

# **Product Description**

The PE42440 is a HaRP<sup>TM</sup>-enhanced SP4T RF Switch developed on the UltraCMOS<sup>®</sup> process technology. This general-purpose switch contains 4 identical RF ports and can be used in a multitude of applications up to 3000 MHz. It integrates on-board CMOS control logic with a low voltage CMOScompatible control interface and requires no DC blocking capacitors. This RoHS-compliant part is available in a standard 3 x 3 x 0.75 mm QFN package.

Peregrine's HaRP<sup>™</sup> technology enhancements deliver high linearity and exceptional harmonics performance. It is an innovative feature of the UltraCMOS<sup>®</sup> process, providing performance superior to GaAs with the economy and integration of conventional CMOS.

# Product Specification PE42440

SP4T UltraCMOS<sup>®</sup> RF Switch 50 – 3000 MHz

#### Features

- HaRP<sup>™</sup> Enhanced Technology for Unparalleled Linearity
- Very Low Insertion Loss: 0.45 dB @ 1000 MHz, 0.5 dB @ 2000 MHz
- Very High Isolation: 34 dB @ 1000 MHz, 28 dB @ 2000 MHz
- Exceptionally High ESD tolerance:
  - Class 3 (4.0 kV HBM) on RFC pin
  - Class 2 (2.0 kV HBM) on all pins
- Integrated Decoder for 2-pin control
  - Accepts 1.8V and 2.75V Control Logic Levels
- Low 4.5Ω Series ON Resistance
- No Blocking Capacitors Required



# Figure 1. Functional Diagram

Figure 2. Package Type 16L 3 x 3 x 0.75 mm QFN





# Table 1. Electrical Specifications: Temp = 25°C, $V_{DD}$ = 2.75V ( $Z_S = Z_L = 50\Omega$ )

| Parameter                             | Condition                                      | Min | Тур  | Max  | Units |
|---------------------------------------|------------------------------------------------|-----|------|------|-------|
| Operational Frequency                 |                                                | 50  |      | 3000 | MHz   |
|                                       | 50 - 1000 MHz                                  | -   | 0.45 | 0.65 | dB    |
| Insertion Loss (RFC - RFX)            | 1000 - 2000 MHz                                | -   | 0.5  | 0.7  | dB    |
|                                       | 2000 - 3000 MHz                                | -   | 0.85 | 1.15 | dB    |
|                                       | 50 - 1000 MHz                                  | -   | 22   | -    | dB    |
| Return Loss (RFC - RFX, Active Ports) | 1000 - 2000 MHz                                | -   | 15   | -    | dB    |
|                                       | 2000 - 3000 MHz                                | -   | 11   | -    | dB    |
|                                       | 50 - 1000 MHz                                  | 31  | 34   | -    | dB    |
| Isolation (RFC - RFX)                 | 1000 - 2000 MHz                                | 25  | 28   | -    | dB    |
|                                       | 2000 - 3000 MHz                                | 20  | 22   | -    | dB    |
| Input IP2                             | 50 - 3000 MHz, +18 dBm per tone, 1 MHz spacing |     | 96   |      | dBm   |
| Input IP3                             | 50 - 3000 MHz, +18 dBm per tone, 1 MHz spacing |     | 67   |      | dBm   |
| P1dB <sup>1</sup>                     | 50 - 3000 MHz                                  |     | 41.5 |      | dBm   |
| Switching time                        | 50% CNTL to 10/90% of RF                       |     | 2    |      | μs    |

