51

Technical Data Sheet

Theta 40

Theta **40** Series of multi-transducers simultaneously measure several variables of an electric power system and process them to produce 2 or 3 or 4 analogue output signals. 2 or 4 digital outputs are available for signaling limits or power metering. For two of the limit outputs up to 3 measurands can be logically combined.

Special Features

- For all heavy-current power system variables
- → Up to 6 outputs (2A + 4D or 4A + 2D or 2A or 3A)
- → Input voltage up to 693 V (phase-to-phase)
- Universal analogue outputs (programmable)
- → High accuracy: U/I 0.2%, Frequency 0.15% and P 0.25% (under reference conditions)
- → Universal digital outputs (meter transmitter, limits)
- → AC/DC power supply/universal (24-80V AC/DC or 85-230V AC/DC)
- Windows software with password protection for programming, data analysis, power system status simulation, acquisition of meter data and making settings

Application

Theta **40** for the measurement of electrical variables in heavy current power systems

The Theta Series series of multi-transducers **simultaneously** measure several variables of an electric power system and process them to produce 2 or 3 or 4 analogue output signals. 2 or 4 digital outputs are available for signaling limits or power metering. For two of the limit outputs up to 3 measurands can be logically combined.

The multi - transducers are also equipped with an serial **RS 232** interface to which a PC with the corresponding software can be connected for programming or accessing & executing useful ancillary functions. The usual modes of connection, the types of measured variables, their ratings, the transfer characteristic for each output etc. are the main parameters that have to be programmed.

Ancillary functions include a power system check, provision for displaying the measured variable on a PC monitor, the simulation of the outputs for test purposes and a facility for printing nameplates.

Table 1

Measured variables	Output	Types
Current, voltage (rms),	2 analogue outputs	Theta M20
active/reactive/ apparent power cos, sin, power factor RMS value of the current	3 analogue outputs	Theta M30
with wire setting range (bimetal measuring function)	2 analogue outputs and 4 digital outputs or	Theta M24
Slave pointer function for the measurement of the RMS	4 analogue outputs and 2 digital outputs	Theta M42
value IB Frequency Average value of the currents	4 analogue outputs and bus RS 485 (MODBUS)	Theta M40 *
with sign of the active power (power system only)	Data bus (LON) M00	Theta M00 *
	Bus RS 485 (MODBUS)	Theta M01 *
	4 analog output with RS 485, optional display	Theta Trans *

* Refer dedicated data sheet for complete product details.

Fig. 2. Block diagram.

Table 2A, B, C, D = analogue outputs;
E, F, G, H = digital outputs.

Models	Analog Output	Digital Output	Communication type	Programming Port
Theta M42	4(A,B,C,D)	(E,F)	-	RS 232
Theta M24	2(A,B)	(E,F,G,H)	-	RS 232
Theta M20	2(A,B)	-	-	RS 232
Theta M30	3(A,B,C)	-	-	RS 232
Theta M00	-	-	LON Bus	RS 232
Theta M40	4(A,B,C,D)	-	RS 485	RS 232
Theta M01	-	-	RS 485	RS 232
ThetaTrans	4(A,B,C,D)	-	RS 485	RS 232

Table 3 : Symbols and their meaning

Symbols	Meaning
Х	Measured variable
X0	Lower limit of the measured variable
X1	Break point of the measured variable
X2	Upper limit of the measured variable
Y	Output variable
Y0	Lower limit of the output variable
Y1	Break point of the output variable
Y2	Upper limit of the output variable
U	Input voltage
Ur	Rated value of the input voltage

Table 3 : Symbols and their meaning

Symbols	Meaning
U 12	Phase-to-phase voltage L1 - L2
U 23	Phase-to-phase voltage L2 - L3
U 31	Phase-to-phase voltage L3 - L1
U1N	Phase-to-neutral voltage L1 - N
U2N	Phase-to-neutral voltage L2 - N
U3N	Phase-to-neutral voltage L3 - N
UM	Average value of the voltages (U1N + U2N + U3N) / 3
I	Input current
I1	AC current L1
I2	AC current L2
I3	AC current L3
Ir	Rated value of the input current
IM	Average value of the currents (I1+ I2 + I3) / 3
IMS	Average value of the currents and sign of the active power (P)
IB	RMS value of the current with wire setting range (bimetal measuring function)
IBT	Response time for IB
BS	Slave pointer function for the measurement of the RMS value IB
BST	Response time for BS
φ	Phase-shift between current and voltage
F	Frequency of the input variable
Fn	Rated frequency
Р	Active power of the system $P = P1 + P2 + P3$
P1	Active power phase 1 (phase-to-neutral L1 - N)
P2	Active power phase 2 (phase-to-neutral L2 - N)
P3	Active power phase 3 (phase-to-neutral L3 - N)
Q	Reactive power of the system $Q = Q1 + Q2 + Q3$
Q1	Reactive power phase 1 (phase-to-neutral L1-N)
Q2	Reactive power phase 2 (phase-to-neutral L2-N)

