _{CROSS}	0.275		0.35	V	(1), (4), (5)	
8	Variation of $V_{\text{CROSS}} \text{over all rising clock edges}$	ΔV_{CROSS}			0.08	V	(1), (4), (9)	
9	Ring back voltage margin	V _{RB}	-0.3		0.3	V	(2), (11)	
10	Time before V_{RB} is allowed	t STABLE	500			ps	(2), (11)	
11	Average Clock Period Accuracy	T _{PERIOD_AVG}	NA		NA	ppm	(10)	
12	Absolute Period	T _{PERIOD_ABS}	NA		NA	ns	(6)	
13	Cycle-to-cycle jitter	TJCC		3.5	6	ps peak to peak	(2)	
14	Absolute Maximum voltage	V _{MAX}			0.8	V	(1), (7)	
15	Absolute Minimum voltage	V _{MIN}			-0.3	V	(1), (8)	
16	Output Duty-Cycle (when input has 50% duty-cycle)	Duty_cycle	49	50	51	%	(2)	
17	Rising to falling edge matching	r/f match			6	%	(1), (7)	
18	Clock Source DC impedance (CK)	Zc-dc_ck	50 - 5%	50	50 + 5%	Ω	DC Measurement	
19	Clock Source DC impedance (CK#)	Z _{C-DC_CK#}	50 - 5%	50	50 + 5%	Ω	DC Measurement	
20	Output frequency	FMAX	0		250	MHz		
21	Output to output skew	toosĸ			50	ps		
22	Device to device output skew	t _{DOOSK}			0.5	ns		
23	Input to output delay	t _{IOD}	0.9		1.5	ns		
24	Output enable time	t _{EN}			10	cycles		
25	Output disable time	t _{DIS}			10	cycles		

Table 2

* Values are over Recommended Operating Conditions (0) Output differential swing is calculated as $V_{SW} = V_{OH} - V_{OL}$ It should not be confused with $V_{SW} = 2 * (V_{OH} - V_{OL})$ used in some datasheets

(1) Measurement taken from single ended waveform

(2) Measurement taken from differential waveform.

Measured from -150 mV to +150 mV on the differential waveform (derived from CK minus CK#) The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing. See Figure 21 Measured at crossing point where the instantaneous voltage value of the rising edge of CK equals the falling edge of CK#. See Figure 18 (3)

(4)

Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. See Figure 18. (5)

This requirement, from PCI Express Base Specification, Revision 4.0 is applicable only to clock generators and not to buffers. A clock buffer is a transparent device whose output clock period follows the input clock period. (6)

Defined as the maximum instantaneous voltage including overshoot. See Figure 18. (7)

Defined as the minimum instantaneous voltage including undershoot. See Figure 18. (8)

Defined as the total variation of all crossing voltages of Rising CK and Falling CK# This is the maximum allowed variance in VCROSS for any particular system. See Figure 19. (9)

(10) The PDM requirement from PCIe Express Base Specification, Revision 4.0 is related to clock generation devices. This requirement is not applicable to buffers because buffer's output frequency accuracy is identical to the frequency accuracy of the source driving the buffer.

(11) TSTABLE is the time the differential clock must maintain a minimum ±150 mV differential voltage after20 rising/falling edges before it is allowed to droop back into the VRB ±100 mV differential range. See Figure 22.

(12) Matching applies to rising edge rate for CKx and falling edge rate for CK#x. It is measured using a ±75 mV window centered on the median cross point where CKx rising meets CK#x falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of CKx should be compared to the Fall Edge Rate of CK#x the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 20.