Note: 1. Please refer to Maximum Operating Pin (50 $\Omega$ ) in Table 4

# Table 2. Electrical Specifications, Worst Case Conditions: Temp = 85°C, V\_{DD} = 2.65V (Z\_S = Z\_L = 50\Omega)

| Parameter                             | Condition                                      | Min | Тур  | Max  | Units |
|---------------------------------------|------------------------------------------------|-----|------|------|-------|
| Operational Frequency                 |                                                | 50  |      | 3000 | MHz   |
|                                       | 50 - 1000 MHz                                  | -   | 0.5  | 0.65 | dB    |
| Insertion Loss (RFC - RFX)            | 1000 - 2000 MHz                                | -   | 0.65 | 0.75 | dB    |
|                                       | 2000 - 3000 MHz                                | -   | 1.0  | 1.25 | dB    |
|                                       | 50 - 1000 MHz                                  | -   | 21   | -    | dB    |
| Return Loss (RFC - RFX, Active Ports) | 1000 - 2000 MHz                                | -   | 15   | -    | dB    |
|                                       | 2000 - 3000 MHz                                | -   | 10   | -    | dB    |
|                                       | 50 - 1000 MHz                                  | 30  | 32   | -    | dB    |
| Isolation (RFC - RFX)                 | 1000 - 2000 MHz                                | 24  | 26   | -    | dB    |
|                                       | 2000 - 3000 MHz                                | 20  | 22   | -    | dB    |
| Input IP2                             | 50 - 3000 MHz, +18 dBm per tone, 1 MHz spacing |     | 95   |      | dBm   |
| Input IP3                             | 50 - 3000 MHz, +18 dBm per tone, 1 MHz spacing |     | 66   |      | dBm   |
| P1dB <sup>1</sup>                     | 50 - 3000 MHz                                  |     | 41   |      | dBm   |
| Switching time                        | 50% CNTL to 10/90% of RF                       |     | 2    |      | μs    |

Note: 1. Please refer to Maximum Operating Pin (50 $\Omega$ ) in *Table 4* 



# Figure 3. Pin Configuration (Top View)



#### Table 3. Pin Descriptions

| Pin No. | Pin Name         | Description                            |
|---------|------------------|----------------------------------------|
| 1       | GND              | Ground                                 |
| 2       | $V_{DD}$         | Supply                                 |
| 3       | V2               | Switch control input, CMOS logic level |
| 4       | V1               | Switch control input, CMOS logic level |
| 5       | GND              | Ground                                 |
| 6       | RF4 <sup>1</sup> | RF Port 4                              |
| 7       | GND              | Ground                                 |
| 8       | RF3 <sup>1</sup> | RF Port 3                              |
| 9       | GND              | Ground                                 |
| 10      | GND              | Ground                                 |
| 11      | RFC <sup>1</sup> | RF Common                              |
| 12      | GND              | Ground                                 |
| 13      | RF1 <sup>1</sup> | RF Port 1                              |
| 14      | GND              | Ground                                 |
| 15      | RF2 <sup>1</sup> | RF Port 2                              |
| 16      | N/C              | No Connect                             |
| Paddle  | GND              | Exposed ground paddle                  |

Notes: 1. All RF pins must be DC blocked with an external series capacitor or held at 0  $V_{\text{DC}}$ 

#### Table 4. Operating Ranges<sup>4</sup>

| Parameter                                                  | Symbol          | Min  | Тур  | Max        | Units      |
|------------------------------------------------------------|-----------------|------|------|------------|------------|
| V <sub>DD</sub> Supply Voltage                             | V <sub>DD</sub> | 2.65 | 2.75 | 3.3        | V          |
| $I_{DD}$ Power Supply Current ( $V_{DD} = 2.75V$ )         | I <sub>DD</sub> |      | 13   | 50         | μA         |
| RF input power (50Ω)<br>(50 - 500 MHz)<br>(500 - 3000 MHz) | P <sub>IN</sub> |      |      | +28<br>+33 | dBm<br>dBm |
| Control Voltage High                                       | VIH             | 1.4  |      |            | V          |
| Control Voltage Low                                        | VIL             |      |      | 0.4        | V          |
| Temperature Range                                          | T <sub>OP</sub> | -40  | +25  | +85        | °C         |
| Storage Temperature Range                                  | T <sub>ST</sub> | -65  | +25  | +160       | °C         |

Note: 1. Operation should be restricted to the limits in the Operating Ranges table