Symbols	Meaning	
Q3	Reactive power phase 3 (phase-to-neutral L3-N)	
S	Apparent power of the system	
	$S = \sqrt{I_1^2 + I_2^2 + I_3^2} \cdot \sqrt{U_1^2 + U_2^2 + U_3^2}$	
S1	Apparent power phase 1	
	(phase-to-neutral L1-N)	
S2	Apparent power phase 2	
	(phase-to-neutral L2-N)	
S3	Apparent power phase 3 (phase-to-neutral L3-N)	
Sr	Rated value of the apparent power of the system	
PF	Active power factor $\cos \varphi = P/S$	
PF1	Active power factor phase1 P1/S1	
PF2	Active power factor phase2 P2/S2	
PF3	Active power factor phase3 P3/S3	
QF	Reactive power factor $\sin j = Q/S$	
QF1	Reactive power factor phase1 Q1/S1	
QF2	Reactive power factor phase2 Q2/S2	
QF3	Reactive power factor phase3 Q3/S3	
LF	Power factor of the system LF = sgnQ (1- PF)	
LF1	Power factor phase 1 sgnQ1 (1 - PF1)	
LF2	Power factor phase 2 sgnQ2 (1 - PF2)	
LF3	Power factor phase 3 sgnQ3 (1 - PF3)	
с	Factor for the intrinsic error	
R	Output load	
Rn	Rated burden	
Н	Power supply	
Hn	Rated value of the power supply	
СТ	c.t. ratio	
VT	v.t. ratio	

Technical data

Reference conditions		
Ambient temperature		
Pre-conditioning	30 min. acc. to DIN EN 60 688 Section 4.3, Table 2	
Input variable	Rated useful range	
Power supply	H =Hn + 1%	
Active/reactive factor	cosj=1 resp. sin = 1	
Frequency	50 60 Hz, 16 2/3 Hz	
Waveform	Sinusoidal, form factor 1.1107	
Output load	DC current output: $R_n = \frac{7.5 \text{ V}}{Y2} \pm 1\%$	
	DC voltage output:	
	$R_n = \frac{Y2}{1 \text{ mA}} \pm 1\%$	
Miscellaneous	DIN EN 60 688	
* Basic accuracy 0.5 c fo	r applications with phase-shift	
Duration of the	Approx. 0.25 to 0.5 s at 50 Hz,	
measurement cycle	depending on measured	
Description (inc.	variable & programming	
Response time	1 2 times the measurement cycle	
Factor c (the highest value a	pplies)	
Linear characteristic	$c = \frac{1 - \frac{Y0}{Y2}}{1 - \frac{X0}{X2}} \text{ or } c = 1$	
Bent characteristic X0 ≤ X ≤ X1	$c = \frac{Y1 - Y2}{X1 - X2} \cdot \frac{X2}{Y2}$ or $c = 1$	
$X1 \le X \le X2$	$c = \frac{1 - \frac{Y1}{Y2}}{1 - \frac{X1}{X2}} \text{ or } c = 1$	
$ \vec{Fig. 3. Examples of settings } \vec{Fig. 4. Examples } \vec{Fig. 4. Examples } \vec{Fig. 4. Examples } $		
with linear characteristic.	with bent characteristic.	
Power Supply		
AC voltage 100, 110, 230, 400, 500 or 693 V, + 10%, 45 to 65 Hz Power consumption approx. 10 VA		
	1 10 111	

Input-	
Input variables	see Table 10 (Page 6) and 15 (Page 11)
Measuring ranges	see Table 10 (Page 6) and 15 (Page 11)
Waveform	Sinusoidal
Rated frequency	5060 Hz; 16 2/3 Hz
Own consumption	Voltage circuit: ≤U ² / 400 kW Condition: external power supply Current circuit: 0.3 VA I/5 A
Table 5 : Continuous	thermal ratings of inputs
Current circuit	10 A 400 V single-phase AC system 693 V three-phase system
Voltage circuit	480V single-phase AC system 831V three-phase system

Table 6 : Short-time thermal rating of inputs

	i	0	-
Input variable	Number of inputs	Duration of overload	Interval between two overloads
Current circu	100	√ single-phase A √ three-phase sys	
100 A	5	3 s	5 min.
250 A	1	1 s	1 hour
Voltage circu	Voltage circuit 1 A, 2 A, 5 A		
Single-phase AC system 600 V			
H intern : 1.5 Ur	10	10 s	10 s.
Three-phase system 1040 V			
H intern : 1.5 Ur	10	10 s	10 s.

