V23818-K305-B57 Small Form Factor Pluggable SFP Multimode 850 nm 1.0625 GBd Fibre Channel 1.25 Gigabit Ethernet Transceiver with LC™ Connector **Preliminary** #### **FEATURES** - · Small Form Factor Pluggable transceiver - Fully SFP MSA compliant⁽¹⁾ - · Advanced release mechanism - easy access, even in belly to belly applications - grip for easy access no tool is needed - color coded release mechanism MM: black color coding SM: blue color coding - Excellent EMI performance - RJ-45 style LC[™] connector system - Single power supply (3.3 V) - Extremely low power consumption of 415 mW typical - · Small size for high channel density - UL-94 V-0 certified - ESD Class 1 per MIL-STD 883D Method 3015.7 - Compliant with FCC (Class B) and EN 55022 - For distances of up to 700 m (50 µm fiber) - · Class 1 FDA and IEC laser safety compliant - · AC/AC Coupling according to SFP MSA - Recommendation: Infineon Cage one-piece design V23818-S5-N1 for press fit and/or solderable - Operating case temperature: -10°C to 85°C #### Note 1. The SFP MSA can be found at www.Infineon.com/fiberoptics next to the transceiver datasheets. ## **Absolute Maximum Ratings** Exceeding any one of these values may destroy the device immediately. | Package Power Dissipation | 1.5 W | |---------------------------------|------------------------| | Data Input Levels (PECL) | V _{CC} +0.5 V | | Differential Data Input Voltage | 2.4 V | | Storage Ambient Temperature4 | 0°C to 85°C | | V _{CC} max | 5.5 V | | ECL-Output current data | 50 mA | #### DESCRIPTION The Infineon Fibre Channel multimode transceiver – part of Infineon Small Form Factor transceiver family – is based on the Physical Medium Depend (PMD) sublayer and baseband medium, type 1000 Base-SX (short wavelength) and Fibre Channel FC-PI 100-M5-SN-I, 100-M6-SN-I FC-PH2 100-M5-SN-I, FC-PH2 100-M6-SN-I. The appropriate fiber optic cable is 62.5 μm or 50 μm multimode fiber with LCTM connector. # Operating range over each optical fiber type | Fiber type | Min. | Typ. (meters) | Max. | |-----------------|------|---------------|------| | 62.5 micron MMF | 0.5 | 2 to 300 | 400 | | 50.0 micron MMF | 0.5 | 2 to 550 | 700 | The Infineon Fibre Channel / Gigabit Ethernet multimode transceiver is a single unit comprised of a transmitter, a receiver, and an LC^{TM} receptacle. This transceiver supports the LC[™] connectorization concept. It is compatible with RJ-45 style backpanels for high end Data Com and Telecom applications while providing the advantages of fiber optic technology. The module is designed for low cost SAN, LAN, WAN, Fibre Channel and Gigabit Ethernet applications. It can be used as the network end device interface in mainframes, workstations, servers, and storage devices, and in a broad range of network devices such as bridges, routers, hubs, and local and wide area switches. This transceiver operates at $1.0625~\mathrm{GBd}$ / $1.25~\mathrm{GBd}$ from a single power supply (+3.3 V). The full differential data inputs and outputs are PECL and LVPECL compatible. #### **Functional Description of SFP Transceiver** This transceiver is designed to transmit serial data via multimode cable. # **Functional Diagram** The receiver component converts the optical serial data into PECL compatible electrical data (RD+ and RD-). The LOS of Signal (LOS, active low) shows whether an optical signal is present. The transmitter converts PECL compatible electrical serial data (TD+ and TD-) into optical serial data. Data lines are differentially 100 Ω terminated. The transmitter contains a laser driver circuit that drives the modulation and bias current of the laser diode. The currents are controlled by a power control circuit to guarantee constant output power of the laser over temperature and aging. The power control uses the output of the monitor PIN diode (mechanically built into