

11.7 Volt Temperature Compensated Zener Reference Diodes

Qualified per MIL-PRF-19500/157

DESCRIPTION

The popular 1N941-1 thru 1N945B-1 series of zero-TC reference diodes provides a selection of 11.7 V nominal voltages and temperature coefficients to as low as 0.0002 %/°C for minimal voltage change with temperature when operated at 7.5 mA. The "B" version of these glass, axial-leaded DO-35 reference diodes are also available in JAN, JANTX, JANTXV, and JANS military qualifications. Microsemi also offers numerous other Zener reference diode products for a variety of other voltages from 6.2 V to 200 V.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 1N941 thru 1N945 series.
- Standard reference voltage of 11.7 V +/- 5% with tighter reference tolerances of 1%, 2%, and 3% available on commercial level only.
- Internal metallurgical bond.
- JAN, JANTX, JANTXV, and JANS qualification per MIL-PRF-19500/157 available for 1N941B-1, 1N943B-1, 1N944B-1, and 1N945B-1.
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- Provides minimal voltage changes over a broad temperature range.
- For instrumentation and other circuit designs requiring a stable voltage reference.
- Maximum temperature coefficient selections available from 0.01 %/°C to 0.0005 %/°C.
- Flexible axial-lead mounting terminals.
- Non-sensitive to ESD per MIL-STD-750 method 1020.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Power Dissipation @ $T_A = +25 ^{\circ}C$ and maximum current I _{ZM} of 39 mA.	PD	500	mW
Junction and Storage Temp	T_J and T_{STG}	-55 to +175	°C
Maximum Zener Current	I _{ZM}	39	mA
Solder Temperature @ 10 s	T _{SP}	260	°C

<u>Notes</u>: 1. For optimum voltage-temperature stability, $I_z = 7.5$ mA (less than 95 mW in dissipated power). 2. Derate at 3.33 mW/°C above $T_A = +25$ °C. Qualified Levels: JAN, JANTX, JANTXV and JANS (available on some part numbers)

DO-35 (DO-204AH) Package

Also available in:

DO-213AA (surface mount) <u>1N941UR-1 thru 1N945BUR-1</u>

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed glass case with axial DO-35 (DO-204AH) package.
- TERMINALS: Tin-lead plated or RoHS compliant matte-tin plating available (on commercial grade only) and solderable per MIL-STD-750, method 2026.
- MARKING: Part number and cathode band.
- POLARITY: Reference diode to be operated with the banded end positive with respect to the opposite end.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities. (Add "TR" suffix to part number.)
- WEIGHT: 0.2 grams.
- See <u>Package Dimensions</u> on the last page.

PART NOMENCLATURE

Applicable to: JAN, JANTX, JANTXV and JANS level 1N941B, 1N943B, 1N944B, and 1N945B only:

SYMBOLS & DEFINITIONS				
Symbol	Definition			
I _R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.			
Ι _Ζ , Ι _{ΖΤ} , Ι _{ΖΚ}	Regulator Current: The dc regulator current (I_Z), at a specified test point (I_{ZT}), near breakdown knee (I_{ZK}).			
I _{ZM}	Maximum Regulator (Zener) Current: The maximum rated dc current for the specified power rating.			
Vz	Zener Voltage: The Zener voltage the device will exhibit at a specified current (Iz) in its breakdown region.			
V _{ZT}	Zener Voltage Temperature.			
Z_{ZT} or Z_{ZK}	Dynamic Impedance: The small signal impedance of the diode when biased to operate in its breakdown region at a specified rms current modulation (typically 10% of I_{ZT} or I_{ZK}) and superimposed on I_{ZT} or I_{ZK} respectively.			