Programming connector on transducer	
Interface	RS 232 C
DSUB socket	9-pin
CTS RTS DSR	The interface is electrically insulated from all other circuits

Influencing quantities and permissible variations Acc. to DIN IEC 688

Technical data

Table 7:	Table 7 : Analogue output ⊖►		
Output variable Y		Impressed DC current	Impressed DC voltage
Full scale Y2	2	see "Ordering information"	see "Ordering information"
Limits of ou signal for in overload	*	see "Ordering information"	see "Ordering information"
and/or	R=0	1.25 Y2	40 mA
	$R \rightarrow \infty$	30V	1.25 Y2
Rated usefu of output lo		$0 \le \frac{7.5 \text{ V}}{\text{Y2}} \le \frac{15 \text{ V}}{\text{Y2}}$	$\frac{Y2}{2 \text{ mA}} \le \frac{Y2}{1 \text{ mA}} \le \infty$
AC compon output sign (peak-to-pea	al	≤ 0.005 Y2	≤ 0.005 Y2

The outputs A, B, C and D may be either short or open-circuited. They are electrically insulated from each other and from all other circuits (floating)

All the full - scale output values can be reduced subsequently using the programming software, but a supplementary error results. The hardware full-scale settings for the analogue outputs may also be changed subsequently. Conversion of a current to a voltage output or vice versa is also possible. This necessities changing resistors on the output board. The full-scale values of the current and voltage outputs are set by varying the effective value of two parallel resistors (better resolution). The values of the resistors are selected to achieve the minimum absolute error. Calibration with the programming software is always necessary following conversion of the outputs. Refer to the Operating Instructions.

Caution : The warranty is void if the device is tampered.

Digital outputs, pulse outputs, limit outputs ()-

The digital outputs conform to DIN43 864. The pulse width can be neither programmed nor is there a hardware setting.

Type of contact	Open collector	
Number of pulses	see "Ordering information"	
Pulse duration	≥ 100 ms	
Interval	≥100 ms	
Power supply	8 40 V	
Output current	ON 10 27 mA QFF < 2 mA	

Accuracy class* Measured variable Condition System Active, reactive $0.5 \le X2/Sr \le 1.5$ 0.25 c and apparent 0.5 c $0.3 \le X2/Sr < 0.5$ power Phase Active, reactive 0.25 c $0.167 \le X2/Sr \le 0.5$ and apparent 0.5 c $0.1 \le X2/Sr < 0.167$ power Power factor, $0.5Sr \le S \le 1.5 Sr$, 0.25 c active power (X2 - X0) = 2and reactive $0.5Sr \le S \le 1.5 Sr$, 0.5 c power $1 \le (X2 - X0) \le 2$ $0.5Sr \le S \le 1.5 Sr$, 1.0 c $0.5 \le (X2 - X0) < 1$ $0.1Sr \le S \le 0.5 Sr$, 0.5 c (X2 - X0) = 20.1Sr \leq S< 0.5Sr, 1.0 c $1 \le (X2 - X0) \le 2$ $0.1Sr \le S < 0.5Sr$, 2.0 c $0.5 \le (X2 - X0) \le 1$ AC Voltage $0.1 \text{ Ur} \le \text{U} \le 1.2 \text{ Ur}$ 0.2 cAC current/ 0.1 Ir \leq I \leq 1.5 Ir 0.2 c current averages System $0.1 \text{ Ur} \le \text{U} \le 1.2 \text{ Ur}$ 0.15+ 0.03 c frequency $(f_N = 50...60 \text{ Hz})$ resp. $0.1 \text{ Ir} \le I \le 1.5 \text{ Ir}$ 0.15 + 0.1 c $(f_N = 162/3 Hz)$ acc. to IEC 1036 Pulse 1.0 c $0.1 \text{ Ir} \le I \le 1.5 \text{ Ir}$