the laser coupling unit) as a controlling signal, to prevent the laser power from exceeding the operating limits. Single fault condition is ensured by means of an integrated automatic shutdown circuit that disables the laser when it detects laser fault to guarantee the laser Eye Safety. The transceiver contains a supervisory circuit to control the power supply. This circuit makes an internal reset signal whenever the supply voltage drops below the reset threshold. It keeps the reset signal active for at least 140 milliseconds after the voltage has risen above the reset threshold. During this time the laser is inactive. A low signal on TxDis enables transmitter. If TxDis is high or not connected the transmitter is disabled. The information which kind of SFP module has been plugged into an SFP port can be read through the MOD-DEF interface. The information is stored in an I²C-Eprom inside the SFP Transceiver. #### **TECHNICAL DATA** The electro-optical characteristics described in the following tables are valid only for use under the recommended operating conditions. ## **Recommended Operating Conditions** | Parameter | Symbol | Min. | Тур. | Max. | Units | | |------------------------------------|--------------------------------------|------|------|------|-------|--| | Case Temperature | T _C | -10 | | 85 | °C | | | Power Supply Voltage | V _{CC} -
V _{EE} | 3.1 | 3.3 | 3.5 | V | | | Transmitter | Transmitter | | | | | | | Data Input
Differential Voltage | V _{DIFF} | 250 | | 2400 | mV | | | Receiver | | | | | | | | Input Center
Wavelength | λ_{C} | 770 | | 860 | nm | | # **Transmitter Electro-Optical Characteristics** | Transmitter | Symbol | Min. | Тур. | Max. | Units | |---|------------------|------|------|------|-------| | Launched Power
(Average) ⁽¹⁾ | PO | -9.5 | -6 | -4 | dBm | | Optical Modulation Amplitude ⁽³⁾ | OMA | 156 | 450 | | μW | | Center Wavelength | λ_{C} | 830 | 850 | 860 | nm | | Spectral Width (RMS) | σ_{l} | | | 0.85 | | | Relative Intensity Noise | RIN | | | -116 | dB/Hz | | Extinction Ratio (Dynamic) | ER | 9 | 15 | | dB | | Total Tx Jitter | TJ | | 53 | 130 | ps | | Reset Threshold ⁽²⁾ | V _{TH} | 2.5 | 2.75 | 2.99 | ٧ | | Reset Time Out ⁽²⁾ | t _{RES} | 140 | 240 | 560 | ms | | Rise Time, 20%-80% | t _R | | | 260 | ps | | Supply Current | | | 45 | 65 | mA | # Notes - 1. Into multimode fiber, 62.5 µm or 50 µm diameter. - 2. Laser power is shut down if power supply is below $\rm V_{TH}$ and switched on if power supply is above $\rm V_{TH}$ after $\rm t_{RES}.$ - 3. Fibre Channel PI Standard ## **Receiver Electro-Optical Characteristics** | Receiver | Symbol | Min. | Тур. | Max. | Units | |---|--|------|-------|-------|-------------------| | Sensitivity
(Average Power) ⁽¹⁾ | P _{IN} | | -19.5 | -17 | dBm | | Saturation
(Average Power) | P _{SAT} | 0 | | | | | Min. Optical Modulation
Amplitude ⁽⁸⁾ | OMA | | 19 | 31 | μW | | Stressed Receiver Sensi- | SPIN | | 24 | 55 | μW ⁽⁶⁾ | | tivity 50 µm Fiber | 50 µm | | -17 | -13.5 | dB ⁽⁷⁾ | | Stressed Receiver Sensi- | SPIN | | 32 | 67 | μW ⁽⁶⁾ | | tivity 62.5 µm Fiber | 62.5 µm | | -16 | -12.5 | dB ⁽⁷⁾ | | LOS of Signal
Assert Level ⁽²⁾ | P _{LOSA} | | -22 | -18 | dBm | | LOS of Signal
Deassert Level ⁽³⁾ | P _{LOSD} | -30 | -24 | | | | LOS of Signal
Hysteresis | P _{LOSA} -
P _{LOSD} | 0.5 | 2 | | dB | | LOS of Signal
Assert Time | t _{ASS} | | | 100 | μs | | LOS of Signal
Deassert Time | t _{DAS} | | | 350 | | | Receiver 3 dB cut off Frequency ⁽⁸⁾ | | | 1.25 | 1.5 | GHz | | Receiver 10 dB cut off Frequency ⁽⁸⁾ | | | 1.5 | 3 | | | Data Output Differential
Voltage ⁽⁴⁾ | V _{DIFF} | 0.5 | 0.7 | 1.23 | V | | Return Loss