#### **Table 5. Absolute Maximum Ratings**

| Symbol                             | Parameter/Conditions                                 | Min  | Max                   | Units      |
|------------------------------------|------------------------------------------------------|------|-----------------------|------------|
| Vi                                 | Voltage on any DC input                              | -0.3 | V <sub>DD</sub> + 0.3 | V          |
| P <sub>IN</sub> (50Ω) <sup>1</sup> | RF input power<br>(50 - 500 MHz)<br>(500 - 3000 MHz) |      | +28<br>+33            | dBm<br>dBm |
|                                    | HBM <sup>2</sup> ESD Voltage, RFC pin                |      | 4000                  | V          |
| V                                  | HBM <sup>2</sup> ESD Voltage, all pins               |      | 2000                  | v          |
| V <sub>ESD</sub>                   | MM ESD Voltage, RFC pin                              |      | 300                   | v          |
|                                    | MM ESD Voltage, all pins                             |      | 100                   | v          |

Notes: 1. V<sub>DD</sub> within operating range specified in *Table 4* 2. ESD Voltage (HBM, MIL-STD-883 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent damage. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

#### Table 6. Truth Table

| Path      | V2 | V1 |
|-----------|----|----|
| RFC – RF1 | 0  | 0  |
| RFC – RF2 | 1  | 0  |
| RFC – RF3 | 0  | 1  |
| RFC – RF4 | 1  | 1  |

#### **Electrostatic Discharge (ESD) Precautions**

When handling this UltraCMOS<sup>®</sup> device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

#### Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS<sup>®</sup> devices are immune to latch-up.

#### **Moisture Sensitivity Level**

The Moisture Sensitivity Level rating for the PE42440 in the 16-lead 3 x 3 x 0.75 mm QFN package is MSL1.

#### Switching Frequency

The PE42440 has a maximum 25 kHz switching rate.



# **Evaluation Kit**

The SP4T switch EK Board was designed to ease customer evaluation of Peregrine's PE42440. The RF common port is connected through a  $50\Omega$ transmission line via the top SMA connector, J1. RF1, RF2, RF3 and RF4 are connected through  $50\Omega$  transmission lines via SMA connectors J3, J5, J2 and J4, respectively. A through  $50\Omega$ transmission is available via SMA connectors J6 and J7. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

The board is constructed of a four metal layer FR4 material with a total thickness of 62 mils. The middle layers provide ground for the transmission lines. The transmission lines were designed using a coplanar waveguide with ground plane model using a trace width of 32 mils, trace gaps of 25 mils, and metal thickness of 2.1 mils.

#### Figure 5. Evaluation Board Schematic

Peregrine Specification 102-0339-02

#### **Figure 4. Evaluation Board Layouts**

Peregrine Specification 101-0287-03





<sup>©2009-2012</sup> Peregrine Semiconductor Corp. All rights reserved.

UltraCMOS<sup>®</sup> RFIC Solutions Document No. 70-0294-02



#### Typical Performance Data

#### Figure 6. Insertion Loss: RFC-RF @ 25°C



Figure 7. Insertion Loss: RFC-RF @ 2.75V



Figure 8. Isolation: RFC-RF @ 25°C



Figure 9. Isolation: RFC-RF @ 2.75V







#### Figure 10. Return Loss at Active Port @ 25 °C

Figure 11. Return Loss at Active Port @ 2.75 V

Figure 12. Maximum Operating Power vs. Frequency





# Figure 13. Package Drawing

16-lead 3 x 3 x 0.75 mm QFN



#### Figure 14. Marking Specifications





#### Figure 15. Tape and Reel Specifications





Device Orientation in Tape

#### **Table 7. Ordering Information**

| Order Code                                  | Description               | Package                    | Shipping Method  |  |
|---------------------------------------------|---------------------------|----------------------------|------------------|--|
| PE42440MLBB-Z PE42440G-16QFN 3 x 3 mm-3000C |                           | Green 16-lead 3 x 3 mm QFN | 3000 units / T&R |  |
| EK42440-02                                  | PE42440-16QFN 3 x 3 mm-EK | Evaluation Kit             | 1 / Box          |  |

#### Sales Contact and Information

For Sales and contact information please visit www.psemi.com.

<u>Advance Information</u>: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. <u>Preliminary Specifications</u>: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. <u>Product Specifications</u>: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. All other trademarks mentioned herein are the property of their respective companies.