Table 8

Ambient conditions		
Climatic rating	Climate class 3 acc. to	
	VDI/VDE3540	
Variations due to ambient		
temperature	± 0.1% / 10 K	
Nominal range of use	0153045 °C (usage group II)	
for temperature		
Storage temperature	- 40 to + 85 °C	
Annual mean		
relative humidity	≤75%	
Table 0. Dated weltages and taleveness		
Table 9: Rated voltages and tolerances		

Tuble 9. Rated voltages and tolerances				
Rated voltage U _N	Tolerance			
24 60 V DC/AC	DC -15 + 33%			
85 230 V DC/AC	AC ± 10%			
Consumption:	\leq 9 W resp. \leq 10VA			

System response Accuracy class (the reference value is the

fullscale value Y2)

Applicable standards and regulations

Table 4	1				
DIN EN 60 688	Electrical measuring transducers for				
		erting AC electrical variables into			
	analogu	ae and digital signals			
IEC 1010 or	Safety r	egulations for electrical measuring,			
EN 61 010	control	and laboratory equipment			
EN 60529	Protecti	on types by case (code IP)			
IEC 255-4 Part E5		equency interference test tate relays only)			
IEC 1000-4-2,3,4,6		nagnetic compatibility for industrial measurement & control equipment			
VDI/VDE 3540,					
page2		Reliability of measuring and control equipment (classification of climates)			
DIN 40 110	AC qua	ntities			
DIN 43 807	Termina	al markings			
IEC 68 / 2-6	Basic environmental testing procedures, vibration, sinusoidal				
IEC 1036	Solid state AC watt hour meters for active power (Classes 1 and 2)				
DIN 43864	Current interface for the transmission of impulses between impulse encoder counter and tariff meter				
UL 94	Tests for flammability of plastic materials for parts in devices and appliances				
Safety					
Protection class		II			
Enclosure protectic	'n	IP 40, housing IP 20, terminals			
Overvoltage catego	ory	III			

Insulation test (versus earth) Input voltage : AC 400 V

Input current : AC 400 V Output : DC 40 V

Power supply : AC 400 V

5 KV; 1.2/50 ms; 0.5 Ws

DIN EN 61 010-1

50 Hz, 1 Min. according to

5550 V, inputs versus all other circuits as well as outer surface 3250 V, input circuits versus

3700 V, power supply versus outputs and SCI as well as outer surface 490 V, outputs and SCI versus each other and versus outer

DC 230 V

each other

surface

Vibration withsta	nd			
(tested according to	±2g			
DIN EN 60 068-2-6)	8			
Acceleration				
Frequency range	10150 10 Hz, rate of frequency			
	sweep: 1 octave/minute			
Number of cycles	10 in each of the three axes			
Result	No faults occurred, no loss of			
	accuracy and no problems with			
	the snap fastener			
Installation data				
Housing	HousingT24			
	See Section "Dimensioned			
	drawings"			
Housing material	Lexan 940 (polycarbonate),			
	flammability class V-0 acc. to UL			
	94, self-extinguishing, non-			
	dripping, free of halogen			
Mounting	For snapping onto top-hat rail			
	(35X15 mm or 35X7.5 mm) acc.			
	to EN 50 022 or			
	directly onto a wall or panel			
	using the pull-out screw hole			
	brackets			
Orientation	Any			
Weight	With supply transformer			
	approx. 1.1 kg			
	With AC/DC power pack			
	approx. 0.7 kg			
	I			
Terminals				
Туре	Screw terminals with wire guards			
Max. wire gauge	\leq 4.0 mm ² single wire or			
	2 X 2.5 mm ² fine wire			
	(use Taparia Screw driver-type			
	902)			
	To use flat head lugs with total			
	metal length (J) greater than or			
	equal to 17mm.			
Lugs	Lug			
č				
	(I)			