of Receiver | A _{RL} | 12 | | | dB | | Supply current ⁽⁵⁾ | | | 80 | 90 | mA | #### Notes - 1. Average optical power at which the BER is 1 x 10E–12. Measured with a 2^7 –1 NRZ PRBS and ER=9 dB. - 2. An increase in optical power above the specified level will cause the LOS of Signal output to switch from a High state to a Low state. - 3. A decrease in optical power below the specified level will cause the LOS of Signal to change from a Low state to a High state. - 4. AC/AC for data. Load 50 Ω to GND or 100 Ω differential. For dynamic measurement a tolerance of 50 mV should be added. - 5. Supply current excluding Rx output load. - Measured at the given Stressed Receiver Eyeclosure Penatly and DCD component given in Fibre Channel PI Standard (2.03/2.18 dB & 40/80 ps). - 7. Measured according to IEEE 802.3 - 8. Fibre Channel PI Standard. # Timing of Control and Status I/O | Parameter | Symbol | Min. | Max. | Units | Condition | |---|--------------------|------|------|-------|--| | Tx Disable
Assert
Time | t_off | | 10 | μs | Time from rising edge of Tx Disable to when the optical output falls below 10% of nominal. | | Tx Disable
Negate
Time | t_on | | 1 | ms | Time from falling
edge of Tx Disable to
when the modulated
optical output rises
above 90% of nomi-
nal. | | Time to initialize, including reset of Tx_Fault | t_init | | 300 | | From power on or
negation of Tx Fault
using Tx Disable. | | Tx Fault
Assert
Time | t_fault | | 100 | μs | Time from fault to Tx fault on. | | Tx Disable to reset | t_reset | 10 | | | Time Tx Disable must be held high to reset Tx_fault. | | LOS As-
sert Time | t_loss_
on | | 100 | | Time from LOS state to Rx LOS assert. | | LOS Deas-
sert Time | t_loss_
off | | 100 | | Time from non-LOS state to Rx LOS deassert. | | Serial ID
Clock Rate | f_serial_
clock | | 100 | kHz | | # **Pin Description** | Pin Na | me | Level/
Logic | Pin# | Description | |--------------------|------------------------------------|-----------------|------|--| | V _{EE} T | Transmitter
Ground | N/A | 1 | | | Tx
Fault | Transmitter
Fault
Indication | TTL | 2 | Logical 1 indicates that Laser Shut-Down is active. | | Tx
Dis-
able | Transmitter
Disable | TTL | 3 | A low signal switches the laser on. A high signal switches the laser off. If not connected the Tx is disabled. | | MOD-
DEF2 | Module
Definition 2 | TTL | 4 | Mod-Def 2 is the data line of two wire serial interface for serial ID. | | MOD-
DEF1 | Module
Definition 1 | TTL | 5 | Mod-Def 1 is the clock line of two wire serial interface for serial ID. | | MOD-
DEF0 | Module
Definition 0 | N/A | 6 | Mod-Def 0 is grounded by the module to indicate that the module is present. | | Rate
Select | Not connected | N/A | 7 | | | LOS | Loss of Signal | TTL | 8 | Normal Operation: Logic "0" Output, represents that light is present at receiver input. Fault Condition: Logic "1" Output. | | V _{EE} R | Receiver
Ground | N/A | 9 | | | V _{EE} R | Receiver
Ground | N/A | 10 | | | V _{EE} R | Receiver
Ground | N/A | 11 | | | RD- | Inv. Received
Data Out | LV
PECL | 12 | AC Coupled inside the Transceiver. | | RD+ | Received
Data Out | LV
PECL | 13 | | | V _{EE} R | Receiver
Ground | N/A | 14 | | | V _{CC} R | Receiver
Power | N/A | 15 | | | V _{CC} T | Transmitter
Power | N/A | 16 | | | V _{EE} T | Transmitter
Ground | N/A | 17 | | | TD+ | Transmit
Data In | LV
PECL | 18 | AC Coupled inside the Transceiver and 100 Ω | | TD- | Inv. Transmit
Data In | LV
PECL | 19 | differential terminated. | | V _{EE} T | Transmitter
Ground | N/A | 20 | | # **Regulatory Compliance** | Feature | Standard | Comments | |--|--|--| | CE | Compliant with
89/336/EEC | EN 55022
EN 55024 | | ESD:
Electrostatic
Discharge to the
Electrical Pins | EIA/JESD22-
A114-A
(MIL-STD 883D
Method 3015.7) | Class 1 (>1000 V) | | Immunity:
Against Electrostatic
Discharge (ESD)
to the
Duplex LC
Receptacle | EN 61000-4-2
IEC 61000-4-2 | Discharges ranging from ±2 kV to ±15 kV on the receptacle cause no damage to transceiver (under recommended conditions). | | Immunity:
Against Radio Fre-