	Parameter	Symbol	Min.	Тур.	Max	Units	Notes
1	Input-to-Output Delay	I/O _{DELAY}	0.9		1.5	ns	1,3
2	Output-to-Output Skew	O/O _{DELAY}			50	ps	1,2
3	Peak-to-Peak Additive Jitter	р-рАЈ _{RMS}			1	ps	1,2
4	Additive Jitter as per PCIe 1.0 (1.5MHz to 22MHz)	T _{jPCle_1.0}		0.73	0.90	ps RMS	1, 2
5	Additive Jitter as per PCIe 2.0 high band (1.5MHz to 50MHz)	TjPCle_2.0_high		82	100	fs RMS	1, 2
6	Additive Jitter as per PCIe 2.0 low band (10kHz to 1.5MHz)	TjPCle_2.0_low		20	30	fs RMS	1, 2
7	Additive Jitter as per PCIe 2.0 mid band (5MHz to 16MHz)	TjPCle_2.0_mid		64	79	fs RMS	1, 2
8	Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_3.0}		20	35	fs RMS	1, 2
9	Additive Jitter as per PCIe 4.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_4.0}		20	35	fs RMS	1, 2
10	Additive Jitter as per PCIe 5.0 (PLL_BW = 0.5 to 1.8MHz, CDR for 32 GT/s CC)	T _{jPCle_5.0}		8	10	fs RMS	1, 2
11	Additive jitter as per Intel QPI 9.6Gbps	TjQPI		29	36	fs RMS	1, 2
12	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		55	80	fs RMS	1, 2 (100MHz clock)
				42	60	fs RMS	1, 2 (133MHz clock)
13	Additive RMS jitter in 12kHz to 20MHz band	Tj_12k_20M		58	83	fs RMS	1, 2 (100MHz clock)
				44	63	fs RMS	1, 2 (133MHz clock)
14	Noise floor	NF		-163	-162	dBc/Hz	1, 2 (100MHz clock)
				-163	-162	dBc/Hz	1, 2 (133MHz clock)

Table 3 Skew and Jitter Performance

Measured into AC test load as per Figure 23 .
 Measured from differential crossing point to differential crossing point.
 Input-to-output specs refer to the timing between an input edge and the specific output edge created by it.

Figure 19. Single-Ended Measurement Points for Delta Cross Point

Figure 22. Differential Measurement Points for Ringback

Figure 23. PCIe Test Circuit

Input Clock requirements

	Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
1	Edge_rate	Input_Slew_Rate	0.7			V/ns	
2	Total Variation of Vcross Over All Edges	$Total_\Delta_V cross$			140	mV	
3	Input Voltage	Input_Voltage	200			mv diff	

Table 4 Differential Input Clock AC Characteristics

SMBus Electrical Characteristics

	Table 5 SMBus Electrical Characteristics									
	Parameter	Symbol	Min.	Тур.	Max	Units	Notes			
1	Nominal Bus Voltage	VDD _{SMB}	2.7		5.5	V	1			
2	Input Low Voltage	VIL			0.8	V				
3	Input High Voltage	VIH	2.1		VDD _{SMB}	V				
4	Output Low Voltage	V _{OL}			0.4	V	At I _{PULLUP,MAX}			
5	Input Leakage Current	I _{LEAK}			±10	μA				
6	Current sinking at V _{OL,max}	IPULLUP	4			mA				
7	Pin capacitive load	Cı			10	pF				
8	Signal noise immunity from 10MHz to 100MHz	V _{NOISE}	300			mV _{p∙p}				
9	Noise spike suppression time	T _{SPIKE}	0		50	ns	3			
10	SMBus Operating Frequency	F _{SMB}	10		400	kHz				
11	Bus free time between Stop and Start Condition	T _{BUF}	4.7			μs				
12	Hold time after (Repeated) Start Condition. After this period, the first clock is generated.	T _{HD:STA}	4.0			μs				
13	Repeated Start Condition setup time	T _{SU:STA}	4.7			μs				
14	Stop Condition setup time	T _{SU:STO}	4.0			μs				
15	Data hold time	T _{HD:DAT}	300			ns				
16	Data setup time	T _{SU:DAT}	250			ns				
17	Clock low period	TLOW	4.7			μs				
18	Clock high period	T _{HIGH}	4.0		50	μs				
19	Clock/Data Fall Time	T _F			300	ns	2			
20	Clock/Data Rise Time	T _R			1000	ns	2			