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise specified

[ZENER	ZENER	MAXIMUM	MAXIMUM	VOLTAGE	TEMPERATURE	EFFECTIVE
	VOLTAGE	TEST	ZENER	REVERSE	TEMPERATURE	RANGE	TEMPERATURE
JEDEC	$V_z @ I_{zT}$	CURRENT	IMPEDANCE	CURRENT	STABILITY	NAII CE	COEFFICIENT
TYPE	(Note 3)	Izt	Z _{2T} @ Ι _{2T}	I _R @ 8 V	ΔV _{ZT}		ανΖ
NUMBER	, ,		(Note 1)		MAXIMUM		
(Note 4)					(Note 2 & 3)		
	Volts	mA	Ohms	μΑ	mV	°C	%/°C
1N941-1	11.12 - 12.28	7.5	30	15	88	0 to +75	0.01
1N941A-1	11.12 - 12.28	7.5	30	15	181	-55 to +100	0.01
1N941B-1	11.12 - 12.28	7.5	30	15	239	-55 to +150	0.01
1N942-1	11.12 - 12.28	7.5	30	15	44	0 to +75	0.005
1N942A-1	11.12 - 12.28	7.5	30	15	90	-55 to +100	0.005
1N942B-1	11.12 - 12.28	7.5	30	15	120	-55 to +150	0.005
1N943-1	11.12 - 12.28	7.5	30	15	18	0 to +75	0.002
1N943A-1	11.12 - 12.28	7.5	30	15	36	-55 to +100	0.002
1N943B-1	11.12 - 12.28	7.5	30	15	47	-55 to +150	0.002
1N944-1	11.12 - 12.28	7.5	30	15	9	0 to +75	0.001
1N944A-1	11.12 - 12.28	7.5	30	15	18	-55 to +100	0.001
1N944B-1	11.12 - 12.28	7.5	30	15	24	-55 to +150	0.001
1N945-1	11.12 - 12.28	7.5	30	15	4	0 to +75	0.0005
1N945A-1	11.12 - 12.28	7.5	30	15	9	-55 to +100	0.0005
1N945B-1	11.12 - 12.28	7.5	30	15	12	-55 to +150	0.0005

*JEDEC Registered Data.

NOTES:

- 1. Measured by superimposing 0.75 mA ac rms on 7.5 mA dc @ 25 $^{\circ}$ C.
- 2. The maximum allowable change observed over the entire temperature range i.e., the diode voltage will not exceed the specified mV change at any discrete temperature between the established limits.
- 3. Voltage measurements to be performed 15 seconds after application of dc current.
- 4. The 1N941B-1, 1N943B-1, 1N944B-1, and 1N945B-1 only are military qualified to MIL-PRF-19500/157 up to the JANS level.

GRAPHS

TYPICAL CHANGE OF TEMPERATURE COEFFICIENT WITH CHANGE IN OPERATING CURRENT The curve shown in Figure 1 is typical of the diode series and greatly simplifies the estimation of the Temperature Coefficient (TC) when the diode is operated at currents other than 7.5 mA.

EXAMPLE: A diode in this series is operated at a current of 7.5 mA and has specified Temperature Coefficient (TC) limits of +/-0.002 %/ $^{\rho}$ C. To obtain the typical Temperature Coefficient limits for this same diode operated at a current of 6.0mA, the new TC limits (% $^{\rho}$ C) can be estimated using the graph in Figure 1.

At a test current of 6.0 mA the change in Temperature Coefficient (TC) is approximately – 0.0009 %.°C. The algebraic sum of +/-0.002 %°C and –0.0009 %/°C gives the new estimated limits of +0.0011 %/oC and -0.0029 %/oC.

TYPICAL CHANGE OF ZENER VOLTAGE WITH CHANGE IN OPERATING CURRENT

This curve in Figure 2 illustrates the change of diode voltage arising from the effect of impedance. It is in effect, an exploded view of the Zener operating region of the I-V characteristic.

In conjunction with Figure 1, this curve can be used to estimate total voltage regulation under conditions of both varying temperature and current.

GRAPHS

FIGURE 3 POWER DERATING CURVE

FIGURE 4 TYPICAL ZENER IMPEDANCE VS. OPERATING CURRENT

PACKAGE DIMENSIONS

	Dimensions				
Symbol	Inch		Millimeters		Notes
	Min	Max	Min	Max	
BD	0.600	0.107	1.52	2.72	3
BL	0.120	0.300	3.05	7.62	3
LD	0.018	0.023	0.46	0.58	
LL	1.000	1.500	25.40	38.10	
LL ₁		0.050		1.27	4

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Package contour optional within BD and length BL. Heat slugs, if any, shall be included within this cylinder but shall not be subject to minimum limit of BD.
- 4. Within this zone, lead diameter may vary to allow for lead finishes and irregularities, other than heat slugs.
- 5. In accordance with ASME Y14.5M, diameters are equivalent to ΦX symbology.