quency Electromag-
netic Field | EN 61000-4-3
IEC 61000-4-3 | With a field strength of
3 V/m rms, noise
frequency ranges from
10 MHz to 2 GHz. No
effect on transceiver
performance between
the specification limits. | | Emission:
Electromagnetic
Interference (EMI) | FCC 47 CFR
Part 15, Class B
EN 55022 Class B
CISPR 22 | Noise frequency range:
30 MHz to 18 GHz | | SFP V23818-K305-B57 Tested To Comply With PCC Standards FOR HOME OR OFFICE USE | | This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: 1. This device may not cause harmful interference. 2. This device must accept any interference received, including interference that may cause undesired operation. | # **EYE SAFETY** This laser based multimode transceiver is a Class 1 product. It complies with IEC 60825-1 and FDA 21 CFR 1040.10 and 1040.11 To meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings. # Caution All adjustments have been made at the factory prior to shipment of the devices. No maintenance or alteration to the device is required. Tampering with or modifying the performance of the device will result in voided product warranty. ### Note Failure to adhere to the above restrictions could result in a modification that is considered an act of "manufacturing", and will require, under law, recertification of the modified product with the U.S. Food and Drug Administration (ref. 21 CFR 1040.10 (i)). #### Laser Data | Wavelength | 850 nm | |--|---------| | Total output power (as defined by IEC: 7 mm aperture at 1.4 cm distance) | <675 µW | | Total output power (as defined by FDA: 7 mm aperture at 20 cm distance) | <70 μW | | Beam divergence | 12° | # Required Labels #### **Laser Emission** ## SFP Transceiver Electrical Pad Layout #### APPLICATION NOTES #### **EMI-Recommendation** To avoid electromagnetic radiation exceeding the required limits please take note of the following recommendations. When Gigabit switching components are found on a PCB (multiplexers, clock recoveries etc.) any opening of the chassis may produce radiation also at chassis slots other than that of the device itself. Thus every mechanical opening or aperture should be as small as possible. On the board itself every data connection should be an impedance matched line (e.g. strip line, coplanar strip line). Data, Datanot should be routed symmetrically, vias should be avoided. A terminating resistor of 100 Ω should be placed at the end of each matched line. An alternative termination can be provided with a 50 Ω resistor at each (D, Dn). In DC coupled systems a thevenin equivalent 50 Ω resistance can be achieved as follows: For 3.3 V: 125 Ω to V $_{CC}$ and 82 Ω to V $_{EE}$, for 5 V: 82 Ω to V $_{CC}$ and 125 Ω to V $_{EE}$ at Data and Datanot. Please consider whether there is an internal termination inside an IC or a transceiver. In certain cases signal GND is the most harmful source of radiation. Connecting chassis GND and signal GND at the plate/bezel/ chassis rear e.g. by means of a fiber optic transceiver may result in a large amount of radiation. Even a capacitive coupling between signal GND and chassis may be harmful if it is too close to an opening or an aperture. If a separation of signal GND and chassis GND is not possible, it is strongly recommended to provide a proper contact between signal GND and chassis GND at every location where possible. This concept is designed to avoid hotspots. Hotspots are places of highest radiation which could be generated if only a few connections between signal and chassis GND exist. Compensation currents would concentrate at these connections, causing radiation. By use of Gigabit switching components in a design, the return path of the RF current must also be considered. Thus a split GND plane of Tx and Rx portion may result in severe EMI problems. The cutout should be sized so that all contact