Table 5 SMBus Electrical Characteristics

 L
 L
 L
 L

 1. 3V to 5V ±10%
 2.
 Rise and fall time is defined as follows:

 TR = (VIL,MAX - 0.15) to (VIH,MIN + 0.15)
 TF = (VIH,MIN + 0.15) to (VIL,MAX - 0.15)

 TF = (VIH,MIN + 0.15) to (VIL,MAX - 0.15)

 3. Devices must provide a means to reject noise spikes of a duration up to the maximum specified value.

Figure 24. **SMBus Timing**

Side-Band Interface Characteristics

Table 6 Side-Band Interface

	Parameter	Symbol	Min.	Тур.	Мах	Units	Notes
1	Clock Period	t _{PERIOD}	100			ns	
2	vSHFT_LD# setup to vCLK rising edge	t _{SETUP}	25			ns	
3	vDATA setup to vCLK rising edge	t _{DSU}	10			ns	
4	vDATA hold after vCLK rising edge	tDSHOLD	5			ns	
5	Delay from vCLK rising edge to vSHFT_LD# falling edge	t _{DELAY}	25			ns	
6	Delay from vSHFT_LD# falling edge to next output configuration taking effect	t _{PD}	4		10	clocks	1
7	Slew Rate	t _{SLEW}			0	V/ns	

1. Refers to device differential input clock.

Figure 25. Side-Band Interface timing

Table 7 6x6mm GQFN Package Thermal Properties

Parameter	Symbol	Conditions	Value	Units
Maximum Ambient Temperature	T _A		85	°C
Maximum Junction Temperature	TJMAX		125	°C
		still air	32.42	
Junction to Ambient Thermal Resistance ⁽¹⁾ (Note 1)	θ」Α	1m/s airflow	27.67	°C/W
		2.5m/s airflow	26.33	
Junction to Board Thermal Resistance	θ _{JB}		12.48	°C/W
Junction to Case Thermal Resistance	θ _{JC}		21.33	°C/W
Junction to Pad Thermal Resistance ⁽²⁾	θ _{JP}	Still air	1.83	°C/W
Junction to Top-Center Thermal Characterization Parameter	Ψ_{JT}	Still air	0.25	°C/W

(1) Theta-JA (0JA) is the thermal resistance from junction to ambient when the package is mounted on a 4-layer JEDEC standard test board and dissipating maximum power

(2) Theta-JP (θ_{JP}) is the thermal resistance from junction to the center exposed pad on the bottom of the package)

Package Outline

	Units			S		
Dimens	MIN	NOM	MAX			
Number of Terminals	N	80				
Pitch	е	0.50 BSC				
Overall Height	Α	0.70	0.75	0.80		
Standoff	A1	0.00	0.02	0.05		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	2.70	2.80	2.90		
Overall Width	E		6.00 BSC			
Exposed Pad Width	E2	2.70 2.80 2				
Terminal Width	b	0.20 0.25 0.3				
Terminal-to-Exposed-Pad	K	0.725 REF				

Notes:

 Pin 1 visual index feature may vary, but must be located within the hatched area.
 Package is saw singulated
 Package Type WGQFN is not registered with JEDEC as of April, 2019 Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	X2			2.90
Optional Center Pad Length	Y2			2.90
Contact Pad Spacing	C1		5.50 BSC	
Contact Pad Spacing	C2		5.50 BSC	
Contact Pad Diameter (X80)	X1			0.30
Contact Pad to Center Pad (X32)	G1	0.65		
Contact Pad to Contact Pad	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Change History

• December 2019: Initial Release of ZL40295 Datasheet

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2019 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation, a wholly owned subsidiary Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information is provided to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.