Surge test

Test voltages

Table 10 : Theta 40, standard version

Description / Basic programming	g	M 42	M 24	M20	M30	M40	M00	M01	Theta Trans
Mechanical design: Rated frequency:	Housing T24 for rail and wall mounting 50 Hz (60 Hz admissible without additional error, re-programming by user for 16 2/3Hz possible, but with additional error 1.25 c)						I	I	llan
Power supply:	230 VAC 85230 V DC/AC						1	I	
	External connection (standard) Y2 = 20 mA Y2 = 20 mA Y2 = 20 mA		N. A. N. A.	N. A. N. A. N. A.	N. A. N. A.		N. A. N. A. N. A. N. A. N. A.	N. A. N. A. N. A. N. A.	
Basic programming Application Input voltage Input current	4-wire,3-phase system, asymmetric load(NPS) Design value Ur = 400 V Design value Ir = 5 A without specification of primary ratings								
Measured variable, output A Output signal, output A	P1; X0= 115.47 W; X2 = 115.47 W # DC current Y0 = - 20 mA; Y2 = 20 mA Linear characteristic Standard limits						N. A.	N. A.	
Measured variable, output B Output signal, output B	P2; X0 = - 115.47; X2 = 115.47 W # DC current Y0 = - 20 mA; Y2 = 20 mA Linear characteristic Standard limits						N. A.	N. A.	
Measured variable, output C Output signal, output C	P3; X0 = 115.47 W; X2 = 115.47 W # DC current Y0 = - 20 mA; Y2 = 20 mA Linear characteristic Standard limits		N. A.	N. A.			N. A.	N. A.	
Measured variable, output D Output signal, output D	P; X0 = - 346.41; X2 = 346.41 W# DC current Y0 = - 20 mA; Y2 = 20 mA Linear characteristic Standard limits		N. A.	N. A.	N. A.		N. A.	N. A.	
Output signal, output E	Limit P; XI = 311.77 W # Output ON if X>XI Min. pick-up delay	N. A.		N. A.	N. A.	N. A.	N. A.	N. A.	N. A.
Output signal, output F	Limit Q; XI= 34.64 var # Output ON if X>XI Min. pick-up delay	N. A.		N. A.	N. A.	N. A.	N. A.	N. A.	N. A.
Measured variable, output G	Limit P1; XI= 115.47 W # Output ON if X> XI Min. pick-up delay			N. A.	N. A.	N. A.	N. A.	N. A.	N. A.
Measured variable, output H	Limit I1; XI = 2 A # Output ON if X> X1 Min. pick-up delay			N. A.	N. A.	N. A.	N. A.	N. A.	N. A.

Electrical Connections

Table 11

Function				Connection
Meas. input	AC current	IL1 IL2 IL3		1 / 3 4 / 6 7 / 9
Meas. input	AC Voltage	UL UL UL	2	2 5 8 11
Outputs	Analogue	Digit	al	
→ O	⊖ ► Ă	Ũ	+	15
			_	16
	⊖ → B		+	17
	⊖ ► C	ÐE	+	18
	Gre	O L	т	19 20
	⊖ → D	-•	+	20
	Or D	Ŭ		22
		€G	+	23
		0 -	_	24
		ÐН	+	25
			—	26
Power Supp	oly AC		~	13
11			~	14
	DC		+	13
			-	14

If power supply is taken from the measured voltage internal connections are as follow:

Table 12	
Application (system)	Internal connection Terminal / System
Single phase AC current	2 / 11 (L1 - N)
4-wire 3-phase symmetric load	2 / 11 (L1 - N)
All other *	2 /5 (L1 - L2)

Table 13			
	Modbus		
M40	23, 24, 25, 26 (RS 485)		
M00 15, 16 LON Bus			
M01	23, 24, 25, 26 (RS 485)		
# applicable	only for Theta Trans		

Electrical Connections

Electrical Connections

Electrical Connections

123.4

Dimensional Drawing

Fig. 6. Theta Series in housing T24 clipped onto a top-hat rail (35 X 15 mm or 35 X 7.5 mm, acc. to EN 50 022).

Ordering Information

Product Code	TT40-	Х	Х	00000000000
Compensation	M42	1		
	M24	2		
	M20	3		
	M40 RS485	4		
	M30	5		
	M01 RS485	6		
	M00 LONBUS	7		
Power Supply 24-60U		F		
	85-230U		J	

Sifam Tinsley Instrumentation Inc. 3105, Creekside Village Drive, Suite No. 801, Kennesaw, Georgia 30144 (USA) E-mail Id : psk@sifamtinsley.com Web : www.sifamtinsley.com Contact No. : +1 404 736 4903

15 16 17 18 19 20 21 22 23 24 25 26 00000000000000000

-@

87.5

brackets pulled out.

150

165

181

Fig. 7. Theta Series in housing T24, screw hole mounting

Sifam Tinsley Instrumentation Ltd Unit 1 Warner Drive, Springwood Industrial Estate Braintree, Essex, UK, CM72YW E-mail: sales@sifamtinsley.com Web: www.sifamtinsley.com/uk Contact: +44(0)1803615139