springs make good contact with the face plate. For the SFP transceiver a connection of the SFP cage pins to chassis GND is recommended. If no separate chassis GND is available on the users PCB the pins should be connected to signal GND. In this case take care of the notes above. Please consider that the PCB may behave like a waveguide. With an ϵ_r of 4, the wavelength of the harmonics inside the PCB will be half of that in free space. In this scenario even the smallest PCBs may have unexpected resonances. The SFP transceiver can be assembled onto the host board together with all cages and host board connectors complying with the SFP multi source agreement. # **Infineon Proposes** Cage: Infineon Technologies Part Number: V23818-S5-N1 Host board connector: Tyco Electronics Part Number: 1367073-1 # **EEPROM Serial ID Memory Contents** The data can be read using the 2-wire serial CMOS E2PROM protocol of the Atmel AT24C01A or equivalent. | Address | Hex | ASCII | |---------|-----|-------| | 0 | 03 | | | 1 | 04 | | | 2 | 07 | | | 3 | 00 | | | 4 | 00 | | | 5 | 00 | | | 6 | 01 | | | 7 | 40 | | | 8 | 40 | | | 9 | 0C | | | 10 | 01 | | | 11 | 01 | | | 12 | 0D | | | 13 | 00 | | | 14 | 00 | | | 15 | 00 | | | 16 | 32 | | | 17 | 1E | | | 18 | 00 | | | 19 | 00 | | | 20 | 49 | 1 | | 21 | 6E | n | | 22 | 66 | f | | 23 | 69 | i | | 24 | 6E | n | | 25 | 65 | е | | 26 | 6F | 0 | | 27 | 6E | n | | 28 | 20 | | | 29 | 41 | А | | 30 | 47 | G | | 31 | 20 | | | Address | Нех | ASCII | |---------|-----|-------| | 32 | 20 | | | 33 | 20 | | | 34 | 20 | | | 35 | 20 | | | 36 | 00 | | | 37 | 00 | | | 38 | 03 | | | 39 | 19 | | | 40 | 56 | V | | 41 | 32 | 2 | | 42 | 33 | 3 | | 43 | 38 | 8 | | 44 | 31 | 1 | | 45 | 38 | 8 | | 46 | 2D | - | | 47 | 4B | K | | 48 | 33 | 3 | | 49 | 30 | 0 | | 50 | 35 | 5 | | 51 | 2D | - | | 52 | 42 | В | | 53 | 35 | 5 | | 54 | 37 | 7 | | 55 | 20 | | | 56 | 00 | | | 57 | 00 | | | 58 | 00 | | | 59 | 00 | | | 60 | 00 | | | | l | 1 | | 61 | 00 | | | 64 00 65 1A 66 78 67 32 68(2) 69(2) 70(2) 71(2) 72(2) 73(2) 74(2) 75(2) 76(2) 77(2) 78(2) 79(2) 80(2) 81(2) 82(2) 83(2) 83(3) 85(3) 85(3) 86(3) 87(3) 88(3) 89(3) 90(3) 91(3) 92 00 93 00 94 00 95(4) | Address | Hex | ASCII | |---|-------------------|-----|-------| | 666 78 67 32 68(2) 69(2) 70(2) 71(2) 72(2) 73(2) 74(2) 75(2) 76(2) 77(2) 78(2) 79(2) 80(2) 81(2) 82(2) 83(2) 83(3) 85(3) 86(3) 87(3) 88(3) 89(3) 90(3) 91(3) 92 00 93 00 | | 00 | | | 67 32 68 ⁽²⁾ 69 ⁽²⁾ 70 ⁽²⁾ 71 ⁽²⁾ 72 ⁽²⁾ 73 ⁽²⁾ 74 ⁽²⁾ 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | 65 | 1A | | | 68 ⁽²⁾ 69 ⁽²⁾ 70 ⁽²⁾ 71 ⁽²⁾ 72 ⁽²⁾ 73 ⁽²⁾ 74 ⁽²⁾ 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | 66 | 78 | | | 69(2) 70(2) 71(2) 72(2) 73(2) 74(2) 75(2) 76(2) 77(2) 78(2) 79(2) 80(2) 81(2) 82(2) 83(3) 86(3) 87(3) 88(3) 89(3) 90(3) 91(3) 92 00 93 00 94 00 | | 32 | | | 70 ⁽²⁾ 71 ⁽²⁾ 72 ⁽²⁾ 73 ⁽²⁾ 74 ⁽²⁾ 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | | | | | 71 ⁽²⁾ 72 ⁽²⁾ 73 ⁽²⁾ 74 ⁽²⁾ 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | | | | | 72 ⁽²⁾ 73 ⁽²⁾ 74 ⁽²⁾ 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | | | | | 73 ⁽²⁾ 74 ⁽²⁾ 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | | | | | 74 ⁽²⁾ 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | | | | | 75 ⁽²⁾ 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | | | | | 76 ⁽²⁾ 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 | | | | | 77 ⁽²⁾ 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 | | | | | 78 ⁽²⁾ 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 79 ⁽²⁾ 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 | | | | | 80 ⁽²⁾ 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 81 ⁽²⁾ 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 82 ⁽²⁾ 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 83 ⁽²⁾ 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 84 ⁽³⁾ 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 85 ⁽³⁾ 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 86 ⁽³⁾ 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 87 ⁽³⁾ 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 88 ⁽³⁾ 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 89 ⁽³⁾ 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 90 ⁽³⁾ 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 91 ⁽³⁾ 92 00 93 00 94 00 | | | | | 92 00
93 00
94 00 | | | | | 93 00
94 00 | 91 ⁽³⁾ | | | | 94 00 | | 00 | | | | 93 | 00 | | | 95 ⁽⁴⁾ | | 00 | | | | 95 ⁽⁴⁾ | | | | 96 20 97 20 98 20 99 20 100 20 101 20 102 20 103 20 104 20 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 127 20 | Address | Hex | ASCII | |---|---------|-----|-------| | 98 20
99 20
100 20
101 20
102 20
103 20
104 20
105 20
106 20
107 20
108 20
110 20
111 20
112 20
113 20
114 20
115 20
116 20
117 20
118 20
117 20
118 20
119 20
119 20
120 20
121 20
122 20
123 20
124 20
125 20 | 96 | 20 | | | 99 20 100 20 101 20 102 20 103 20 104 20 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 97 | 20 | | | 100 20 101 20 102 20 103 20 104 20 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 98 | 20 | | | 101 20 102 20 103 20 104 20 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 99 | 20 | | | 102 20 103 20 104 20 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 100 | 20 | | | 103 20 104 20 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 101 | 20 | | | 104 20 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 102 | 20 | | | 105 20 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 103 | 20 | | | 106 20 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 104 | 20 | | | 107 20 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 105 | 20 | | | 108 20 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 106 | 20 | | | 109 20 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 107 | 20 | | | 110 20 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 108 | 20 | | | 111 20 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 109 | 20 | | | 112 20 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 110 | 20 | | | 113 20 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 111 | 20 | | | 114 20 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 112 | 20 | | | 115 20 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 113 | 20 | | | 116 20 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 114 | 20 | | | 117 20 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 115 | 20 | | | 118 20 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 116 | 20 | | | 119 20 120 20 121 20 122 20 123 20 124 20 125 20 126 20 | 117 | 20 | | | 120 20
121 20
122 20
123 20
124 20
125 20
126 20 | 118 | 20 | | | 121 20 122 20 123 20 124 20 125 20 126 20 | 119 | 20 | | | 122 20 123 20 124 20 125 20 126 20 | 120 | 20 | | | 123 20 124 20 125 20 126 20 | 121 | 20 | | | 124 20 125 20 126 20 | 122 | 20 | | | 125 20
126 20 | 123 | 20 | | | 126 20 | 124 | 20 | | | | 125 | 20 | | | 127 20 | 126 | 20 | | | | 127 | 20 | | #### Notes 1. Address 63 is check sum of bytes 0-63 63⁽¹⁾ FΒ - 2. Address 61–83 Vendor Serial Number - 3. Date code - 4. Address 95 is check sum of bytes 64-94 # Multimode 850 nm Fibre Channel SFP Transceiver, AC/AC TTL ## **Example SFP Host Board Schematic** #### Published by Infineon Technologies AG #### © Infineon Technologies AG 2002 All Rights Reserved #### Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. #### Information For further information on technology, delivery terms and conditions and prices please contact the Infineon Technologies offices or our Infineon Technologies Representatives worldwide - see our webpage at # www.infineon.com/fiberoptics #### Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your Infineon Technologies offices Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.